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Visual Inertial Odometry with Pentafocal Geometric Constraints
Pyojin Kim, Hyon Lim, and H. Jin Kim*

Abstract: We present the sliding-window monocular visual inertial odometry that is accurate and robust to outliers
by employing a new observation model grounded on the pentafocal geometric constraints. The previous approaches
are dependent on the unknown 3D coordinates of the features to estimate the ego-motion. However, the inaccurate
3D position of the features can lead to poor performance in motion estimation. To overcome these limitations,
we utilize the pentafocal geometry relationship between five images as camera observation model, which makes it
unnecessary to estimate the 3D position of the features. Furthermore, we apply the pentafocal constraints in the
1-point random sample consensus (RANSAC) algorithm to find incorrect feature correspondences. We demonstrate
the effectiveness of the proposed algorithm in two types of experiments: the KITTI driving scene dataset and the
EuRoC micro aerial vehicle (MAV) flying dataset, both qualitatively and quantitatively. It shows more accurate state
estimation performance compared to the well-known stereo visual odometry algorithm and current state-of-the-art
visual inertial odometry methods.

Keywords: One-point RANSAC, pentafocal geometry, relative pose estimation, visual inertial odometry.

1. INTRODUCTION

Odometry is one of the significant elements to enable
autonomous robot navigation, which incrementally inte-
grates the estimated relative motion of an agent without
any prior map, 3D scene model, or agent’s dynamic model
[1]. It is also useful in many other applications such
as map-based localization, 3D reconstruction, and aug-
mented reality.

As onboard sensors used in odometry algorithms, in-
expensive, lightweight, and passive sensors such as cam-
era and an inertial measurement unit (IMU) have received
significant attention. Especially, monocular, stereo, and
visual inertial odometry techniques have been actively in-
vestigated in robotics and computer vision community. In
the methods that estimate the egomotion of a moving ve-
hicle with only a single camera [2–5], there is the limita-
tion that the camera motion can be recovered only up to a
scale factor without any prior metric information [6]. In
contrast, there is no scale ambiguity in stereo visual odom-
etry approaches, and they show successful egomotion es-
timation results in [7–9]. However, the operating range
depends on the baseline between the two cameras, and a
pair of cameras are relatively more expensive than a single
camera and IMU sensor. Increased computational com-
plexity and memory consumption are also associated com-
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Fig. 1. Trajectory estimation results, showing accurate 6-
DoF state estimation of the proposed method in the
KITTI driving scene (top) and the EuRoC MAV
flying (bottom) dataset.

pared to the processing of only a single camera. Vision-
only methods are sensitive to motion blur, low texture, etc,
leading to a drop in accuracy or even failure. To overcome
such limitations of vision-only navigation, a method of us-
ing a camera and IMU sensor at the same time, which are
complementary to each other, has received much attention
in the past few years [10–12]. As an exteroceptive sensor,
a moving monocular camera can perceive appearance and
geometry of a three-dimensional surrounding environment
up to unknown scale. Complementarily, as a propriocep-
tive sensor, IMU can observe the metric scale and provide

c⃝ICROS, KIEE and Springer 2018

http://www.springer.com/12555


Visual Inertial Odometry with Pentafocal Geometric Constraints 1963

the accurate attitude of the body frame regardless of the
surrounding environment.

Despite some recent success, monocular visual inertial
approaches [11–14] are still challenging in terms of ac-
curacy and robustness to outliers. The dependence of the
measurement model on the unknown (estimated) 3D co-
ordinate of the features can lower the accuracy if the es-
timated 3D position of the features is incorrect. The ac-
curacy of motion estimation can also deteriorate rapidly
due to wrong data associations so called outliers caused
by many factors that cannot be treated easily such as inde-
pendently moving objects in the scene, occlusion, illumi-
nation changes, and image noise.

To address such issues, we propose a sliding-window
monocular visual inertial odometry, which is more accu-
rate and robust to outliers, by employing the pentafocal
geometric constraints. The pentafocal geometry relation-
ship between five images is used as the camera observa-
tion model, which makes the proposed algorithm without
estimating the 3D position of the features. To perform
robust motion estimation to outliers which are tracked in-
correctly or located on the moving objects in the dynamic
scene, the pentafocal geometric constraints are also uti-
lized in the 1-point RANSAC [15]. The proposed algo-
rithm is validated with the large-scale KITTI datasets [16]
in which the total traveling distance of a recording plat-
form is longer than 1 km. The EuRoC micro aerial vehi-
cle (MAV) flying datasets [17] are also used to evaluate
the performance of the proposed algorithm in the indoor
long-distance flight environments.

This paper is organized as follows. Related works are
discussed in Section 2. In Section 3, the notation used
throughout this paper and the proposed sliding-window
visual inertial odometry are described in detail. After val-
idation and evaluation results are presented in Section 4,
the conclusion is made in Section 5.

2. RELATED WORK

During the last decade, visual odometry (VO) and vi-
sual simultaneous localization and mapping (V-SLAM)
have been active areas of research in the robotics and com-
puter vision communities. We will briefly review VO and
V-SLAM algorithms related to the tightly-coupled visual-
inertial solution which will provide better accuracy and
robustness than loosely-coupled ones.

One of the most popular methodologies in VO and V-
SLAM is a probabilistic filtering approach, which sequen-
tially updates the position of the features and the cur-
rent location of the camera. Real-time camera tracking
with the filtering approach is successfully implemented
only using a single camera in monoSLAM [2]. Sim-
ilar to monoSLAM, [18] jointly estimates a 3D posi-
tion of feature points and camera motion with inverse
depth parametrization (IDP) in the extended Kalman fil-

ter (EKF) for good feature initialization. Further, 1-point
RANSAC [15] is proposed for robust estimation to re-
ject spurious feature matches. In [19], inertial information
from IMU is coupled tightly into the monoSLAM by re-
placing the constant velocity motion model with the IMU
motion model. The main problem of this EKF-based VO
and V-SLAM methods is that the dimension of the state
vector and covariance matrix grows rapidly as the number
of mapped features increases, causing high computational
complexity over time.

To solve the above problem, a sliding-window filter
for incremental SLAM [20] is proposed to keep the com-
plexity of the filter by removing the oldest camera pose
and distant landmarks. To only focus on the camera
motion, lightweight sliding-window filtering based VO
methods [10, 21] have gained in popularity, which do
not include the estimated 3D feature position in the filter
state vector, so called multi-state constraint Kalman filter
(MSCKF). The past camera poses in the filter state vector
are used to estimate the 3D position of the features with
least-squares minimization process, and the estimated fea-
tures are re-projected to the past camera poses for mea-
surement update. In [11], the camera motion and IMU-
camera alignment are estimated in the Kalman filtering
framework in real time. Local bundle adjustment (LBA)
is employed in [22] to address the problem of growing
computational cost over time. However, it is still heavier
than the sliding-window method, and it is difficult to be
integrated into the Kalman filter framework.

The requirement of a least square minimization to esti-
mate the 3D position of the features in MSCKF can lead
to a drop in accuracy or even odometry failure if the 3D
feature position is inaccurately estimated. To eliminate
the needs of the estimation of 3D feature position, we pro-
pose a sliding-window visual inertial odometry using the
pentafocal geometric constraints (combination of bifocal
and trifocal tensors) between five images as the camera
observation model. Furthermore, the pentafocal geomet-
ric constraints are also chosen as the update model in the
1-point RANSAC algorithm [15] to perform robust mo-
tion estimation to outliers. Similar research can be found
in [23] and [24]. Compared to [23], we use the combi-
nation of multiple bifocal and trifocal tensors, resulting
in more accurate state estimation. The outlier rejection
in [24], which is performed by computing the motion hy-
pothesis with two feature correspondences and gyroscopic
data from IMU, cannot be easily implemented directly in
the tightly-coupled visual inertial odometry like MSCKF.
Thus, we choose to use the 1-point RANSAC.

3. FILTER SETUP

The goal of the proposed filtering approach is to esti-
mate accurate egomotion of the visual inertial sensor rig,
which consists of the camera frame {C} and the IMU
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Fig. 2. IMU-camera coordinates system. RIC, tIC are rota-
tional and translational part of IMU-camera extrin-
sic calibration parameters.

frame {I} with respect to the global inertial frame {G}
as shown in Fig. 2.

Note that RAB ∈ SO(3) is the rotation matrix from {B}
to {A} and tAB ∈ R3 is the translation vector from the ori-
gin of frame {A} to the origin of frame {B} expressed in
{A}.

3.1. Structure of the UKF state vector
The overall structure of the proposed filtering algorithm

is similar with [10]. The filter state vector is composed of
the current IMU state vector and the last four poses of
the IMU frame only, which means that it does not include
a 3D position of the tracked feature points for reducing
computational burden. Like [10] and [11], the IMU mea-
surements are used for propagation of IMU state vector,
and the visual information, i.e., the detected, tracked key-
points, is served in the filter update step for every captured
image. The overview of the proposed sliding-window vi-
sual inertial odometry is drawn in Fig. 3.

The IMU state vector xIMU is defined as follows:

xIMU =
[

Gp⊤
I

Gq̄⊤I
Gv⊤I b⊤

a b⊤
g
]⊤ ∈ R16, (1)

where Gp⊤
I and Gq̄⊤I are the position vector and the unit

quaternion for rotation of the IMU frame expressed in the
global frame, respectively. Gv⊤I is the velocity vector of
the IMU frame with respect to the global frame, and b⊤

a
and b⊤

g are the biases affecting the accelerometer and gy-
roscope measurements.

The IMU error state vector x̃IMU is described as follows:

x̃IMU =
[

Gp̃⊤
I δθ⊤

I
Gṽ⊤I b̃⊤

a b̃⊤
g

]⊤ ∈ R15. (2)

The more detailed explanation of the IMU state vector and
each component in the Eq. (1) and (2) can be found in [10]
and [11].

The UKF state vector Xk consists of the current IMU
state vector and history of the last four poses of the IMU
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Fig. 3. Overview of the proposed visual inertial odometry.

frame as follows:

Xk =
[
x⊤k,IMU

Gp⊤
Ik−4

Gq̄⊤Ik−4
· · · Gp⊤

Ik−1
Gq̄⊤Ik−1

]⊤ ∈ R44,

(3)

where the subscript k denotes the time step. Contrary to
[2] and [19], the dimension of the filter state vector is fixed
to 44; hence the computational complexity associated with
the state vector is constant over time.

The UKF error state vector X̃k can be defined in the
same way as the IMU error state is defined:

X̃k =
[
x̃⊤k,IMU

Gp̃⊤
Ik−4

δθ⊤
Ik−4

· · · Gp̃⊤
Ik−1

δθ⊤
Ik−1

]⊤ ∈ R39.

(4)

3.2. Propagation model
The continuous-time differential equation for the time

evolution of the filter state vector is described as follows:

Ẋk =



ẋk,IMU
GṗIk−4
G ˙̄qIk−4

...
GṗIk−1
G ˙̄qIk−1


=



f (xk,IMU,am,wm)
03×1

04×1
...

03×1

04×1


, (5)

where xk,IMU is the IMU state vector at time step k defined
in Eq. (1) and am,wm are linear acceleration and angular
velocity measurements from IMU. The zeros in the pro-
cess model of the last four poses indicate that there is no
time evolution in the propagation step.

The time evolution of the IMU state vector in Eq. (5) is
written as follows:

GṗI
G ˙̄qI
Gv̇I

ḃa

ḃg

=


GvI

1
2 Ω(wm −bg)

Gq̄I

RGI (am −ba)−Gg
nba

nbg

 , (6)

where Ω(·) denotes quaternion multiplication and Gg
is the gravitational acceleration expressed in the global
frame. The white Gaussian noise processes, nba and nbg,
propagate the accelerometer and gyro biases.

For every IMU state vector xk,IMU, we perform the
fourth-order Runge Kutta integration between the time
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step k−1 and k. Because we adopt the similar IMU prop-
agation model and numerical methods to discrete-time im-
plementation used in [10], the more detailed explanations
are referred to the paper.

3.3. Observation model

The observation model for filter update is the pentafo-
cal geometric constraint from the five consecutive camera
poses, which has a balance between computational cost
and accuracy. The camera observations from the five cam-
era poses are bundled not for camera pose, but for tracked
feature points. We utilize the observations of the same
physical points from the five consecutive camera poses to
impose pentafocal geometric constraints to the related five
camera poses, i.e., the maximum number of the bi- and
trilinear geometric constraints are applied to update the
camera poses. It is noteworthy that when we impose ge-
ometric constraints to the five camera poses for updating
the filter, it is not necessary to include or estimate the po-
sition of the 3D feature points in the filter state vector. It
can lead to more accurate state estimation, and the com-
putational complexity related to the dimension of the filter
state vector does not change over time, contrary to [19]
and [15].

To promote understanding in this paper, we only rep-
resent the single point f j observed from the five consecu-
tive camera poses. The description applies to multiple fea-
ture points j = 1, · · · ,n where n is the number of tracked
feature points in the five consecutive camera poses from
{Ck−4} to {Ck}.

Assuming that the current time step k is five, we
consider a point correspondence across five views:
m1, · · · ,m5. The pentalinear relationships describing the
projection of the feature point P f j into the five images can
be written as follows:

T11 m̃1 0 · · · 0
T21 0 m̃2 · · · 0
...

...
...

. . . · · ·
T51 0 0 · · · m̃5




P f j

−λ1
...

−λ5

=


0
0
...
0

 , (7)

where m̃k = [mk
⊤,1]⊤ is the homogeneous form of the fea-

ture point location mk and TAB = [RAB, tAB] ∈ R3×4 is the
rigid body transformation matrix from {B} to {A}. λk is
the scale factor corresponding to the feature points. In-
stead of adopting the above pentalinear relations directly,
the equivalent geometric relationships, i.e., multiple bifo-
cal and trifocal geometric constraints, are used to update
the filter state vector as shown in Fig. 4.

The bifocal geometric constraints, i.e. epipolar geom-
etry constraints, between the two views can be written as
follows:

m̃⊤
2 F12m̃1 = 0, (8)

(b) 
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Fig. 4. Geometries used in the pentafocal constraints. (a)
Bifocal and (b) trifocal geometry.

where F12 is the fundamental matrix written as F12 =
K−⊤R⊤

12

[
t12×

]
K−1. K presents the camera intrinsic pa-

rameters which can be obtained from camera calibration.
The point transfer equation based on the trifocal tensor

between the three different viewpoints can be written as
follows:

m̃3 = K

(
3

∑
i=1

m̄i
1T⊤

i

)
l2, (9)

where m̄k = K−1m̃k is the feature point in the normal-
ized image plane, and m̄i

k is the i-th element in the feature
point location vector m̄k. l2 ∈R3 is the corresponding line
passing through the feature point m2 in the second image.
T ∈ R3×3×3 is the trifocal tensor, which involves the rela-
tive rigid body transformation and can be calculated with
the given formula as follows:

T = {T1,T2,T3} , (10)

where the i-th rigid body transformation matrix is Ti =
aib⊤

4 − a4b⊤
i ∈ R3×3. They can be calculated with the

column vectors of the followings: T21 = [R21,t21] =
[a1|a2|a3|a4] ∈ R3×4 and T31 = [R31,t31] = [b1|b2|b3|b4] ∈
R3×4. The more detailed descriptions of each component
and equation are referred to [25].

The five images can maximally impose ten independent
bifocal and ten independent trifocal geometric constraints
to the filter state vector. The observation residual term per
tracked feature point f j can be formulated as follows:

r j = z j − ẑ j ∈ R30, (11)

where

ẑ j = h(Xk,{m1, · · · ,m5}) =



m̃⊤
2 F12m̃1

...
m̃⊤

5 F45m̃4

K(∑i m̃1iT
jk

i )l2
...

K(∑i m̃3iT
jk

i )l4


∈ R30,

where Xk is the filter state vector written in (3), and
F12,T

jk
i are the fundamental matrix and trifocal tensor cal-

culated by the relative pose of each camera frame.
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figure_1point_RANSAC 

Fig. 5. The outlier rejection results with the 1-point
RANSAC.

After the filter state vector Xk and the covariance matrix
are updated with (11), the oldest pose of IMU is discarded
and replaced with the next state to keep only five IMU
poses in the filter state vector.

Xk+1,initial = TcXk, f inal , (12)

where

Tc =


I7×7 07×9 07×7 07×7 07×7 07×7

09×7 I9×9 09×7 09×7 09×7 09×7

07×7 07×9 07×7 I7×7 07×7 07×7

07×7 07×9 07×7 07×7 I7×7 07×7

07×7 07×9 07×7 07×7 07×7 I7×7

I7×7 07×9 07×7 07×7 07×7 07×7

 .

The proposed sliding-window odometry method is
straightforward and easy to implement. The dimension
of the filter state vector and covariance matrix are all fixed
contrary to MSCKF [10].

3.4. 1-Point RANSAC
We employ a random sample consensus (RANSAC) al-

gorithm [26] similar to the 1-point RANSAC used in [15]
to reject the problematic feature points, which are tracked
incorrectly or located on the moving objects in the dy-
namic scene. The pentafocal geometric constraints are
chosen as update model in the 1-point RANSAC since
they do not require a heavy computational load such as
nonlinear optimization for estimating the 3D feature po-
sition. Since only well-tracked static feature points over
five consecutive frames can satisfy the pentalinear rela-
tions, we can detect the problematic feature points which
are located on moving objects or tracked incorrectly as
shown in Fig. 5.

In Fig. 5, blue squares denote the inlier feature points
in the update step. Red squares, however, indicate the
problematic feature points tracked incorrectly or located
on the moving objects. It can be seen that the feature
points marked with the red square are located on inde-
pendently moving objects such as driving cars, human.
Therefore, the pentafocal geometric constraints used in
the RANSAC process make the proposed algorithm robust
with respect to the dynamic environment and mismatched
feature points.

4. EVALUATION

We test the proposed sliding-window visual inertial
odometry on the two types of experiments with the KITTI
driving scene dataset [16] and the EuRoC MAV flying
dataset [17], both qualitatively and quantitatively, and an-
alyze in terms of estimation accuracy in detail. In the
KITTI driving scene dataset, we use the rectified image
sequences from PointGray Flea2 grayscale single camera
and inertial information from OXTS RT3003 GPS/IMU
sensor for estimating egomotion of the recording platform
at 10 Hz. In the EuRoC MAV flying dataset, we utilize the
left images in the stereo camera rig and IMU information
at 20 Hz and 200 Hz respectively, which are captured by a
visual-inertial (VI) sensor unit [27] attached to an AscTec
Firefly MAV. We utilize accurate spatio-temporal align-
ment of the IMU and camera sensor data from [16, 17].

We detect the feature points for updating the filter state
vector, and track them with SURF [28] within only five
consecutive image sequences. The maximum number of
the tracked feature points is 50, and the bucketing mech-
anism [29] is used to reduce drift rate of the proposed al-
gorithm by making the distribution of the feature points
uniform. The proposed visual odometry algorithm is writ-
ten and tested in MATLAB R2015a, and all of the calcu-
lations are performed on a desktop with Intel i5 3.2 GHz
and 8 GB memory.

For quantitative evaluation and comparison of the pro-
posed algorithm, we select three types of error metrics:
root mean square error (RMSE) of the relative pose error
(RPE), absolute trajectory error (ATE) defined in [30], and
the final drift error (FDE) which is the end point position
error divided by the total traveling distance of a record-
ing platform. We compare the proposed method with the
monocular and stereo visual odometry [8], which esti-
mate the 3D position of the features for egomotion esti-
mation. Current state-of-the-art visual inertial odometry
algorithms [23], [13] are also compared to the proposed
algorithm in terms of accuracy.

4.1. Qualitative results
We choose several sequences in the KITTI and MAV

dataset, which include sudden light variations, frequent
on-the-spot rotations, and some jerky motion of the cam-
era to evaluate the proposed method qualitatively. Fig. 6
shows the estimated trajectories of each VO method on the
Residential #3 in the KITTI dataset, which is about 3.6 km
traveling distance. We plot the estimated trajectories of
the proposed method (magenta), monocular visual odom-
etry (red), stereo visual odometry (green) [8], and the vi-
sual inertial odometry (blue) [23] with the ground truth
path (black). Two selected close-ups show that the esti-
mated path with the proposed method is more consistent
than other resulting trajectories. The point cloud of the
3D feature points (gray dots), which are used for updating
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Table 1. Evaluation results with the KITTI dataset.

Environment Absolute Trajectory Error [m] Final Drift Error [%] Length [m] # of frame
Proposed Mono VO Stereo VO TVIO Proposed Mono VO Stereo VO TVIO

Residential #1 7.851 83.391 23.583 35.919 0.267 9.392 1.719 2.871 1830 2300
Residential #2 10.299 52.274 9.356 13.118 0.937 5.014 1.283 2.401 1227 1104
Residential #3 12.082 173.248 71.081 20.604 0.262 6.850 2.085 0.515 3667 4500
Residential #4 10.025 181.928 14.297 40.441 0.752 13.432 2.747 6.425 920 1224
Residential #5 13.862 80.095 36.125 12.320 1.110 5.891 2.674 1.313 1797 2400
Residential #6 35.480 142.534 93.320 60.267 1.222 3.529 3.481 2.030 5064 4663

Table 2. Evaluation results with the EuRoC MAV dataset.

Environment Absolute Trajectory Error [m] Final Drift Error [%] Length [m] # of frame
Proposed ROVIO Stereo VO TVIO Proposed ROVIO Stereo VO TVIO

Vicon Room #1 0.391 0.439 0.320 0.500 0.685 1.153 0.764 0.827 78.74 1954
Vicon Room #2 0.227 0.413 1.239 Fail 1.110 2.050 4.005 Fail 36.27 2104
Vicon Room #3 0.196 0.324 2.145 0.505 0.234 0.479 4.362 2.914 82.77 2203
Machine Hall #1 0.401 0.430 0.337 Fail 1.768 0.869 1.163 Fail 72.83 2757
Machine Hall #2 0.233 0.643 0.918 0.445 0.123 0.420 1.679 0.417 127.06 2251
Machine Hall #3 0.244 0.929 1.461 1.043 0.337 1.456 1.372 1.932 88.33 1578
Machine Hall #4 0.389 0.885 1.021 0.559 0.299 1.314 0.897 0.551 94.24 1832figure_KITTI_traj 

Fig. 6. Top view of the estimated trajectories on the Resi-
dential #3 in the KITTI dataset.

the filter state of the proposed method, is reconstructed
consistently throughout the entire trajectory. The above
results suggest that the estimated trajectory with the pro-
posed method is highly consistent and accurate compared
to the other trajectory estimation results.

The estimation errors for the position are also compared
against the corresponding ±3σ bounds computed using
the estimated covariance (red lines) with the proposed al-
gorithm in Fig. 7. We can see that the computed covari-
ance corresponds to the position error from the proposed
method. The winding line in the ground truth trajectory
shown in the dashed rectangles of Figs. 6 and 7 is not the
actual traveling path of the recording platform, but the er-
roneous GPS data from the KITTI dataset.

The trajectory estimation results of Machine Hall #2 in
the EuRoC MAV dataset, which consists of the images

figure_eval_KITTI_3sigma.pdf 

Fig. 7. Position error with ±3σ error bounds from the pro-
posed method.

taken during some jerky motion of the MAV, are plotted in
Fig. 8. Estimated trajectories of the proposed (magenta),
ROVIO (red) [13], stereo VO (green) [8], and TVIO (blue)
[23]. Two close-up views of the estimated trajectories
confirm that the magenta curve is more similar than other
curves to the black curve. We plot the absolute trajectory
error (ATE) with respect to the frame number. The pro-
posed method shows the lowest growth rate of the absolute
trajectory error.

Please refer to the video clips submitted with this paper
showing more details about the evaluations.1

4.2. Quantitative results
We report the root mean square error (RMSE) of the

error metric for the resulting camera trajectories of the
KITTI and the EuRoC MAV dataset in Tables 1 and 2.

1Video available at https://youtu.be/24nnjRNjI1k

https://youtu.be/24nnjRNjI1k
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figure_eval_MAV_traj.pdf 

Fig. 8. Trajectory estimation results for each VO method
with Machine Hall #2 in the EuRoC MAV dataset.

The smallest error for each sequence is highlighted. It
shows that the proposed method is superior to the exist-
ing mono, stereo, and visual inertial odometry methods
in most cases, for both KITTI and EuRoC MAV datasets.
The overall final drift error of the proposed algorithm in
the KITTI dataset is about 0.8 % while driving the total
distance of 14.5 km. We can also observe that the abso-
lute trajectory error (ATE) of the proposed algorithm for
each KITTI and MAV dataset is very small regardless of
the total traveling distance, which means that the perfor-
mance of the proposed algorithm is maintained not only in
the short distance, but also in the long traveling distance
over 5 km.

In particular, we select Vicon Room #1 in the EuRoC
MAV dataset from Table 2 to analyze the estimation re-
sults in detail. We perform the statistical analysis of the
relative error metric to figure out the trend of the odomet-
ric drift error over trajectory segments of different length:
[10,20,30,40,50,60] m. Fig. 9 shows translational and
rotational error distribution of each VO method depend-
ing on the different length of the interval used in the cal-
culation of the relative drift error defined in [30] and [31].
The proposed algorithm shows the smallest increase in the
drift error as the traveled distance increases from 10 to 60.
The average, median, and variance of the translational rel-
ative error values of the proposed method are very small
in every distance length interval compared to other meth-
ods as illustrated in Fig. 9. Although ROVIO (red) has the
small median of the rotational relative error values, the er-
ror range of the ROVIO boxplot is wider than the error
range of the proposed method. We also observe that the
heading angle accuracy of the proposed algorithm is high
enough while the stereo visual odometry cannot estimate
yaw direction of the vehicle accurately.

We plot comparison of average reprojection error val-
ues for each VO method in Fig. 10 for analyzing the ac-
curacy of the proposed method from the different point of
view. The reprojection error of the tracked feature points
is one of the significant performance indexes in the VO
methods [8], [23] because they estimate the optimal cam-
era motion which minimizes the reprojection errors. We
cannot plot the reprojection error values of ROVIO be-
cause it estimates the motion of the camera by minimiz-

figure_eval_MAV_analysis.pdf 

Fig. 9. Comparison of the tendency of the relative transla-
tional and rotational error with respect to the dif-
ferent length interval with Vicon Room #1.

ing the photometric error of the warped patches rather than
the reprojection error. In both Residential #3 in the KITTI
dataset (top) and Machine Hall #2 in the EuRoC MAV
dataset (bottom) graphs in Fig. 10, the proposed method
shows outstanding results compared to the other VO meth-
ods. The reprojection errors for the proposed method are
the lowest, which means that the estimated camera mo-
tions with the proposed method are more accurate and
closer to the actual camera movements than the estima-
tion results of the other VO methods. The overall average
values of the reprojection error for each VO method in top
graph Fig. 10 are 0.16, 0.78, and 0.45 for the proposed
algorithm (magenta), stereo VO (green), and TVIO (blue)
respectively. Fig. 10 also shows that the pentafocal geo-
metric constraints employed in the proposed method gen-
erate smaller reprojection error compared to the trifocal
tensor-based reprojection error model from TVIO [23].

We analyze the computation time between two differ-
ent observation models, which are the pentafocal geome-
try model in the proposed method and the reprojection er-
ror model including nonlinear optimization for estimation
of the 3D feature position from MSCKF in Fig 11. The
pentafocal geometry constraints in the proposed method,
which do not require the estimation of the 3D position of
the features, take about 60 ms averagely. The reprojection
error model in the MSCKF, which includes the nonlinear
optimization process for estimating 3D feature position,
takes about 80 ms averagely. It shows that the pentafocal
observation model runs about 20 ms faster than the typ-
ical reprojection error model in average. The proposed
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figure_eval_reproj_error.pdf 

Fig. 10. Average reprojection error of the feature points
for each VO method. Residential #3 in the KITTI
dataset (top) and Machine Hall #2 in the EuRoC
MAV dataset (bottom).
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Fig. 11. Computation time for the proposed method (top)
and the difference of computation time between
the pentafocal geometry model and reprojection
error model from MSCKF (bottom).

method written in unoptimized MATLAB codes runs in
almost real time at 17 Hz, suggesting potential when im-
plemented in C/C++ in the future.

5. CONCLUSION

In this paper, we propose pentafocal geometry for cam-
era observation model in a sliding-window monocular vi-
sual inertial odometry. To avoid motion estimation error
due to the inaccurate estimation of the 3D feature position,
the pentafocal geometric constraints are employed as cam-
era observation model, which makes the proposed visual
inertial odometry without estimating 3D feature positions
at all. Furthermore, the pentafocal geometry between five
images is also utilized in 1-point RANSAC to select the
static and reliable feature points, resulting in robust mo-
tion estimation results. From the extensive evaluation on
the real experimental datasets, our method shows more ac-

curate and precise motion estimation results with KITTI
and EuRoC MAV dataset compared to other monocular,
stereo, and visual inertial odometry methods. Addition-
ally, since the 3D position of the features is not computed
explicitly in the pentafocal observation model, the compu-
tation time of the proposed method is reduced compared
to the reprojection error observation model. Future work
will focus on the computational formal complexity anal-
ysis of the pentafocal geometric constraints compared to
other popular observation models used in the visual iner-
tial odometry.
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