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Normalized Learning Rule for Iterative Learning Control
Byungyong You

Abstract: The iterative learning control (ILC) is attractive for its simple structure, easy implementation. So the
ILC is applied to various fields. But the unexpected huge overshoot can be observed as iteration repeat when
we use the ILC to the real world applications. Such bad transient becomes an obstacle for using the ILC in the
real field. Designers use a projection method to avoid the bad transient usually. However, the projection method
does not show a good error performance enough. Therefore we propose a new learning rule to reduce such a bad
transient effectively. The simple normalized learning rules for P-type and PD-type are presented and we prove their
convergence. Numerical examples are given to show the effectiveness of the proposed learning control algorithms.

Keywords: Huge overshoot, iterative learning, nomalized learning rule, P-type and PD-type control.

1. INTRODUCTION

Iterative learning control methods handle systems that
perform the same tasks repeatedly over finite time inter-
vals. The basic idea behind ILC is that the information
obtained from a previous trial is used to improve the con-
trol input for the current trial. Because the ILC has very
simple structure and is easy to implement, the ILC is at-
tractive to a field engineer. Besides, the ILC can be ap-
plied to a nonlinear system effectively although we do not
know plant information exactly. Therefore there are many
examples that ILC is applied to a real field [1–4]. But,
we can observe bad transient of ILC easily by repeating
the iteration number [5–7]. This bad transient is caused
by wrong design of a learning rule parameter and basi-
cally open-loop structure. Those phenomenon can be an
obstacle for using the ILC to real examples. Therefore it is
needed to analyze why this situation happens and propose
a new learning rule to overcome bad transient.

Many researches have suggested a source of such bad
transient. In summary, there are four kinds of view. First
one is relation between lambda-norm and sup-norm [5],
second one is about to time domain aspect [6], third one
is about to frequency domain aspect [6], and last one is
about to monotonic convergence [7]. In research of first
view, they proposed a exponentially variable gain method
to avoid the bad transient. Because the source of bad tran-
sient is too much increase of the learning rule in termi-
nal time, the proposed method stop the learning in nearby
terminal time. This proposed learning rule shows a good
performance to reject the bad transient when we design
the parameter of exponential term optimally.

However, we can not estimate how the output error in-
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creases, it is very hard to design the parameter adequately.
Therefore we propose a normalized learning rule in this
paper. This method normalize the output error in a certain
range and it is possible to estimate the error value. This
method includes the exponentially variable gain method
and we can design the parameter of exponential term eas-
ily because of the normalized term. We proposed this nor-
malized learning rule with PD-type and P-type. P-type
learning rule is about to a parametric uncertainty problem.

This paper is organized as follows. Section 2 describes
a source of the bad transient and the exponentially variable
gain method. In Section 3, we propose a PD-type normal-
ized learning rule and prove its convergence. In Section 4,
we propose a P-type normalized learning rule and prove
its convergence. Section 5 verifies the performance of the
proposed learning rule by using the computer simulations.
Finally, the conclusion is given is Section 6.

In this paper, we use the following notations. Rn is the
n-dimensional Euclidean space with norm ||x||= (xT x)1/2

for x∈Rn. C ∈Rp×m indicates C is an (p×m-dimensional
matrix with real elements and we use ||C||=

√
λmax(CTC)

as the norm for matrices. Let N be the set of positive in-
tegers 0,1,2, . . . ,n. Finally, the λ -norm is defined for a
function z : [0,T ]→ Rr as

||z(·)||λ = sup
t∈[0,T ]

e−λ t ||z(t)||.

2. STUDY ON BAD TRANSIENT OF ILC

Example 1: Consider the following linear time-
invariant system:

ẋk(t) = Axk(t)+Buk(t),
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yk(t) =Cxk(t), (1)

where

A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, C =

[
0 1

]
.

Let the desired output trajectory be given as

yd(t) = 12t(1− t), 0 ≤ t ≤ 1. (2)

Suppose that the PD-type learning rule is applied:

uk+1(t) = uk(t)+Γ[ėk(t)−Rek(t)], (3)

where

ek(t) = yd(t)− yk(t).

If

||I −ΓCB||∞ < 1, (4)

then it is already known that the update law makes the
error between yd(t) and yk(t) approach zero as k → ∞ [8].

Now let us assume that Γ and R are chosen as 1/1.3
and -55 respectively. Note that the large value of R does
not affect the condition of convergence. Fig. 1 shows that
there is a huge overshoot in the sense of the sup-norm,
even though ||yd(t)− yk(t)||λ monotonically decreases.

Example 2: Consider the following dynamics of a
single-link robot manipulator

θ̈(t) =
1
J
(0.5m0 +M0)gl sinθ(t)+

1
J

τ(t)+d1(t),

y(t) = θ̇(t)+d2(t), (5)

where θ(t) is the angular position of the manipulator, θ̇(t)
is the angular velocity of the manipulator, τ(t) is the joint
torque, d1(t) is the state disturbance , d2(t) is the output
disturbance and J is the moment of inertia of the joint, i.e.,
J = M0l2 +m0l2/3. The desired output trajectory is given
as follows:

yd(t) = θ̇d(t) = 50
(

3
8

t2 − 3
8

t3 +
3

32
t4
)
,

0 ≤ t ≤ 2. (6)

Suppose that the PD-type learning rule is applied. If

||I −Γgx(x, t)B(x, t)||∞ < 1, (7)

then it is already known that the update law makes the er-
ror between yd(t) and yk(t) approach zero as k →∞. Fig. 2
shows that if we assume that Γ and R are chosen as 1/1.3
and −55, respectively, then we can see a huge overshoot
like as Example 1.
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Fig. 1. Sup-norm when Γ = 1/1.3, R = −55 (linear sys-
tem).
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Fig. 2. Sup-norm when Γ = 1/1.3, R = −55 (nonlinear
system).

One reason for this huge overshoot is that the amount
of updated input is very large. Since the ILC is an open-
loop-type controller, it is possible to have a large error at
the terminal time. This large error becomes a large amount
of the updated input with the help of Γ and R. And, at the
next iteration, this large input makes the error larger and
larger near the terminal time.

Note that, in calculating the λ -norm with a large value
of λ , the errors near the terminal time are extremely less
weighted than those near the start time. In general, for the
proof of the convergence property of ILC, it is sufficient
to prove the existence of a λ , but not much is known of
the value of λ . So, if we apply an ILC that is proved to
converge in the sense of the λ -norm, with a possibly large
value of λ , we may have a huge tracking error, which is
not allowable in practice or even for computer simulation.
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Since the huge tracking error comes from the open-loop
nature of ILC, one way of resolving this undesirable phe-
nomenon is to use a projection method.

Example 3: simulation condition is same as Example
2, except to a learning rule. In general, projection method
is follows:

uk+1(t) = pro j (uk(t)+Γ[ėk(t)−Rek(t)]) . (8)

Fig. 3 shows that projection method prevent the output
tracking error from grow rapidly, but the transient behav-
ior and error performance is not good.

Therefore Lee and Bien [5] proposed a variable gain
method that modifies the learning gain Γ. They replace
Γ with a function of time Γ(t), as long as Γ(t) satisfies
the convergence condition. One candidate for Γ(t) has the
form

Γ(t) = e−γtΓ, (9)

where γ > 0. From above equation, one can easily find that
the amount of updated input near at terminal time would
be small. Therefore, even if a large error is produced near
the terminal time, it does not become the large updated
input. Fig. 4 shows that proposed variable gain method
has a good performance for tracking error and transient
behavior. However, it is hard to design gain γ because
we do not know how much the error term increases and
the proposed variable gain method is not appropriate in
case of long interval system because the gain decreases
exponentially.

3. PD-TYPE NORMALIZED LEARNING RULE
FOR ILC

3.1. Problem formulation
Consider a class of discrete time-varying nonlinear sys-

tems that perform a given task repeatedly on a finite time
interval [0,T ] (T is a positive integer). The systems can be
described by the following different equations:

xk(t +1) = f (t,xk(t),uk(t))+ψk(t),

yk(t) = g(t,xk(t))+ηk(t), (10)

where k denotes the kth repetitive operation of the sys-
tem and t is the discrete time index running from t = 0 to
t = T to complete an operation. For all t ∈ [0,T ], xk(t) ∈
Rn, uk(t)∈Rm, yk(t)∈Rr, ψk(t)∈Rn and ηk(t)∈Rr are
the states, inputs, outputs, state disturbances and output
disturbances, respectively. Suppose that the initial state
at first iteration is same with the desired initial state, i.e.
x1(0) = xd(0). The vector functions f : Rn ×Rm ×N×→
Rn, and g : Rn ×N → Rr. Those functions are satisfy the
properties and bounds stated as follow assumptions.

Assumption 1: The vector function f (t,x,u) is globally
uniformly Lipschitz in x, u on [0,T ] in the sense of

|| f (t,x1,u1)− f (t,x2,u2)||
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Fig. 3. Sup-norm when Γ = 1/1.3, R = −55 (nonlinear
system with projection method).
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Fig. 4. Sup-norm when Γ = 1/1.3, R = −55 (nonlinear
system with variable gain method).

≤ f0||x1 − x2||+ f0||u1 −u2||,
∀x1,x2,u1,u2 for t ∈ [0,T ],

where f0 is positive constants.
Assumption 2:

f (t,x,u)− f (t,x,u∗) = fu(u−u∗),

g(t,x)−g(t,x∗) = gx(x− x∗),

where

fu =
∂ f
∂u

=

 f1,u (t,x,u+ξ1(u∗−u))
...

fm,u (t,x,u+ξm(u∗−u))

 ,

gx =
∂g
∂x

=

 g1,x (t,x+ζ1(x∗− x))
...

gn,x (t,x+ζn(x∗− x))

 ,
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fm,u is the partial derivative of the mth element of f to u
and gn,x is the partial derivative of the nth element of g
to x; ξ1, . . . ,ξm and ζ1, . . . ,ζn belong to (0,1). Since the
mean value theorem will be used extensively here, the
above notations are used to avoid the use of ξ1, . . . ,ξm and
ζ1, . . . ,ζn.

Assumption 3: The matrices fu and gx are defined with
bounds as || fu|| ≤ b f , ||gx|| ≤ bg, where b f , bg are positive
constants. Furthermore, the product matrix gx fu has full
rank.

Assumption 4: The disturbances ψk(t), ηk(t) and ini-
tial state xk(0) satisfy:

||ψk+1(t)−ψk(t)|| ≤ dψ ,

||ηk+1(t)−ηk(t)|| ≤ dη ,

||xk+1(0)− xk(0)|| ≤ d0,

where dψ , dη and d0 are positive constants.
Those assumptions are natural in many repetitive dy-

namic systems such as the repeatability in robot specifica-
tions.

Here, we propose a new PD-type normalized learning
rule. The previous example shows that the conventional
PD-type learning rule can produce the unexpected huge
overshoot when the design parameter increases. There-
fore we propose a new learning rule to reduce those bad
phenomenon. The proposed learning rule is follows:

uk(t +1) =uk(t)

+Γ(t)
(

ek(t)− ek(t −m)

m
−R

ek(t)
1+ e2

k(t)

)
,

(11)

where Γ(t) = Γe−γt , γ > 0, ||Γ(t)|| ≤ bΓ and || 1
m || ≤ bm

for all t ∈ [0,T ]. The normalized term of (11) prevent the
output error from too much increasing. From the Fig. 5,
we can see that the value of normalized term is bounded
as |0.5|. The variable gain method that proposed by Lee
and Bien [5], is hard to design the parameter γ because
we don’t know how the output error increase. But we can
easily design the parameter γ in this normalized learning
rule.

3.2. Main result
Theorem 1: Consider the discrete control system de-

scribed by (10) and (11). Assume that the (A1)-(A4) are
satisfied and the following inequality∣∣∣∣∣∣∣∣I − gx fuΓ(t)

m

∣∣∣∣∣∣∣∣≤ ρ < 1 (12)

holds for all x, u, and t, then the tracking error will be
bounded when k → ∞. If the initial state and all distur-
bances become repetitive gradually, i.e., dψ = dη = d0 = 0,
then yk(t) will converge to yd(t) when k → ∞.
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Fig. 5. Normalized term of the proposed learning rule.

Proof:

ek+1(t)− ek(t)

= yk(t)− yk+1(t)

= g(t,xk(t))−g(t,xk+1(t))+ηk(t)−ηk+1(t)

= gx(xk(t)− xk+1(t))+ηk(t)−ηk+1(t)

= gx(xk(t)− xk+1(t)+ xk+1(t +1)− xk+1(t +1))

+ηk(t)−ηk+1(t)

=−gx fuΓ(t)
(

ek(t)− ek(t −m)

m
−R

ek(t)
1+ e2

k(t)

)
−gx (xk+1(t)− xk(t))

+gx fu (uk+1(t)−uk(t))+ηk(t)−ηk+1(t). (13)

Equation (13) can be expressed as

ek+1(t) =
[

I − gx fuΓ(t)
m

]
ek(t)+

gx fuΓ(t)
m

ek(t −m)

+gx fu (uk+1(t)−uk(t))

−gx (xk+1(t)− xk(t))+gx fuΓ(t)R
ek(t)

1+ e2
k(t)

+ηk(t)−ηk+1. (14)

Take norms on both sides of (14) and using the fact that
|| ek(t)

1+e2
k(t)

|| ≤ ||ek(t)||, we obtain

||ek+1(t)|| ≤ρ||ek(t)||+b0||ek(t −m)||+b1||ek(t)||
+bgb f ||uk+1(t)−uk(t)||
+bg||xk+1(t)− xk(t)||+dη , (15)

where b0 = supt∈[0, T ]

∣∣∣∣∣∣ gx fuΓ(t)
m

∣∣∣∣∣∣, b1 = supt∈[0, T ] ||gx fuΓ(t)R||.
From (11)

||uk+1(t)−uk(t)||

=

∣∣∣∣∣∣∣∣Γ(t)(ek(t)− ek(t −m)

m
−R

ek(t)
1+ e2

k(t)

)∣∣∣∣∣∣∣∣
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≤ bΓ(bm +bR)||ek(t)||+bΓbm||ek(t −m)||. (16)

From (10), we have

xk+1(t)− xk(t)

= f (t −1,xk+1(t −1),uk+1(t −1))

+ψk+1(t −1)− f (t −1,xk(t −1),uk(t −1))

−ψk(t −1). (17)

Take norms on both sides of (17), we have

||xk+1(t)− xk(t)||
≤ f0||xk+1(t −1)− xk(t −1)||

+ f0||uk+1(t −1)−uk(t −1)||+dψ

≤ f0||xk+1(t −1)− xk(t −1)||
+ f0bΓ ((bm +bR)||ek(t)||+bm||ek(t −m)||)+dψ

≤ f 2
0 ||xk+1(t −2)− xk(t −2)||
+
(

f 2
0 + f0

)
bΓ ((bm +bR)||ek(t)||+bm||ek(t −m)||)

+( f0 +1)dψ

≤ ·· ·
≤ f t

0||xk+1(0)− xk(0)||
+bΓ( f t

0 + f t−1
0 + · · ·+ f 2

0 + f0)((bm +bR)||ek(t)||
+bm||ek(t −m)||)
+
(

f t−1
0 + f t−2

0 + · · ·+ f 2
0 + f0 +1

)
dψ

≤ m1 +m2||ek(t)||+m3||ek(t −m)||, (18)

where m1 = f t
0d0 +

(
f t−1
0 + f t−2

0 + · · ·+ f 2
0 + f0 +1

)
dψ ,

m2 = bΓ(bm + bR)
(

f t
0 + f t−1

0 + · · ·+ f 2
0 + f0

)
, and m3 =

bΓbR
(

f t
0 + f t−1

0 + · · ·+ f 2
0 + f0

)
.

By (15), (16) and (18), we have

||ek+1(t)||
≤ (ρ +b1 +bgb f bΓ(bm +bR)+bgm2) ||ek(t)||

+(b0 +bgb f bΓbm +bgm3) ||ek(t −m)||
+bgm1 +dη . (19)

Multiplying e−λ t on both sides of (19), we have

||ek+1||λ
≤ [ρ +b1 +bgb f bΓ(bm +bR)+bgm2

+ e−λm(b0 +bgb f bΓbm +bgm3)]||ek||λ
+bgm1 +dη . (20)

Choose λ large enough so that

ρ̂ =[ρ +b1 +bgb f bΓ(bm +bR)+bgm2

+ e−λm(b0 +bgb f bΓbm +bgm3)]< 1. (21)

Thus, we have

||ek+1||λ ≤ ρ̂||ek||λ +M, (22)

where M = bgm1 +dη and 0 < ρ̂ < 1, M > 0.
From inequality (22), we have

||ek+1||λ ≤ ρ̂k||e1||λ +M
k−1

∑
j=0

ρ̂ j

= ρ̂k||e1||λ +
M
(
1− ρ̂k

)
1− ρ̂

. (23)

Thus

lim
k→∞

||ek||λ ≤ M
1− ρ̂

. (24)

If the initial state and all disturbances become repetitive
gradually, i.e., dψ , dη , d0 → 0 as k → ∞, then M → 0,
||ek||λ → 0.

By the definition of || · ||λ , we know that

sup
t∈[0,T ]

||ek|| ≤ eλT ||ek||λ . (25)

Therefore,

sup
t∈[0,T ]

||ek|| → 0 as k → ∞, (26)

which means that yk(t) → yd(t) when k → ∞ on t ∈
[0,T ]. □

4. P-TYPE NORMALIZED LEARNING RULE
WITH PARAMETRIC UNCERTAINTY

4.1. Problem formulation
In a nonlinear system, many problems can be repre-

sented by parametric uncertainty form. Usually in a gen-
eral nonlinear problem, the design parameter of P-type
learning rule is included in the stability condition. There-
fore the parameter can not too much increases. However,
because the design parameter of P-type learning rule with
parametric uncertainty problem is not included in the sta-
bility condition, the parameter can increases by the de-
signer, i.e., a huge overshoot can be existed. Therefore
we propose a P-type normalized learning rule with para-
metric uncertainty problem and prove its convergence. In
previous sections, the convergence is proved by the time-
weighted norm (λ -norm), but in this problem, we prove
the convergence with Lyapunov approach.

Consider simple first order nonlinear dynamic system
in the i-th iteration

ẋi(t) = θ(t)ξ (xi(t), t)+ui(t), x(0) = x0, (27)

where ξ (xi(t), t) is a known nonlinear function which can
be local Lipschitzian and θ(t) ≤ θM ∈ [0, T ] is the un-
known time-varying parameter.

The reference trajectory is generated by a dynamics

ẋr(t) = f (xr,r, t), (28)
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where fr = f (xr,r, t) is a known smooth function, r is a
reference input which yields a bounded state xr(t) over
the interval [0, T ]. The tracking error is defined as ei(t) =
xr(t)− xi(t).

The objective of ILC is to find a sequence of appropriate
control input ui(t) for t ∈ [0, T ] such that the system state
xi(t) tracks the reference trajectory xr as i → ∞.

The error dynamics at the i-th iteration can be expressed
as

ėi(t) = fr −θ(t)ξi −ui. (29)

The learning control mechanism consists of the control
law

ui = kei + fr − θ̂i(t)ξi, (30)

and the parametric learning law

θ̂i(t) = θ̂i−1(t)− γ1
ξi

1+ξ 2
i

ei(t)
1+ ei(t)2 − γ2ξiei(t),

θ̂−1(t) = 0. (31)

In a previous research, Xu, Yan, and Chen [9] proposed
the parametric learning law

θ̂i(t) = pro j(θ̂i−1(t))− γξiei(t). (32)

On the other hand, we proposed a normalized parametric
learning law (31). The designer can increase γ1 arbitrarily,
but γ2 should be maintain a normal value. The normalized
learing rule is can be used not only for general ILC prob-
lems, but also for parametric uncertainties. The proposed
learing rule is based on conventional several parametric
uncertainties laws, but the normalized term is added to the
problem solutions, resulting maintains a robust output in
an abnormal learning gain.

Substituting the learning control law (30) into the error
dynamics (29) yields the closed-loop error dynamics

ėi(t) =−kei −ϕi(t)ξi, (33)

where ϕi(t)≜ θ(t)− θ̂i(t).

4.2. Main result
First derive the boundedness of tracking error ei and pa-

rameter estimate θ̂i under learning control law (30) and
(31). Note that at the initial iteration i = 0, there is no
parametric learning as θ̂−1 = 0. Hence we have to derive
the boundedness of (e0, θ̂0) in a way different from that
for (ei, θ̂i) with i ≥ 1.

Proposition 1: (e0, θ̂0) is bounded for t ∈ [0, T ].

Proof: Choose Lyapunov functional

V0(t) =
1
2

e2
0(t)+

1
2

∫ t

0
ϕ 2

0 (τ)dτ. (34)

The upper right hand derivative of V0 is

V̇0 = e0ė0 +
1
2

ϕ 2
0 =−ke2

0 −ϕ0ξ0e0 +
1
2

ϕ 2
0 . (35)

Noticing that θ̂0 =−γ1
ξ0

1+ξ 2
0

e0
1+e2

0
− γ2ξ0e0, V0 becomes

V̇0 =−ke2
0 + r̄ϕ0θ̂0 +

1
2

ϕ 2
0

=−ke2
0 −

1
2

ϕ 2
0 +ϕ0θ̄ , (36)

where

r̄ =
1

γ1
(1+ξ 2

0 )(1+e2
0)
+ γ2

> 0,

θ̄ = θ +(r̄−1)θ̂0 < θ̄m.

Using Young’s inequality, for any c > 0 we have ϕ0θ̄ ≤
cϕ 2

0 +
1
4c θ̄ 2. Let 0 < c < 1

2 , V̇0 ≤−ke2
0−( 1

2 −c)ϕ 2
0 +

1
4c θ̄ 2.

Thus V̇0 is negative definite outside the region {(e0, ϕ0) ∈
D|ke2

0 +( 1
2 − c)ϕ 2

0 ≤ 1
4c θ̄ 2} which specifies the bound of

V0(t) in the finite interval [0, T ]. The boundedness of V0(t)
implies the boundedness of e0 in the sequel the bounded-
ness of x0, ξ0, and θ̂0. □

Now we can prove the boundedness of (ei, θ̂i), which
is summarized in the following theorem.

Theorem 2: Let the ILC scheme be composed of the
control law (30),parametric learning law (31). If the fol-
lowing inequality holds:

|ϕi| ≤
4kγ2 +2(γ1/4+ γ2)

2

γ1
,

then the error dynamic system (33) is bounded and con-
verges as follows:

(i) (ei, θ̂i) is bounded for all i ≥ 1.
(ii) limi→∞ ei(t) = 0 for all t ∈ [0, T ].

Proof: Define the following Lyapunov functional

V (ei,ϕi,ϕi−1, t) =
1
2

e2
i +

1
2γ2

∫ t

0
ϕ 2

i (τ)dτ

+
1

2γ2

∫ T

t
ϕ 2

i−1(τ)dτ. (37)

The upper right hand derivative of V (ei,ϕi,ϕi−1, t) is

V̇ (ei,ϕi,ϕi−1, t) = eiėi +
1

2γ2

(
ϕ 2

i −ϕ 2
i−1

)
. (38)

Substituting the closed-loop error dynamics (33), the first
term on the right hand side of (38) is

eiėi =−ke2
i −ϕiξiei. (39)
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Next substituting the parametric learning law (31) into the
second term on the right hand side of (38), using the re-
lations (a−b)2 − (a− c)2 =−2(a−b)(b− c)− (b− c)2,
we have

1
2γ2

(
ϕ 2

i −ϕ 2
i−1

)
=

1
2γ2

[
(θ − θ̂i)

2 − (θ − θ̂i−1)
2]

=− 1
γ2
(θ − θ̂i)(θ̂i − θ̂i−1)−

1
2γ2

(θ̂i − θ̂i−1)
2

=
γ1

γ2

ϕiξiei

(1+ξ 2
i )(1+ e2

i )
+ϕiξiei

− ξ 2
i e2

i

2γ2

[
γ1

(1+ξ 2
i )(1+ e2

i )
+ γ2

]2

. (40)

Clearly ϕiξiei appears in (39) and (40) with opposite
signs. Therefore, the upper right hand derivative of
V (ei,ϕi,ϕi−1, t) is

V̇ (ei,ϕi,ϕi−1, t) =− ke2
i +

γ1

γ2

ϕiξiei

(1+ξ 2
i )(1+ e2

i )

− ξ 2
i e2

i

2γ2

[
γ1

(1+ξ 2
i )(1+ e2

i )
+ γ2

]2

.

(41)

If we design k, γ1, γ2 sufficiently large such that

max
ξi, ei

∣∣∣∣γ1

γ2

ϕiξiei

(1+ξ 2
i )(1+ e2

i )

∣∣∣∣
≤ ke2

i +
ξ 2

i e2
i

2γ2

[
γ1

(1+ξ 2
i )(1+ e2

i )
+ γ2

]2

, (42)

then

V̇ (ei,ϕi,ϕi−1, t)≤ 0. (43)

Note that from (42), maxξi, ei

∣∣∣ γ1
γ2

ϕiξiei

(1+ξ 2
i )(1+e2

i )

∣∣∣ = 1
4 , when

ξi = ei =±1.
Therefore (42) is satisfied when

|ϕi| ≤
4kγ2 +2(γ1/4+ γ2)

2

γ1
. (44)

Integrating the derivative of V , using the negativeness
of V̇ , the boundedness of ei and θ̂i can be derived if
V (ei(0),ϕi(0),ϕi−1(0)) is bounded, i.e.,

V (ei(t),ϕi(t),ϕi−1(t), t)

=V (ei(0),ϕi(0),ϕi−1(0),0)+
∫ t

0
V̇ dt

≤V (ei(0),ϕi(0),ϕi−1(0),0). (45)

Note that

V (ei(0),ϕi(0),ϕi−1(0),0)

=
1
2

e2
i (0)+

1
2

∫ T

0
ϕ 2

i−1(τ)dτ, (46)

and ei(0) is bounded. Let us look at the first iteration i= 1.

V (e1(0),ϕ1(0),ϕ0(0),0) =
1
2

e2
1(0)+

1
2

∫ T

0
ϕ 2

0 (τ)dτ

(47)

is bounded because ϕ0(t) is bounded according to
Proposition 1. In the sequel V (e1(t),ϕ1(t),ϕ0(t), t) ≤
V (e1(0),ϕ1(0),ϕ0(0),0) is bounded. From the paramet-
ric learning law (31), the boundedness of e1 warrants the
boundedness of θ̂1.

Now assume that (ei−1, θ̂i−1) are bounded for all
t ∈ [0, T ], so is V (ei(0),ϕi(0),ϕi−1(0),0). From (45),
V (ei(t),ϕi(t),ϕi−1(t), t) is bounded. Similarly, from the
boundedness of ei and the parametric learning law (31)
we can derive the boundedness of θ̂i. By the Mathemati-
cal Induction, the quantities (ei, θ̂i) are bounded for any
i ≥ 0, which is first part of Theorem 2.

In order to prove (ii), let’s define a Lyapunov function
as

Vi(t) =
1
2

e2
i +

1
2γ2

∫ t

0
ϕ 2

i (τ)dτ. (48)

The difference between Vi and Vi−1 is

∆Vi =Vi −Vi−1

=
1
2

e2
i +

1
2γ2

∫ t

0

(
ϕ 2

i (τ)−ϕ 2
i−1(τ)

)
dτ

− 1
2

e2
i−1. (49)

The first term on the right side of (49) is

1
2

e2
i =

∫ t

0
eiėidτ +

1
2

e2
i (0)

=
∫ t

0
(−ke2

i −ϕiξiei)dτ +
1
2

e2
i (0).

Similarly as (40), the second term on the right side of (49)
can be expressed as

1
2γ2

∫ t

0

(
ϕ 2

i −ϕ 2
i−1

)
dτ

=
∫ t

0

[
γ1

γ2

ϕiξiei

(1+ξ 2
i )(1+ e2

i )
+ϕiξiei

]
dτ

−
∫ t

0

ξ 2
i e2

i

2γ2

[
γ1

(1+ξ 2
i )(1+ e2

i )
+ γ2

]2

dτ.

Therefore, the difference become

∆Vi =−
∫ t

0
ke2

i dτ +
∫ t

0

[
γ1

γ2

ϕiξiei

(1+ξ 2
i )(1+ e2

i )

]
dτ

−
∫ t

0

ξ 2
i e2

i

2γ2

[
γ1

(1+ξ 2
i )(1+ e2

i )
+ γ2

]2

dτ − 1
2

e2
i−1
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+
1
2

e2
i (0). (50)

If we design d, γ1, and γ2 sufficiently large such that (44)
is satisfied,

∆Vi ≤−1
2

e2
i−1 +

1
2

e2
i (0). (51)

Applying (51) repeatedly we have

Vi(t) =V0(t)+
i

∑
j=1

∆Vj

≤V0(t)+
1
2

i

∑
j=1

e2
j(0)−

1
2

i−1

∑
j=1

e2
j(t),

lim
i→∞

Vi(t)≤V0(t)+ lim
i→∞

1
2

i

∑
j=1

e2
j(0)− lim

i→∞

1
2

i−1

∑
j=1

e2
j(t).

(52)

Consider the positiveness of Vi and boundedness of V0, the
sequence ei(t) converges to zero pointwisely as i → ∞ and
(ii) of Theorem 2 follows. □

5. SIMULATION RESULTS

5.1. Simulation for PD-type normalized learning rule
Consider the following dynamics of a single-link robot

manipulator

θ̈(t) =
1
J
(0.5m0 +M0)gl sinθ(t)+

1
J

τ(t)+d1(t),

y(t) = θ̇(t)+d2(t),

where θ(t) is the angular position of the manipulator, θ̇(t)
is the angular velocity of the manipulator, τ(t) is the joint
torque, d1(t) is the state disturbance , d2(t) is the output
disturbance and J is the moment of inertia of the joint, i.e.,
J = M0l2 +m0l2/3. The parameters are given in Table 1.
The desired output trajectory is given as follows:

yd(t) = θ̇d(t) = 50
(

3
8

t2 − 3
8

t3 +
3

32
t4
)
, 0 ≤ t ≤ 2.

The disturbances are given as

d1(t) = 5sin(40πt), d2(t) = 0.05sin(100πt).

To measure the performance, we calculate the RMS error.
The error tolerance ε = 0.005 and the iteration limit is
200. In order to compare the conventional method and the
proposed one, five PD-type methods are used. The five
PD-type methods are conventional ILC, projection based
ILC, variable gain based ILC, normalized based ILC with
fixed gain (Normalized), and normalized based ILC with
variable gain (Proposed).

We performed these simulations with three cases. The
first case is about to a normal gain with Γ = 0.77, R =−5.

Table 1. Robot manipulator parameters.

m0 the mass of the link 2 kg
l the length of the link 0.5 m

M0 the tip load 4 kg
g the gravitational acceleration 9.8 ms−2

Table 2. Performance comparison with various PD-type
learning rules.

Method Case 1 Case 2 Case 3
Conventional 9 x (inf/0.60) x (inf/661.95)
Projection 9 x (17.20/0.09) x (63.32/46.35)
Variable 9 53(10.93/0.0) x (inf/580.51)

Normalized 9 x (7.18/0.14) x (33.82/0.89)
Proposed 9 52(2.91/0.0) x (36.52/0.59)
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Fig. 6. RMS error in Case 2.

The second case is about to a large gain with Γ = 0.77,
R = −50. This large gain can cause a huge overshoot.
The third case is same as case 2, but the tracking interval
is long (0 ≤ t ≤ 4).

In Table 2, first column means the method of learning
rule. The numbers in table means the iteration number to
achieve RMS error within error tolerance and ’x’ indicate
the RMS error can not reduced by error tolerance within it-
eration limit. Also, the numbers within a parenthesis mean
the maximum/minimum RMS error within iteration limit.
For example, Case 2, Variable mathod is reached to a RMS
error within error tolerance in 53 iteration and maximum
RMS error is 10.93, minimum RMS error is 0,0. We used
γ = 0.0001 for case 1 and γ = 0.008 for case 2,3. In Ta-
ble 2 and Fig. 6, we see that the proposed method shows a
better performance than other methods for the large gain.
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5.2. Simulation for P-type normalized learning rule
with parametric uncertainty

Consider the system

ẋ = (1+ sinπt)x2 +u, x(0) = 1.

The reference model is

ẋr =−xr + sin2 πt +2, xr(0) = 1.

The tracking interval is [0, 2]. Throughout the simulation,
choose the feedback gain k = 1. To measure the perfor-
mance, we calculate the RMS error and the error tolerance
ε = 0.001. The iteration limit is 200.

In order to compare the conventional method and the
proposed one, four P-type methods are used. The four
P-type methods are conventional ILC, projection based
ILC, variable gain based ILC, normalized based ILC (pro-
posed).

We performed these simulations with seven cases. The
Case 1: (γ1 = 10, γ2 = 10) and Case 2: (γ1 = 8, γ2 = 8)
are about to normal gain. The Case 3: (γ1 = 21, γ2 = 10)
and Case 4: (γ1 = 30, γ2 = 10) are about to large gain.
The Case 5: (γ1 = 21, γ2 = 1) considers a long period
([0, 100]) with a large gain. Finally, Case 6 and 7 consider
a fixed (ei(0) = 0.2) and random (ei(0) = [0, 0.2]) initial
error with the iteration limit 100, respectively. In Table 3,
first column means the method of learning rule. The num-
bers in table means the iteration number and ’x’ indicate
the RMS error can not reduced by error tolerance within
iteration limit.

In Table 3, we see that the proposed method shows a
better performance than other methods for all cases. Fig. 7
shows the RMS error in Case 4 and Fig. 8 shows that the
values of θ and θ̂ in Case 4. Fig. 9, 10 show the output
tracking performance of projection method and proposed
one in Case 5, respectively. Although the period of the
task becomes long, the proposed method has a small error
than other methods. Figs. 11 and 12 show that the values
of theta with projection method and proposed one in Case
5, respectively.

In Table 4, the performance comparison between the
projection method and the proposed one with the fixed and
random initial error is presented. The numbers in second
and third column is minimum RMS error in iteration limit.
The fourth and fifth columns means that gain condition for
Case 6 and 7, respectively. We can see that the proposed
method has better robust performance than the projection
method for non-zero initial error.

6. CONCLUSION

In this paper, the source of bad transients is analyzed
from several examples and P-type and PD-type normal-
ized learning rules are proposed to avoid an unexpected

Table 3. Performance comparison with various P-type
learning rules.

Method Case 1 Case 2 Case 3 Case 4 Case 5
Conventional 13 19 x x x

Projection 13 19 15 x x
Variable 13 19 4 3 x
Proposed 7 10 4 3 2

Table 4. Performance comparison with fixed, random ini-
tial error.

Method Case 6 Case 7 gain
(Case 6)

gain
(Case 7)

Projection 0.0312 0.1137 k = 1,
γ = 10

k = 20,
γ = 10

Proposed 0.0161 0.0971
k = 1,

γ1 = 21,
γ2 = 1

k = 20,
γ1 = 21,
γ2 = 1
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Fig. 7. RMS error in Case 4.
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1388 Byungyong You

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

time

y

projection

desired trajectory

Fig. 9. Output tracking of the projection method in Case
5.
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Fig. 10. Output tracking of the proposed method in Case
5.

huge overshoot or even divergence. In the PD-type nor-
malized learning rule, the variable gain can be designed
easily by using the normalized error term. In a paramet-
ric uncertainty problem, instead of using the lambda norm,
we proved the boundedness and convergence of the closed
loop system based on Lyapunov theory. For two proposed
learning rules, it is shown that the tracking error converges
to zero along the iteration axis. The performance of the
proposed method is illustrated by a computer simulations.
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