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A Disturbance Observer-based Robust Tracking Controller for Uncertain
Robot Manipulators
Wonseok Ha and Juhoon Back*

Abstract: This paper considers the trajectory tracking problem for uncertain robot manipulators subject to external
disturbance torques. The external disturbance torques are assumed to be unknown and time-varying. We present
a disturbance observer-based controller which estimates the lumped disturbance (the external disturbance torque
combined with the effect of plant uncertainties), and compensates it so that the overall closed-loop system behaves
like the nominal closed-loop system that is composed of the nominal model of robot manipulator and the feedback
linearization-based tracking controller. A simplified implementation of the proposed controller is also introduced.
Simulation results on a robot manipulator are given to validate the performance of the proposed controller.
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1. INTRODUCTION

Nowadays, robot manipulators are widely used in vari-
ous fields such as automotive industry, semiconductor in-
dustry, etc., and their major tasks include moving objects,
assembling parts, and painting. Usually, they are com-
posed of several joints and links to have enough degrees
of freedom required to conduct the desired tasks, which
yields complex structure, and thus it is inevitable to have
system uncertainties. In addition, they are subject to ex-
ternal disturbance torques due to interaction with objects
or environment. To achieve the desired level of perfor-
mance, it is therefore essential to develop robust control
algorithms taking plant uncertainties and external distur-
bances into account and a number of results have been re-
ported in the literature, e.g., adaptive control [1,2], sliding
mode control [3], passivity-based control [4], H∞ control
[5], and disturbance observer-based control [6]; see also
[7–9] and references therein.

The disturbance observer-based control approach is of
particular interest in this paper. Among a number of dis-
turbance observers introduced in the literature (see, e.g.,
[10] for details), the one introduced by Ohnishi [11] has
been successfully applied to control problems for robot
manipulators such as independent joint control [12], sen-
sorless control [13], force control [14]. It these works, a
disturbance observer is designed for each joint to estimate
the disturbance torque which consists of not only the ex-
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ternal torques applied on the joint but also the interactive
torques between the joints arising from robot dynamics.
Thus, even if the robot dynamics is fully known, the inter-
active torques are treated as disturbances, possibly result-
ing in excessive control effort.

Several results on the estimation of external disturbance
torques considering the robot dynamics have been re-
ported relatively recently. In [15], a nonlinear disturbance
observer is constructed in a way that an estimate of distur-
bance torque is firstly obtained assuming that the angular
acceleration is known, and then it is implemented without
using the angular acceleration signal. Although the sta-
bility as well as convergence has been proved rigorously,
the result can be applied to only 2-DOF manipulators and
the disturbance should be constant. Time-varying distur-
bances with known disturbance model have been consid-
ered later in [16] where SISO nonlinear systems are con-
sidered. The result of [15] has been extended to n-DOF
manipulators subject to constant disturbances in [17].

We note that the disturbance observers for robot manip-
ulators developed so far mainly focus on the disturbance
itself rather than plant uncertainties. Although plant un-
certainties are considered in some works, e.g., in [17],
their effect is lumped into the external disturbance and the
lumped disturbance is assumed to be constant or slowly
time-varying, which means that the effect of relatively fast
motion cannot be covered.

In this paper, we present a disturbance observer-based
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robust tracking controller for uncertain robot manipula-
tors, and the structure of disturbance observer is motivated
by the one from [11] rather than [15, 16]. It should be
noted that the idea of [11] has been generalized to SISO
nonlinear systems [18] and MIMO nonlinear plants [19].
Although the work [19] considers the plant uncertainties
as well as external disturbances, it is not applicable to our
case because the nominal model should be linear. As-
suming that angular displacements and angular velocities
are available for feedback, we introduce a novel structure
of disturbance observer-based controller which estimates
the lumped disturbance torque (the external disturbance
torque combined with the effect of plant uncertainties) and
makes the real closed-loop system behave similar to the
nominal closed-loop system which is composed of the dis-
turbance free nominal robot manipulator and a feedback
linearization-based tracking controller. The controller de-
sign is constructive in the sense that given a prescribed
level of steady-state tracking error, a straightforward pro-
cedure is provided to tune the controller parameters. A
simplified implementation which requires only n integra-
tors for n-DOF manipulators is also presented.

Notation: For a vector x ∈ Rn, ∥x∥ denotes the Eu-
clidean norm. For two vectors, x ∈ Rn,y ∈ Rm, we de-
fine [x;y] = [x⊤ y⊤]⊤. For two matrices A and B having
the same number of columns, [A;B] is defined similarly.
Given a matrix M whose eigenvalues are all real numbers,
λmax(M) (resp., λmin(M)) represents the maximum (resp.,
minimum) eigenvalue of M. The matrix In denotes the
identity matrix in Rn×n and n can be dropped if no confu-
sion arises.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider an n-DOF robot manipulator whose dynamics
is given by

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τd , (1)

where q, q̇, τ , τd ∈ Rn denote the angular displace-
ment vector, angular velocity vector, the vector of control
torques applied to the joints, and the vector of disturbance
torques, respectively, and M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n,
and G(q) ∈ Rn are inertia matrix, Coriolis and centrifu-
gal force matrix, and gravity vector, respectively. M(q),
C(q, q̇), and G(q) are assumed to be unknown while their
nominal counterparts M̄(q), C̄(q, q̇), and Ḡ(q), respec-
tively, are known. For simplicity, let N(q, q̇) =C(q, q̇)q̇+
G(q) and N̄(q, q̇) is defined similarly. It is assumed that
the angular displacement vector q(t) and the angular ve-
locity vector q̇(t) are available for feedback.

The systems parameters such as mass, length, inertia,
which determine M(q), C(q, q̇), and G(q) are assumed
to be unknown but belong to known compact sets. For
example, the mass of ith link, denoted by mi, satisfies

0 < m−
i ≤ mi ≤ m+

i with m−
i and m+

i being known. It is as-
sumed that the nominal value for each parameter belongs
to the the same set as the corresponding uncertain param-
eter.

Assumption 1: The uncertain inertia matrix M(q) is
symmetric positive definite and there exist positive con-
stants m− and m+ such that m−In ≤M(q)≤m+In,∀q∈Rn.
The nominal inertia matrix M̄(q) has the same properties
as M(q). ⋄

In this paper, we aim to design a robust tracking con-
troller such that the angular displacement vector q(t) ap-
proximately converges to the reference trajectory qr(t),
i.e., for any given ε > 0, the controller can be designed
so that

limsup
t→∞

∥qr(t)−q(t)∥ ≤ ε. (2)

Assumption 2: The reference trajectory qr(t) is a
smooth function such that qr(t) := [qr(t); q̇r(t); q̈r(t);q(3)r (t)]
satisfies ∥qr(t)∥ ≤ q+r , ∀t ≥ 0, for some q+r > 0. The
disturbance torque vector τd and its time derivative are
uniformly bounded, i.e., there exists t+d > 0 such that the
vector td(t) := [τd(t); τ̇d(t)] satisfies ∥td(t)∥ ≤ t+d , ∀t ≥ 0.

⋄
Let e = [e1;e2] be the tracking error defined by

[e1(t);e2(t)] = [qr(t) − q(t); q̇r(t) − q̇(t)] and consider
the disturbance-free nominal system given by

M̄(q̄) ¨̄q+ N̄(q̄, ˙̄q) = τr, [q̄(0); ˙̄q(0)] = [q(0); q̇(0)].
(3)

The signal τr is the control input designed for the nomi-
nal system, for example, the computed torque control [20]
given by

τr = M̄(q̄)(q̈r +Kp(qr − q̄)+Kd(q̇r − ˙̄q))+ N̄(q̄, ˙̄q)
(4)

where Kd and Kp are symmetric positive definite matrices.
Under the control (4), the nominal closed-loop system (3)-
(4) becomes

(q̈r − ¨̄q)+Kd(q̇r − ˙̄q)+Kp(qr − q̄) = 0,

which implies that the tracking error converges to zero ex-
ponentially.

In this paper, the goal (2) is achieved by designing a
controller which makes the closed-loop system behave
like the nominal closed-loop system (3)-(4). This can be
done by estimating the lumped disturbance d given by

d= τd − (M(q)− M̄(q))q̈− (N(q, q̇)− N̄(q, q̇)), (5)

and applying the control τ = −d̂+ τr, where d̂ is an esti-
mate of d. One can easily show that this control input with
d̂= d (d is known completely) and τr given by (4), makes
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Fig. 1. Disturbance observer-based controller. P(s): un-
certain plant, Pn(s): nominal plant, Q(s): low pass
filter, C(s): outer-loop controller, r: reference in-
put.

the system (1) become the nominal one (3) with q̄ = q,
thus results in limt→∞ ∥qr(t)−q(t)∥= 0.

We close this section by introducing the disturbance ob-
server by Ohnishi shown in Fig. 1. A rough description
of the structure is given as follows. For an uncertain plant
P(s) with its nominal denoted by Pn(s), the output y of
P(s) is fed to the filter P−1

n (s)Q(s) where P−1
n (s) is the in-

verse of Pn(s) and Q(s) is a low-pass filter with dc gain
1 such that P−1

n (s)Q(s) is implementable. With a prop-
erly chosen Q(s), an estimate of the lumped disturbance,
which is the external disturbance de combined with the ef-
fect of plant uncertainty, is given by d̂ = P−1

n Q(s)y(s)−
Q(s)u(s). Here the signal P−1

n (s)Q(s)y(s) is regarded as
an estimate of u+ de (the actual input applied to P(s)),
and Q(s)u(s) an estimate of u.

3. ROBUST TRACKING CONTROLLER

In this section, we propose a robust tracking controller
that adopts the idea of conventional disturbance observer
shown in Fig. 1. We start by rewriting the actual system
(1) using the lumped disturbance d defined in (5), namely,

M̄(q)q̈+ N̄(q, q̇) = τ +d. (6)

If the signal q̈ were known, then τ + d is completely
known from (6) since q as well as q̇ is measurable. Since
the signal q̈ is not available in our case, it is replaced by
ζ̇ , which is generated from

ζ̇ =− 1
µ

Γζ (ζ − q̇), ζ (0) = q̇(0), (7)

where Γζ is a symmetric positive definite matrix and µ > 0
is a design parameter to be chosen later. We note that the
transfer function from q̇ to ζ is Qζ (s) = (µsIn +Γζ )

−1Γζ
which corresponds to Q(s) (of P−1

n (s)Q(s)) in Fig. 1. With
ζ̇ , an estimate of τ + d, which is denoted by τ̂p and cor-
responds to the signal P−1

n (s)Q(s)y(s) in Fig. 1, is con-
structed as follows.

τ̂p = M̄(q)ζ̇ + N̄(q, q̇). (8)

M̄−1 M̄ P

χ̇ =− 1
µ Γχ(χ − M̄−1τ)

ζ̇ =− 1
µ Γζ (ζ − q̇)

M̄−1τ̂p = ζ̇ + M̄−1N̄

−

−

τd
ττr q, q̇

χ

M̄−1d̂

Fig. 2. Structure of proposed controller.

We now estimate the lumped disturbance as follows. If
we follow the idea of disturbance observer, then d̂ would
be chosen as d̂ = τ̂p −Q(s)τ , where Q(s)τ instead of τ
is used. (In fact, if we take d̂ = τ̂p − τ and compute
the the control input τ as τ = −d̂+ τr, then one has
0 · τ =−τ̂p + τr, from which one cannot compute τ . This
can be avoided by using Q(s)τ .) The proposed controller,
however, computes d̂ as

d̂= τ̂p − M̄(q)Qχ(s)(M̄−1(q)τ), (9)

where Qχ(s) = (µsIn+Γχ)
−1Γχ with Γχ being a symmet-

ric positive definite matrix. We realize the filter Qχ(s) as

χ̇ =− 1
µ

Γχ
(
χ − M̄−1(q)τ

)
, χ ∈ Rn. (10)

With χ , the signal d̂ is implemented as

d̂= M̄(q)ζ̇ + N̄(q, q̇)− M̄(q)χ

= M̄(q)
(
− 1

µ
Γζ (ζ − q̇)−χ

)
+ N̄(q, q̇). (11)

As can be seen from (11), the proposed estimate d̂ given
in (9) contains the term 1

µ Γζ ζ + χ which facilitates the
stability analysis and enables us to simplify the controller
structure. Finally, the control input is given by

τ =−d̂+ τr

=−M̄(q)
(
− 1

µ
Γζ (ζ − q̇)−χ

)
− N̄(q, q̇)+ τr.

(12)

Note that τr is the control input designed for the nominal
system and in this paper, the control (4), with (q̄, ˙̄q) be-
ing replaced by (q, q̇), is employed. Fig. 2 describes the
structure of proposed controller.

Now we are ready to analyze the stability of the closed-
loop system under the controller (7), (10), and (12).
Firstly, the closed-loop system is rewritten in the coordi-
nates (e,ξ ,χ) := (e, 1

µ (ζ − q̇),χ) as follows:

ė1 = e2,
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ė2 = q̈r −M−1 (M̄(Γζ ξ +χ)−N − N̄ + τr + τd
)
,

µξ̇ =−(I +M−1M̄)Γζ ξ
−M−1(M̄χ −N − N̄ + τr + τd), ξ (0) = 0,

µχ̇ = Γχ Γζ ξ +Γχ M̄−1(τr − N̄). (13)

To derive (13), we first note that using (12) the signal q̈ is
written as

q̈ = M−1(−N + τ + τd)

= M−1(M̄(Γζ ξ +χ)−N − N̄ + τr + τd). (14)

The dynamics of e1 is trivially obtained and one can derive
the dynamics of e2, ξ , and χ using the relations (12) and
(14).

Note that the dynamics (13) is in the standard singular
perturbation form with µ the time separation parameter
[21]. Thus, it is expected that for sufficiently small µ , the
variables ξ and χ approach their quasi-steady-states ξ ∗

and χ∗, respectively, and these vectors depend on ‘slow
variables’ such as e, qr, q̇r, τr, and τd . We find the vector
[ξ ∗; χ∗] by computing the equilibrium point of the (ξ ,χ)-
dynamics with µ = 0, and it turns out that

ξ ∗ = Γ−1
ζ M̄−1(N̄ − τr),

χ∗ = M̄−1M
(
M̄−1(τr − N̄)+M−1(N − τd)

)
. (15)

Define ξ̃ = ξ − ξ ∗ and χ̃ = χ − χ∗. In (e, ξ̃ , χ̃)-
coordinates, the dynamics (13) becomes

ė = Aee+Be[ξ̃ ; χ̃],

µ ˙̃ξ =−(I +M−1M̄)Γζ ξ̃ −M−1M̄χ̃ −µξ̇ ∗,

µ ˙̃χ = Γχ Γζ ξ̃ −µχ̇∗, (16)

where ξ̃ (0) =−ξ ∗(0), and

Ae =

[
0 I

−Kp −Kd

]
, Be =

[
0 0

−M−1M̄Γζ −M−1M̄

]
.

To proceed, we define sets Se(δe), Sχ(δχ), and Ωl ,
where the sets Se(δe) and Sχ(δχ) stand for the sets of
the initial tracking errors and initial values of χ , respec-
tively, and Ωl represents the set where the trajectory of
the closed-loop system belongs to. For given constants
δe > 0 and δχ > 0, define Se(δe) =

{
e ∈ R2n|∥e∥ ≤ δe

}
and Sχ(δχ) =

{
χ ∈ Rn|∥χ∥ ≤ δχ

}
. Since M̄, M, and N

are continuous with respect to (q, q̇) and the signals qr,
q̇r, and τd are uniformly bounded, it follows that there ex-
ists a constant δχ̃ > 0 such that χ̃(0) ∈ Sχ̃(δχ̃) := {χ̃ ∈
Rn|∥χ̃∥ ≤ δχ̃} for any e(0) ∈ Se(δe) and χ(0) ∈ Sχ(δχ).
Similarly, there exists δξ̃ > 0 such that ξ̃ (0) = −ξ ∗(0) ∈
Sξ̃ (δξ̃ ) := {ξ̃ ∈ Rn|∥ξ̃∥ ≤ δξ̃}.

Let Pe be the solution of PeAe +A⊤
e Pe =−I and define a

Lyapunov function candidate

V (e, ξ̃ , χ̃) =e⊤Pee+
1
2

ξ̃⊤ξ̃

+
1
2

α(χ̃ +Γζ ξ̃ )⊤(χ̃ +Γζ ξ̃ ). (17)

The constant α in V is given by

α >
(α1 +α0∥Γζ∥)2

4λmin(Γζ )α2
, (18)

where α0 > 0, α1 ≥ maxq∈Rn λmax(M−1(q)M̄(q)), and 0 <
α2 ≤ minq∈Rn λmin(Γζ M−1(q)M̄(q)). Given l > 0, we de-
fine a level set for V by

Ωl =
{
(e, ξ̃ , χ̃)|V (e, ξ̃ , χ̃)≤ l

}
. (19)

Theorem 1: Let δe > 0 and δχ > 0 be given and sup-
pose e(0) ∈ Se(δe) and χ(0) ∈ Sχ(δχ). Consider the Lya-
punov function V given by (17), which is defined in terms
of Γζ and α , and let l > 0 be such that Se(δe)×Sξ̃ (δξ̃ )×
Sχ̃(δχ̃) ⊂ Ωl . Then, for any given ε > 0, there exists
µ∗ > 0 such that for any 0 < µ < µ∗, the controller given
by (7), (10), and (12) with ∥Γζ −Γχ∥ ≤ α0/α ensures that[
e(t);ξ (t)−ξ ∗(t); χ(t)−χ∗(t)

]
∈Ωl for all t ≥ 0 and that

limsupt→∞ ∥qr(t)−q(t)∥ ≤ ε .

Proof: We start from the representation (16) of the
closed-loop system. Define ψ = [ξ̃ ; χ̃ +Γζ ξ̃ ] and ψ∗ =
[ξ ∗; χ∗ +Γζ ξ ∗]. Then, in (e,ψ)-coordinates, the system
(16) becomes

ė = Aee+Beψ ψ,

µψ̇ = Aψ ψ −µ ˙(ψ∗), (20)

where

Aψ =

[
−Γζ −M−1M̄

−(Γζ −Γχ)Γζ −Γζ M−1M̄

]
,

Beψ =

[
0 0
0 −M−1M̄

]
.

Consider the Lyapunov function candidate V and level
set Ωl defined in (17) and (19), respectively. Let Pψ =
diag{I,αI}, i.e., the block diagonal matrix whose diago-
nal entries are I and αI. We show that with sufficiently
small µ , the set Ωl is forward invariant with respect to the
dynamics (20). Suppose (e,ψ) ∈ Ωl and compute

V̇ = e⊤(PeAe +A⊤
e Pe)e+2e⊤PeBeψ ψ

+
1
µ

ψ⊤Pψ Aψ ψ +ψ⊤Pψ ˙(ψ∗)

≤−∥e∥2 +κ1∥e∥∥ψ∥+ 1
µ

ψ⊤Pψ Aψ ψ +κ2∥ψ∥,

where κ1 = maxq∈Rn ∥2PeBeψ∥ and

κ2 = max
(e,ψ)∈Ωl ,∥qr∥≤q+r ,∥td∥≤t+d

∥Pψ ˙(ψ∗)∥.
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The term ψ⊤Pψ Aψ ψ can be bounded as follows:

ψ⊤Pψ Aψ ψ =−ψ⊤
1 Γζ ψ1

−ψ⊤
1

(
M−1M̄+αΓζ (Γζ −Γχ)

)
ψ2

−αψ⊤
2 Γζ M−1M̄ψ2

≤−λmin(Γζ )∥ψ1∥2 +α1∥ψ1∥∥ψ2∥
+α0∥Γζ∥∥ψ1∥∥ψ2∥−αα2∥ψ2∥2,

where α0, α1, and α2 are defined in (18) and the relation
∥Γζ −Γχ∥ ≤ α0/α has been applied. Note that with α
chosen as (18), one can easily see that there exists κ3 > 0
such that ψ⊤Pψ Aψ ψ ≤−κ3∥ψ∥2.

Based on the discussion so far and applying Young’s
inequality, one has

V̇ ≤−1
2
∥e∥2 +

(
κ2

1

2
+

1
4ε̄

− κ3

µ

)
∥ψ∥2 + ε̄κ2

2 ,

where ε̄ is an arbitrary positive constant. Take µ∗ > 0 such
that

κ2
1

2
+

1
4ε̄

− κ3

µ∗ ≤−max{1,α}
4λmax(Pe)

.

Then, for any 0 < µ < µ∗, it holds that V̇ ≤ −λV + ε̄κ2
2

where λ = 1
2λmax(Pe)

. Thus, when ε̄ ≤ λ l
κ2

2
=: ε̄1, it holds that

V̇ ≤−λ (V − l)≤ 0 on the boundary of Ωl , which implies
that Ωl is forward invariant.

Since the initial condition of ζ is chosen so that ξ̃ (0) =
−ξ ∗, it holds that [e(0); ξ̃ (0); χ̃(0)] belongs to the set Ωl ,
and the forward invariance of Ωl results in that the trajec-
tory [e(t); ξ̃ (t); χ̃(t)] remains in Ωl for all t ≥ 0. Moreover,
applying the comparison lemma yields V (t)≤ e−λ tV (0)+
ε̄κ2

2
λ , from which it holds that limsupt→∞ V (t) ≤ ε̄κ2

2
λ and

that limsupt→∞ ∥e(t)∥ ≤
√

ε̄κ2
2

λλmin(Pe)
. Therefore, if we take

ε̄ ≤ min{ε̄1, ε̄2} where ε̄2 = λλmin(Pe)
ε2

κ2
2
, the trajectory

of the closed-loop system remains bounded and satisfies
that limsupt→∞ ∥qd(t)− q(t)∥ ≤ ε , which completes the
proof. □

When Γζ and Γχ are chosen to be identical, i.e., Γζ =
Γχ = Γ, and symmetric positive definite, then the pro-
posed controller given by (7), (10), and (12) can be im-
plemented in a simplified manner with n integrators rather
than 2n integrators. In fact, let

ξ = χ +
1
µ

Γζ .

Then, one has

ξ̇ =− 1
µ

Γξ +
1
µ

Γ
(

M̄−1(q)τ +
1
µ

Γq̇
)
,

ξ (0) =
1
µ

Γq̇(0). (21)

M̄−1 M̄ P

ξ̇ =− 1
µ Γξ + 1

µ Γ(M̄−1τ + 1
µ Γq̇)

M̄−1d̂ =−ξ + 1
µ Γq̇+ M̄−1N̄

−

τd

ττr q, q̇

M̄−1d̂

Fig. 3. Structure of proposed controller, simplified imple-
mentation.

With (21), the control input (12) becomes

τ = M̄(q)
(

ξ − 1
µ

Γq̇
)
− N̄(q, q̇)+ τr. (22)

Note that the new controller given by (21) and (22), whose
structure is shown in Fig. 3, involves only n integrators
which is the half of the controller (7), (10), and (12).

Although the new implementation has a simpler struc-
ture, it retains all benefits of the previous controller, which
can be seen by the stability analysis given as follows. As
before, the closed-loop system under the controller (21)-
(22) is written in the coordinates (e,η) := (e,ξ − 1

µ Γq̇) as
follows.

ė1 = e2,

ė2 =−M−1M̄η + q̈r −M−1(τr − N̄ −N + τd),

µη̇ =−ΓM−1M̄η +ΓM̄−1(τr − N̄)

−ΓM−1(τr − N̄ −N + τd), η(0) = 0, (23)

from which the quasi-steady-state vector η∗ can be com-
puted as

η∗ = (M̄−1M− I)M̄−1(τr − N̄)+ M̄−1(N − τd). (24)

With η̃ = η −η∗, the dynamics (23) becomes

ė = Aee+Beη̃ η̃ ,

µ ˙̃η =−ΓM−1M̄η̃ −µ ˙(η∗), η̃(0) =−η∗(0),

where Ae is given in (16) and Beη̃ =
[
0;−M−1M̄

]
.

To proceed, we consider the set Se(δe) (δe > 0 is given)
defined earlier. Noting that η∗ is a function of e, qr, q̇r,
and τd , we can find δη̃ > 0 such that η̃(0) = −η∗(0) ∈
Sη̃(δη̃) := {η̃ ∈ Rn|∥η̃∥ ≤ δη̃}. Let Pe be the solution of
PeAe +A⊤

e Pe =−I. Define a Lyapunov candidate function
V as

V (e, η̃) = e⊤Pee+
1
2

η̃⊤η̃ , (25)

and a level set Ωl for V defined similarly to (19) with η̃
instead of (ξ̃ , χ̃) being used.
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Theorem 2: Let δe > 0 be given and suppose e(0) ∈
Se(δe). Let l > 0 be such that Se(δe)×Sη̃(δη̃)⊂ Ωl . Then,
for any given ε > 0, there exists µ∗ > 0 such that for any
0 < µ < µ∗, the controller given by (21) and (22) ensures
that

[
e(t);ξ (t)− 1

µ Γq̇−η∗(q, q̇, t)
]
∈ Ωl for all t ≥ 0 and

that limsupt→∞ ∥qr(t)−q(t)∥ ≤ ε .

Proof: Consider the Lyapunov function candidate V
given by (25) and level set Ωl . Following the arguments
in the proof of Theorem 1, we have

V̇ ≤−∥e∥2 +κ1∥e∥∥η̃∥+κ2∥η̃∥− 1
µ

κ3∥η̃∥2,

where

κ1 = max
q∈Rn

∥2PeBeη̃∥, κ2 = max
(e,η̃)∈Ωl ,∥qr∥≤q+r ,∥td∥≤t+d

∥ ˙(η∗)∥,

κ3 = min
q∈Rn

λmin(ΓM−1M̄).

Take µ∗ such that κ2
1

2 + 1
4ε̄ −

κ3
µ∗ ≤ − 1

4λmax(Pe)
. The rest of

the proof is almost identical to that of Theorem 1, and thus
omitted. □

Remark 1: The controllers, one given by (7), (10), and
(12), and the other given by (21) and (22) involve some
design parameters which can be chosen as follows. First
of all, given the size of initial conditions, one determines
the level set Ωl by choosing l, during which one can use

ξ ∗ =−Γ−1
ζ (q̈r +Kpe1 +Kde2),

χ∗ = M̄−1M(q̈r +Kpe1 +Kde2)+ M̄−1(N − τd),

η∗ = (M̄−1M− I)(q̈r +Kpe1 +Kde2)− M̄−1(N − τd),
(26)

which are obtained by substituting τr given by (4) (with
q̄ replaced by q) to (15) and (24). Given Ωl , one can
compute κ1, κ2, and κ3 to choose µ∗, during which it is
required to compute the bound of ˙(ψ∗) or ˙(η∗), which
is rather involved. It is worth noting that the relations
˙̄M = C̄+ C̄⊤, Ṁ = C+C⊤, and d

dt (M̄
−1) = −M̄−1 ˙̄MM̄−1

simplify the computation; see Section 4. In practice, one
can obtain the bound analytically considering the size of
Ωl and the bound of system parameters, or via repeated
simulations. It is also noted that κ1 and κ2 can be replaced
by larger constants, i.e., κ ′

1 ≥ κ1 and κ ′
2 ≥ κ2, respectively,

while κ3 by a smaller one κ ′
3 ≤ κ3, which is often useful

to obtain µ∗.

4. APPLICATION TO 2-DOF MANIPULATOR

In this section, we apply the proposed trajectory track-
ing controller to a 2-DOF robot manipulator with revolute
joints. It is noted that the matrices M(q) and C(q, q̇) and

Table 1. Simulation parameters.

parameter min. nominal max. actual
α1 12.75 15 17.25 17
α2 2.55 3 3.45 2.65
α3 4.25 5 5.75 4.25
β 2.975 3.5 4.025 4
γ1 5.95 7 8.05 6
γ2 2.125 2.5 2.875 2.875

the vector G(q) can be represented in the form given by
(see, e.g., [20] for details)

M(q) =
[

α1 +2α2 cosq2 α3 +α2 cosq2

α3 +α2 cosq2 α3

]
,

C(q, q̇) = β sinq2

[
−q̇2 −q̇1 − q̇2

q̇1 0

]
,

G(q) =
[

γ1 cosq1 + γ2 cos(q1 +q2)
γ2 cos(q1 +q2)

]
,

where q1 and q2 are the angular displacement of the first
joint and the second joint, respectively.

The numerical values for system parameters are sum-
marized in Table 1. We assume that uncertainties in the
system parameters lie within about 15% of the nominal
values, e.g., 0.85ᾱ1 ≤ α1 ≤ 1.15ᾱ1 where ᾱ1 is the nom-
inal value of α1. The computed torque controller, de-
signed for nominal system, are tuned so that the natural
frequency and the damping ratio of the error dynamics
are

√
2 rad/s and 1/

√
2, respectively, i.e., Kp = 2I2 and

Kd = 2I2. The reference trajectory and the disturbance
are given by qr(t) =

[
ar1 sinω1t;ar2 +ar3 cosω1t

]
, τd(t) =[

ad1 sinω2t +ad2 sinω3t;ad3 cosω4t
]

with ar1 = π/6 rad,
ar2 = π/12 rad, ar3 = π/6 rad, ad1 = 1.5 Nm, ad2 = 2
Nm, ad3 = 1.5 Nm, ω1 = π/5 rad/s, ω2 = π/20 rad/s,
ω3 = π/2 rad/s, and ω4 = π rad/s. The initial condition
of the manipulator is given by q(0) =

[
π/36;π/4.5

]
and

q̇(0) =
[
0;0

]
.

The controller employed in this simulation is the one
given by (21) and (22). Let ε = 0.1 and Γ = 170. In order
to determine µ∗, we need to compute κ1, κ2, and κ3. As
mentioned in Remark 1, conservative bounds κi’s replac-
ing κi’s can be used, especially for κ2. Precisely, using the
properties for ˙̄M and d

dt (M̄
−1) from Remark 1, we have

˙(η∗) =M̄−1(C̄+C̄⊤)M̄−1M(q̈r +Kpe1 +Kde2)

+ M̄−1(C+C⊤)(q̈r +Kpe1 +Kde2)

+(M̄−1M− I)(q(3)
r +Kpė1 +Kd ė2)

+ M̄−1(C̄+C̄⊤)M̄−1(N − τd)− M̄−1(Ṅ − τ̇d),

whose bound can be obtained by taking an upper bound
for each term separately. The bounds used in the design
are κ ′

1 = 3.1, κ ′
2 = 49.7, κ ′

3 = 232.8. Taking ε̄ = 5.0×
10−6, we have Γ = diag{170,170} and µ∗ = 0.001.
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Fig. 4. Response of nominal closed-loop system.
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Fig. 5. Performance degradation under the computed
torque controller (4) in the presence of disturbance
and plant uncertainty.

In Fig. 4, the trajectory of q̄(t) of the nominal closed-
loop system composed of (3) and (4) without disturbance
are shown. Since there is no plant uncertainty and external
disturbance, the computed torque control (4) works well
and it is seen that q̄(t) tracks qr(t) with no steady-state
error. Since the computed torque control is based on the
feedback linearization theory, it is not robust against plant
uncertainties and disturbances. As can be seen in Fig. 5,
the tracking performance becomes poor when the com-
puted torque control is applied to the real system which is
subject to external disturbances and system uncertainties.

The performance of the closed-loop system under pro-
posed controller is shown in Fig. 6 with µ = 0.001 and
one can see that the proposed controller almost recovers
the performance of nominal closed-loop system shown in
Fig. 4 despite the presence of plant uncertainties and ex-
ternal disturbances.

In addition, our controller is compared with that of [15].
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Fig. 6. Performance recovery under proposed controller.

We follow the design described in [15] and the gain of the
disturbance observer is chosen as c = 500.

Fig. 7 shows the disturbance estimation error when
there is no uncertainties. When constant disturbance τd =
[5;3]Nm is applied to the system, both controllers suc-
cessfully estimate the disturbance, while proposed estima-
tor yields smaller estimation error when sinusoidal distur-
bance is present. Fig. 8 shows the tracking error of two
controllers when external disturbances and uncertainties
are present, and one can see that the proposed controller
results in much smaller steady-state error.

5. CONCLUSION

In this paper, we have presented a disturbance observer-
based robust tracking controller for uncertain robot ma-
nipulators assuming that angular displacements as well
as angular velocities are available for feedback. Through
rigorous stability analysis, it is shown that proposed con-
troller can successfully compensate the disturbance and
the effect of plant uncertainties, and guarantee a desired
bound of tracking error in the steady-state. The perfor-
mance has been validated via numerical simulations on a
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Fig. 7. Comparison of disturbance estimation perfor-
mance: constant (top), sinusoid (bottom).
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Fig. 8. Tracking error of closed-loop system with distur-
bance and uncertainties.

2-DOF manipulator. Extensions to more general nonlinear
systems, and to the case with known disturbance models
are future research topics.
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