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Discrete Time Sliding Mode Controller Using a Disturbance Compensator
for Nonlinear Uncertain Systems
Jalel Ghabi* and Hedi Dhouibi

Abstract: In this paper, we propose a new sliding mode control for discrete time nonlinear uncertain systems. The
uncertainties include both parametric uncertainties in the state model and external disturbances. To recover the lost
invariance and robustness properties of discrete sliding mode control, we develop a disturbance estimation scheme
to compensate the system uncertainties without affecting the control law. This control approach ensures the stability
of the closed loop system as well as chattering reduction. The performance of the proposed controller is applied to
control the motion of a cart-inverted pendulum used as a typical benchmark of nonlinear systems. The stabilization
problem of the inverted pendulum system is to design a controller to keep the pendulum in its unstable equilibrium
point in the presence of disturbances and parameters variation. The simulation result shows the effectiveness of the
control design.

Keywords: Cart-inverted pendulum, discrete sliding mode control, nonlinear system, uncertainty, disturbance esti-
mation.

1. INTRODUCTION

The cart-inverted pendulum is a typical benchmark
problem in the control system engineering. The control
task of this system is to swing up the pendulum from the
stable equilibrium point to the unstable equilibrium point,
and balancing the pendulum at the upright position. In
general, the main difficulty is to guides the pendulum from
any arbitrary initial condition to the upright equilibrium
and stabilizes the cart in a desired position. Due to its
highly nonlinear structure, some advanced control algo-
rithms for swinging-up and stabilizing the inverted pen-
dulum are developed [1–3].

In recent years, Sliding Mode Control (SMC) was
widely studied for continuous-time systems [4–9]. One
of the most attractive features of continuous SMC is its
invariance and robustness properties to uncertainties in-
cluding modelling errors and external disturbances. This
is achieved by assuming that infinitely fast switching be-
tween two different control structures is possible, and that
the uncertainties are bounded and matched [10]. For a
broad class of systems, this kind of control is particularly
appealing due to its ability to deal with nonlinearities,
time-variance, as well as uncertainties and disturbances,
in a direct manner in the face of modelling imprecisions.
The design of SMC consists of two phases: The first phase
is to define a sliding surface, along which the process can
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slide to find its desired final value. Thus, the second phase
is to design the control law in such a way that any state
outside the sliding surface is driven to reach the surface in
finite time and stay here. The condition under which the
system states starting from any initial state, move towards
the sliding surface and reach it in a finite time is called the
reaching condition or reaching law. However, the main
drawback of the continuous SMC is the so-called chatter-
ing phenomenon. Chattering is a high frequency oscilla-
tion around the desired equilibrium point. It is undesirable
in practice, because it involves high control activity and
can excite high frequency dynamics ignored in the mod-
elling of the system. Several methods to reduce or even
eliminate chattering exist in the literature. One approach
is to replace the discontinuous control part by a continuous
approximation such as for example the saturation function
as can be found in [11]. A second approach is to intro-
duce an adaptive switching gain, which adapts the gain
according to the circumstances [12]. Another approach to
reduce chattering is to create a dynamic reaching condi-
tion [13], which ensures smooth reaching of the switching
surface, or using an observer to estimate the equivalent
control [14]. Using high-order sliding mode controllers is
another way to eliminate chattering [15]. This last tech-
nique is not only able to resolve the chattering problems
but also to ensure the conservation of robustness proper-
ties and system performances. Furthermore, the second-
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order sliding mode control is relatively simple to imple-
ment and it gives good robustness to external disturbances
[16, 17].

On the other hand, finite time stability is a specific prop-
erty related to the sliding mode control. It is was shown in
[18] that finite-time stable systems might enjoy not only
faster convergence but also better robustness and distur-
bance rejection properties. Using the results of finite time
Lyapunov stability [19], system trajectories can converge
to an equilibrium state in finite time [20]. Moreover, fi-
nite time stability of nonlinear systems has been one of
the most important area of research due to its importance
significance in theory and practice [21–23].

Recently, there has been interest in developing sliding
mode control methods for discrete time systems [24–27].
In discrete time sliding mode control (DSMC), the desir-
able properties of invariance and robustness are not main-
tained because of the finite sampling time. The limited
sampling period makes control input constant between
two sampling intervals. This means that when system
dynamics cross the sliding surface between sampling in-
tervals, the control input cannot immediately takes mea-
sures to make the system remain on the sliding surface.
Thus, the system states cannot remain on the sliding sur-
face, but can remain in a neighborhood of the sliding sur-
face. This sliding-like motion in discrete time is called a
quasi-sliding mode [28, 29]. Furthermore, chattering phe-
nomenon in DSMC is mainly due to the finite sampling
time. Hence, a zigzag motion in the neighborhood of the
sliding surface is unavoidable. Reducing the zigzag mo-
tion, as in the continuous time is always a main concern of
DSMC. So that, many approaches have been proposed to
overcome this problem such as a continuous approxima-
tion used within the boundary layer of the sliding manifold
[30,31], a discrete second order sliding mode control used
in [32] or a non-switching type reaching law presented in
[33].

The main contribution of the paper is to synthesize a
new strategy of discrete time sliding mode control han-
dling a class of nonlinear systems in the presence of para-
metric uncertainties and external disturbances. Based on
a disturbance compensator scheme, the controller ensures
robustness against the system uncertainties. It also guar-
antees the stability of the sliding variables in the quasi-
sliding mode as well as chatter mitigation. Compared to
the existing schemes proposed in the sliding mode litera-
ture [26, 34], the present control design offers some supe-
rior properties such as fast response, high tracking preci-
sion, strong disturbance rejection and insensitivity to sys-
tem uncertainty. It provides good performances for stabi-
lizing the motion of a cart inverted pendulum system.

This article is organized as follows: In Section 2, we
present the nonlinear model structure in discrete time and
we give assumptions to complete its description. Sec-
tion 3 presents the conception of the proposed discrete

sliding mode controller. Firstly, the sliding surface and
reaching conditions are addressed and discussed. Sec-
ondly, the controller and the disturbance estimation law
are developed. Third, the robustness of the closed-loop
system in the quasi-sliding mode is studied. In Section 4,
the discrete dynamical model of the cart-inverted pendu-
lum is derived. Section 5 presents a numerical example
to demonstrate the application of the proposed controller
for the inverted pendulum system. Finally, Section 6 gives
concluding remarks.

2. PROBLEM FORMULATION

Consider a discrete-time nonlinear single input single
output system subjected to external disturbances and pa-
rameter variations, defined by the following state model:

x(k+1) = f (x(k))+∆ f (x(k)

+(g(x(k))+∆g(x(k)))u(k)+d(k), (1)

where x(k) = [x1(k), . . . ,xn(k)]
T ∈Rn is the state vector at

the sampling instant k, u(k) ∈ R is the system input and
d(k) ∈ Rn is the external disturbances vector.
f (·) ∈Rn and g(·) ∈Rn are vectors of nonlinear functions
while ∆ f (·) ∈Rn and ∆g(·) ∈Rn represent the parametric
uncertainties on f (·) and the control gain uncertainties on
g(·) respectively.

In order to satisfy the matching conditions, we consider
the following assumption:

Assumption 1: There exist some scalars f , g and d
such that the conditions

∆ f (x(k)) = g(x(k)) f , ∆g(x(k)) = g(x(k))g,

d(k) = g(x(k))d

holds for system (1).

Therefore, system (1) can be rewritten as:

x(k+1) = f (x(k))+g(x(k))(u(k)+ζ (k)) , (2)

where ζ (k) ∈ R is constructed as:

ζ (k) = f +gu(k)+d. (3)

Note that the so-called equivalent disturbance ζ (k) in-
cludes the parametric uncertainties ∆ f (·), the control gain
uncertainties ∆g(·) as well as the external disturbances
d(k) .

To complete the description of the above system, we
consider the following assumptions:

Assumption 2: The external disturbance d(k) is L2

bounded [35], and satisfy the condition

∥d(k)∥ ⪯ ∆d ,

where ∆d is a known positive constant and ∥·∥ represent
the 2-norm of a vector or a matrix.
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Assumption 3: The equivalent disturbance ζ (k) is
bounded such that

|ζ (k)| ⪯ ∆ζ .

where ∆ζ is a positive scalar.

3. MAIN RESULTS

In this section, the objective is to develop a control law
such that discrete-time uncertain system (2) is asymptoti-
cally stable even in the presence of parametric uncertain-
ties and external disturbances.

The design procedure of a DSMC can be divided in
three parts:

1) Define a sliding surface such that in the quasi-sliding
mode system response acts like the desired dynamics.

2) Select a reaching law such that the system is pushed
onto the predetermined hypersurface in the state space.

3) Determine a control law such that quasi-sliding mode
is reached and stayed thereafter.

3.1. Design of sliding surface and reaching law
The sliding mode control comports three modes,

namely, reaching mode, sliding mode, and steady-state
mode. The idea of discrete quasi-sliding mode is to build
a switching function, noted s(k) ∈ R, in such a way that
the controller should steer the system (2) into a finite re-
gion around s(k) = 0, even in the presence of parametric
uncertainties and external disturbances.

To begin with, we consider the discrete switching func-
tion defined as:

s(x(k)) =CT (x(k)− xd(k)) =
n

∑
i=1

ci (xi(k)− xid(k)),

(4)

where xd(k) = [x1d(k), . . . ,xnd(k)]
T ∈ Rn is the desired

state vector, with e(k) = x(k)− xd(k) is the tracking er-
ror vector.

C = [c1, . . . ,cn]
T is an appropriate vector assumed to be

designed such that CT g(x(k)) ̸= 0 and that the closed-loop
system exhibits the desired performance.

After designing the switching function, we give the fol-
lowing lemma proposed by Sarpturk [28].

Lemma 1: A necessary and sufficient reaching condi-
tion for a discrete-time SMC to assure both sliding motion
and convergence onto the hyper-plane is:

|s(k+1)| ≺ |s(k)| . (5)

According to the last relation, not only the direction of
the closed-loop system is specified (namely towards the
sliding surface), but also the norm of the switching func-
tion is defined to be strictly decreasing.

Condition (5), can be further decomposed into the follow-
ing two inequalities:

(s(k+1)− s(k))sign(s(k))≺ 0, (6)

(s(k+1)+ s(k))sign(s(k))≻ 0, (7)

where (6) and (7) are called sliding condition and conver-
gence condition, respectively.
The sign function is defined as:

sign(s(k)) =
{

+1 i f s(k)⪰ 0,
−1 i f s(k)≺ 0.

(8)

Remark 1: The first condition implies that the closed-
loop system should be moving in the direction of the slid-
ing surface, whereas the second condition implies that the
closed loop system is not allowed to go too far in that di-
rection. In other words, condition (6) results in a lower
bound for the control action and condition (7) results in
an upper bound.

In sliding mode, the controller push the system onto a
predetermined hypersurface in the state space. This can
be achieve by applying the reaching law. The original ap-
proach proposed by Gao et al. in [36] is still very popu-
lar due to its simplicity to implement, satisfaction of de-
sired performances such as strong robustness and allows
fast convergence.

According to Gao et al. [36], the closed loop system in
DSMC should possess the following properties:

• Starting from any initial state, the trajectory will
move monotonically toward the switching plane and
cross it in finite time.

• Once the trajectory has crossed the switching plane,
it will cross the plane again in every successive sam-
pling period, resulting in a zigzag motion about the
switching plane.

• The size of each successive zigzag step is non increas-
ing and the trajectory stays within a specified band.

In order to achieve the conditions (6)-(7), a reaching law
for discrete-time sliding mode control is chosen as [36]:

s(k+1) = qs(k)−ηsign(s(k)), (9)

where 0 ≺ q ≺ 1 and η ≻ 0 are design parameters.

Remark 2: The reaching law given in (9) results
in chattering phenomenon and its magnitude is limited
within the so-called quasi-sliding mode bandwidth. So
that system (2) converges in finite time into quasi-sliding
mode band, the robustness parameter η is chosen appro-
priately, according to that in [25].

3.2. Design of the controller
In this section, we will further design the controller that

ensures the reachability of the specified switching surface.
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According to system equation (2), the switching func-
tion s(k+1) at instant k+1 can be rewritten as:

s(k+1) = F(x)+G(x)u(k)+G(x)ζ (k)−Xd(k+1)
(10)

with

F(x) =CT f (x(k)), G(x) =CT g(x(k)),

Xd(k+1) =CT xd(k+1).

Assume that the equivalent disturbance ζ (k) is slowly
varying and is compensated using the following distur-
bance estimation law:

ζ̂ (k+1)− ζ̂ (k) = λ
(

ζ (k)− ζ̂ (k)
)
, (11)

where ζ̂ (k) is the estimate of ζ (k) and λ is a weighting
factor.
According to the reaching law (9) and relation (10), the
control law for discrete-time uncertain system (2) is ex-
pressed as:

u(k) =− ζ̂ (k)+G(x)−1

× [−F(x)+Xd(k+1)+qs(k)−ηsign(s(k))] .
(12)

From relation (10), we can write:

G(x)ζ (k) = s(k+1)−F(x)−G(x)u(k)+Xd(k+1).
(13)

Substitute (12) into (13), we obtain:

ζ (k) =ζ̂ (k)+G(x)−1

× [s(k+1)−qs(k)+ηsign(s(k))] . (14)

Substitute (14) into (11), the estimation law of the equiva-
lent disturbance can be written at instant k+1 as:

ζ̂ (k+1) =ζ̂ (k)+λG(x)−1

× [s(k+1)−qs(k)+ηsign(s(k))] . (15)

In order to verify the reachability condition (5) when the
discrete sliding mode control law (12) is applied to the
system (2), we consider the next theorem.

Theorem 1: If the discrete sliding mode control law
(12), with the sliding function (4) and the disturbance es-
timation law (15) is applied to the nonlinear system (2),
the reachability condition |s(k+1)| ≺ |s(k)| can be satis-
fied under the following condition:

|s(k)| ⪰ η
1+q

. (16)

Proof: It is well known that a control input using the
concept of discrete time sliding mode control is chosen

such that V (k+1) ≺ V (k) for all instant k, where V (k) is
the candidate Lyapunov function given as [30]:

V (k) =
1
2

s2(k). (17)

Using expression (17), we obtain:

1
2
(s(k+1)− s(k))(s(k+1)+ s(k))≺ 0, (18)

which can be further decomposed into the following two
inequalities:

(s(k+1)− s(k))s(k)≺ 0, (19)

(s(k+1)+ s(k))s(k)≻ 0. (20)

Replace ζ (k) by its estimate ζ̂ (k) in system equation (2),
the difference between s(k+1) and s(k) can be expressed
as:

s(k+1)− s(k) = (q−1)s(k)−ηsign(s(k)). (21)

Pre-multiplying (21) by s(k), we obtain:

s(k)(s(k+1)− s(k)) = |s(k)| [(q−1)|s(k)|−η ] .
(22)

Then, the sliding condition (19) will be satisfied if:

|s(k)| ⪰ − η
1−q

. (23)

On the other hand, the sum of s(k+ 1) and s(k) is given
by:

s(k+1)+ s(k) = (1+q)s(k)−ηsign(s(k)). (24)

Pre-multiplying (24) by s(k), we obtain:

s(k)(s(k+1)+ s(k)) = |s(k)| [(1+q)|s(k)|−η ] .
(25)

The convergence condition (20) will be satisfied if:

|s(k)| ⪰ η
1+q

. (26)

From (23) and (26), we conclude that both sliding con-
dition and convergence condition will be satisfied if the
condition (16) is achieved. □

Note that the reaching law (9) cannot asymptotically con-
verge to zero, even if system uncertainties are not present
[37]. It can be shown that for a nominal system, using a
saturation function instead of the sign function in (9) can
achieve asymptotic convergence of the switching function
to zero, as well as chatter reduction.

Thus, a stable reaching law can be rewritten as:

s(k+1) = qs(k)−ηsat(s(k)). (27)
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The saturation function is given by:

sat(s(k)) =
{ 1

ϕ s(k) if |s(k)| ≺ ϕ ,
sign(s(k)) if |s(k)| ⪰ ϕ ,

(28)

where ϕ is the boundary layer thickness [38].
Hence, the expression of the control law (12) became:

u(k) =− ζ̂ (k)+G(x)−1

× [−F(x)+Xd(k+1)+qs(k)−ηsat(s(k))] .
(29)

The disturbance estimation law (15) can be rewritten as:

ζ̂ (k+1) =ζ̂ (k)+λG(x)−1

× [s(k+1)−qs(k)+ηsat(s(k))] . (30)

3.3. Robustness and stability analysis
In this section, we study the system robustness and sta-

bility when the controller (29) is enforced on the system
(2) and the reachability of the specified surface s(k) = 0
can be obtained, even in the presence of the equivalent
disturbance ζ (k).
Substitute (29) into (10), we obtain:

s(k+1) = qs(k)−ηsat(s(k))+G(x)
(

ζ (k)− ζ̂ (k)
)
.

(31)

Let

β (k) = G(x)
(

ζ (k)− ζ̂ (k)
)
, α = q− η

ϕ
.

The relation (31) can be rewritten as:

s(k+1) = qs(k)−ηsat(s(k))+β (k). (32)

According to (32), we consider the next theorem.

Theorem 2: For the discrete-time nonlinear uncertain
system (2) with control law (29) and disturbance estima-
tion law (30), the closed loop sliding mode dynamics de-
scribed by (32) is asymptotically stable if the condition
(33) holds for all instant k, with |α| ≺ 1 and for some con-
stant µ ≻ 0.

|β (k)| ⪯ µ. (33)

Proof: Consider the case |s(k)| ≺ ϕ .
In this case, the difference between s(k+1) and s(k) is

given by:

s(k+1)− s(k) = (α −1)s(k)+β (k). (34)

Pre-multiplying (34) by sign(s(k)), we obtain:

(s(k+1)− s(k))sign(s(k))

= (α −1)|s(k)|+β (k)sign(s(k)). (35)

The sliding condition (6) implies

β (k)sign(s(k))≺ (1−α)ϕ . (36)

The sum of s(k+1) and s(k) can be written as follows:

s(k+1)+ s(k) = (1+α)s(k)+β (k). (37)

Pre-multiplying (37) by sign(s(k)), we obtain:

(s(k+1)+ s(k))sign(s(k))

= (1+α)|s(k)|+β (k)sign(s(k)). (38)

The convergence condition (7) implies

β (k)sign(s(k))≻−(1+α)ϕ . (39)

According to relations (36) and (39), we obtain the fol-
lowing inequality:

−(1+α)ϕ ≺ β (k)sign(s(k))≺ (1−α)ϕ . (40)

Consider the case |s(k)| ≻ ϕ .
The difference between s(k+1) and s(k) is given by:

s(k+1)− s(k) = (q−1)s(k)−ηsign(s(k))+β (k).
(41)

Pre-multiplying (41) by sign(s(k)), we have:

(s(k+1)− s(k))sign(s(k))

= (q−1)|s(k)|−η +β (k)sign(s(k)). (42)

The sliding condition (6) implies

β (k)sign(s(k))≺ η +(1−q)|s(k)|. (43)

The sum of s(k+1) and s(k) is expressed as:

s(k+1)+ s(k) = (q+1)s(k)−ηsign(s(k))+β (k).
(44)

Pre-multiplying (44) by sign(s(k)), we obtain:

(s(k+1)+ s(k))sign(s(k))

= (q+1)|s(k)|−η +β (k)sign(s(k)). (45)

The convergence condition (7) implies

β (k)sign(s(k))≻ η − (1+q)|s(k)|. (46)

Note that when |s(k)| ≻ ϕ , |s(k)| decreases until |s(k)| ⪯
ϕ . In this case, we obtain the same condition as in (40).
From relation (40), we can write the following inequali-
ties:{

− (1+α)ϕ ≺ β (k)≺ (1−α)ϕ if s(k)≻ 0,

(−1+α)ϕ ≺ β (k)≺ (1+α)ϕ if s(k)≺ 0.
(47)

According to relation (47), we can choose the constant
parameter µ as:

µ = min((1+α)ϕ , (1−α)ϕ) . (48)

We conclude that inequality (33) is proved and the proof
of the theorem is completed. □
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4. DYNAMICAL MODEL OF THE INVERTED
PENDULUM

A cart-inverted pendulum is widely used in the control
literature of nonlinear uncertain systems. The system con-
sists of a cart and a pendulum attached to it. Applying a
force κ(t) to the cart, for instance through a built-in elec-
trical motor, and thus moving it forwards and backwards
will cause the pendulum to swing. A simple schematic
of the cart-inverted pendulum is shown in Fig. 1 and the
parameter values are listed in Table 1.

The cart-inverted pendulum is assumed to have two de-
grees of freedom and can therefore be fully represented
using two generalized coordinates chosen as the position
x of the cart, which is the moving horizontally, and the
angular deviation θ of the pendulum.

The dynamical behaviour of the cart-inverted pendulum
can be described by the two following differential equa-
tions [39, 40]:

(M+m)ẍ+mlθ̈ cosθ −mlθ̇ 2 sinθ = u, (49)

ẍcosθ + lθ̈ −gsinθ = 0. (50)

Using the Euler discretisation with a sampling rate T and
taking into account of uncertainties on the mass and the
external disturbances, a discrete time state space model
for the cart-inverted pendulum system can be derived by
arranging the above equations (49)-(50) as:

x1(k+1) = x1(k)+T x2(k)
x2(k+1) = f2(x(k))+g2(x(k))(u(k)+ζ (k))
x3(k+1) = x3(k)+T x4(k)
x4(k+1) = f4(x(k))+g4(x(k))(u(k)+ζ (k))

(51)

with:

f2(x) = x2(k)+T

(
lx4

2(k)−gcosx3(k)
)

msinx3(k)

M+msin2 x3(k)
,

f4(x) = x4(k)

+T

(
(m+M)g−mlx4

2(k)cosx3(k)
)

sinx3(k)

l
(
M+msin2 x3(k)

) ,

g2(x) =
T

M+msin2x3(k)
,

g4(x) =− T cosx3(k)
l
(
M+msin2x3(k)

) ,
where the state variables x1(k) denotes the cart position,
x2(k) is the velocity of the cart, x3(k) is the angular de-
viation of the pendulum and x4(k) is the angular velocity.
u(k) ∈ R is the system input and ζ (k) is the equivalent
disturbance.

5. SIMULATION RESULTS

To validate the present controller, we consider the dis-
crete uncertain model (51) describing the motion of the

Fig. 1. Schematic of the cart-inverted pendulum

Table 1. Parameter values of the cart-inverted pendulum.

Designation Symbol Value Unit
Mass of the cart M 20 kg

Mass of the pendulum m 1.8 kg
Length of the pendulum l 0.3 m

Gravity acceleration g 9.8 ms−2

cart-inverted pendulum.
The system robustness was verified by choosing ζ̂ (0) =

0.1. As design parameters, we take q = 0.85, η = 0.2,
λ = 0.25, ϕ = 0.75, and T = 0.1 s. For the coefficients ci,
we select c1 = 0.65, c2 = 0.85, c3 = 4.25 and c4 = 1. As
desired state trajectories, we take x1d(k) = 2 for the cart
position and x3d(k) = 0 for the angular deviation of the
pendulum. As initial states, we take x1(0) = 0, x2(0) = 0,
x3(0) = 0.1 and x4(0) = 0.
As performance index, we define

ρs =
1
N
∥S∥ ,

where S = [s(1), . . . , s(N)]T and N = 300 is the number of
iterations used in simulation.

Using (48) for calculating the parameter µ , we have

|β (k)| ⪯ 0.3125.

The behaviours of the state x1(k) and the desired state
x1d(k) are presented in Fig. 2, while Fig. 3 shows the evo-
lutions of the state x3(k) and the desired state x3d(k). Fig. 4
shows the control input profile of the proposed controller,
whereas the switching function is depicted in Fig. 5. The
evolution of the equivalent disturbance is shown in Fig. 6,
while Fig. 7 presented the tracking errors.

In order to verify the robustness of the closed loop sys-
tem, simulation results are carried out for different numer-
ical values of the robustness parameter η when q = 0.85.
Table 2 illustrated the design parameters obtained in sim-
ulation.

As can be seen in Figs. 2-3, the system states fol-
low perfectly their desired state trajectories. Thus, the
present controller has allowed the stabilization and the
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Fig. 2. Evolutions of the states x1(k) and x1d(k).

Fig. 3. Evolutions of the states x3(k) and x3d(k).

Fig. 4. Evolution of the control signal u(k).

tracking of the desired trajectories. In addition, it atten-
uates the effect of both parameter uncertainties and ex-
ternal disturbances. From Fig. 4-5, one can see that the
controller is able to compensate effectively the chattering
phenomenon. Moreover, it can be observed from Fig. 6
that the system uncertainty is completely compensated us-
ing the estimation law (30) and the dynamics of the closed
loop sliding mode dynamics (32) are effectively improved
in the presence of uncertainties. Therefore, the discrete

Fig. 5. Evolution of the sliding function s(k).

Fig. 6. Evolution of the equivalent disturbance.

Fig. 7. Evolutions of the tracking errors.

quasi-sliding mode is reachable in finite time and the con-
troller guarantees the reachability of the sliding motion,
with ρs = 3.7×10−3.

From Table 2, when 0 ≺ η ⪯ 1.38, the closed loop sys-
tem is robust and the disturbance estimation error in (33)
must become smaller than some bond µ = 0.7475.

We conclude that the design parameters q and η de-
termine the convergence rate and precision of the system
states. As a result, a suitable choice of these parameters
will force the system states to converge to the quasi-sliding
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Table 2. Variation of the robustness parameter.

η 0.1 0.5 0.9 1.1 1.4
α 0.7167 0.1833 −0.35 −0.6167 −1.067
µ 0.2125 0.6125 0.4875 0.2875 −0.0125
ρs 0.0042 0.0030 0.0030 0.0033 0.0437

surface with a higher speed. Therefore, the present con-
troller guarantees effectively the robustness of the closed
loop system.

6. CONCLUDING REMARKS

In this paper, a discrete time sliding mode control
design has been developed for nonlinear uncertain sys-
tems. A disturbance compensator scheme allows to es-
timates both parameter uncertainties and external distur-
bances. The proposed controller guarantees asymptotic
stability of the system dynamics as well as chattering re-
duction and ensures robustness of the closed loop system
against disturbances and system uncertainties. Simulation
results have been conducted to show the effectiveness of
the present controller to stabilise a cart-inverted pendu-
lum system. It should also be noted that the performances
of the controller obtained through simulations aims to be
verified experimentally in future work on the actual cart-
inverted pendulum.
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