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Reinforcement Q-learning based on Multirate Generalized Policy Itera-
tion and Its Application to a 2-DOF Helicopter
Tae Yoon Chun, Jin Bae Park*, and Yoon Ho Choi

Abstract: In this paper, we propose a novel Q-learning method based on multirate generalized policy iteration
(MGPI) for unknown discrete-time (DT) linear quadratic regulation (LQR) problems. Q-learning is an effective
scheme for unknown dynamical systems because it does not require any knowledge of the system dynamics to
solve optimal control problems. By applying the MGPI concept, which is an extension of basic GPI with multirate
time horizon steps, a new Q-learning algorithm is proposed for solving the LQR problem. Further, it is proven that
the proposed algorithm converges to an optimal solution i.e., it learns the optimal control policy iteratively using the
states and the control-input information. Finally, we employ the two degree-of-freedom helicopter model to verify
the effectiveness of the proposed method and investigate its convergence properties.
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1. INTRODUCTION

In recent years, considerable attention has been paid to
the modeling and control design of helicopters because
of the increase in the number of their potential applica-
tions, such as military reconnaissance and emergent trans-
portation, as well as their scientific significance [1, 2].
For this reason, many reported studies have applied sev-
eral control methodologies such as proportional-integral-
derivative (PID) control [3], robust attitude regulation [2],
adaptive particle swarm optimization based optimal linear
quadratic regulation (LQR) control [4], sliding mode con-
trol [5, 6], and backstepping methods [7].

Among them, optimal control is one of the important
technique used in control engineering for various appli-
cations to achieve the desired performance. By solving
the Hamilton-Jacobi-Bellman (HJB) equation or the alge-
braic Riccati equation (ARE) for linear systems, an op-
timal controller, that maximizes or minimizes the perfor-
mance indices, is obtained. However, it is often hard to
obtain or solve these equations because these techniques
usually rely on an accurate knowledge of the system dy-
namics, and even when solved backward-in-time, they of-
ten do not satisfy the requirement of real applications.

On the other hand, associated with reinforcement learn-
ing (RL) and optimal control, adaptive dynamic program-
ming (ADP) proposed by Werbos [8], is a brain-like self-
learning control methodology that solves the optimal con-
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trol problems forward-in-time [9,10]. These methods usu-
ally consist of a series of iterative methods that find the op-
timal solution with adaptive behaviour. Especially, ADP
learns the optimal controller without the knowledge of
systems dynamics. Because of this advantage, it is a suit-
able method for controlling many applications such as he-
licopters, unmanned aerial vehicle (UAV), and robots.

According to [11], iterative ADP algorithms can be
classified into J-learning and Q-learning. This classifica-
tion comes from the difference of the value function and
Q-function properties. In J-learning algorithm, the itera-
tive value function is a function of the system states, which
is implemented to approximate the solution of the HJB
equation [11, 12]. Therefore, in order to obtain the op-
timal control gain, the J-learning algorithm requires the
system model and utility functions [13]. In contrast, the
Q-function in Q-learning algorithms is a function of both
states and control inputs which already includes the infor-
mation about the system action and the utility functions
[12]. Therefore, Q-learning is a data-based iterative ADP
algorithm for obtaining the optimal control, especially for
unknown and model-free systems [12].

These iterative algorithms are usually developed based
on policy iteration (PI) or value iteration (VI). Basically,
PI and VI are classified by the difference in the approx-
imate policy evaluation step. That is, while PI evaluates
the exact value function, which needs an infinite number
of recursions, VI iterates only one step of the recursion to
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reduce the computational complexity. In the literature, a
family of VI algorithms was proposed in [8, 14, 15] for
solving optimal control problems for discrete-time (DT)
systems without the need for an initial stabilizing pol-
icy. The relation between the Q-learning method and the
model-based adaptive control for the LQR case is dis-
cussed in [16]. For a continuous time (CT) dynamic
system, Q-learning based VI for an infinite-horizon dis-
counted cost LQR is demonstrated in [17]. A PI based
algorithm was developed for the DT LQR problem using
a Q-function in [18]. Recently, Q-learning for nonlinear
DT deterministic systems was studied in [12].

On the other hand, generalized policy iteration (GPI)
was demonstrated as a class of iterative algorithms for
solving decision-making problems in [19]. GPI contains
PI and VI as special cases and has both advantages of PI
and VI; it has faster convergence speed than VI and, when
applied to dynamic systems for optimal control, does not
need the admissible stabilizing policy required by PI. De-
spite these advantages, in the fields of optimal control,
there are only a few studies on the GPI algorithms [20–23]
and, to the best authors’ knowledge, those GPI methods
are not extended to Q-learning for model-free adaptive op-
timal control.

In [23], Chun et al. extended the GPI methods and pro-
posed multirate GPI (MGPI). Here, MGPI have the abil-
ity to regulate the time and iteration horizons for trading
off the computational burden caused by its sub-iterations
against learning speed in time–any two MGPI algorithms
generate the same results in the iteration domain as long
as the products of the time and iteration horizons of each
algorithm are equal. This implies that the time scale for
learning can be arbitrarily larger than that for control to
reduce the computational burden (low iteration horizon),
or in other words, by sacrificing the computational effi-
ciency (high iteration horizon), the time scale for control
can be made arbitrarily smaller than that for learning (by
reducing the base sampling period).

In this paper, we propose a novel Q-learning method
based on MGPI. It has the advantages of MGPI mentioned
above so, for a given learning period, the performance can
be made equal for an arbitrary small control period by in-
creasing the iteration horizon by the inverse of the same
amount. Such kind of fast time-scale control is neces-
sary especially when the proposed method is applied to
the systems such as helicopters that are initially unstable
and thus has to be properly controlled with sufficiently fast
time-rate. Moreover, since the exploration signal is ap-
plied only at the first time instant of each learning period,
the proposed Q-learning method improves the stability of
the system during the online learning by applying the cur-
rent policy without exploration noise. The convergence
property of the proposed MGPI-based Q-learning is also
proven in a similar way to our previous work [23]; its per-
formance is finally investigated by numerical simulations

with a 2-DOF helicopter model.
The rest of this paper is organized as follows: In Sec-

tion 2, the preliminaries of the discounted cost LQR and
the Bellman equation are provided. Section 3 introduces
the Q-function and proposes a Q-learning based on MGPI.
Further, using several equivalent matrix formulas, we pro-
vide its convergence property to the optimal solution. Sec-
tion 4 presents the online implementation of the proposed
Q-learning scheme without any knowledge of the system
dynamics. We then apply this algorithm to the optimal
control of the 2-DOF helicopter in Section 5. Finally, Sec-
tion 6 concludes this paper.

2. PRELIMINARIES

In this section, we briefly describe the LQR problem
for DT systems. Throughout this paper, we consider the
following DT linear time-invariant dynamical system:

xk+1 = Axk +Buk,

yk =Cxk, (1)

where xk ∈ Rn is the state, uk ∈ Rm is the control input,
and yk ∈ Rp is the system output; A ∈ Rn×n is the system
matrix and B ∈Rn×m is the input coupling matrix, respec-
tively. In the DT LQR problem, we consider the following
infinite horizon performance index:

J(xk;{uk+l}∞
l=0) =

∞

∑
l=0

γ l (∥yk+l∥2 +uT
k+lRuk+l

)
=

∞

∑
l=0

γ l (xT
k+lSxk+l +uT

k+lRuk+l
)
, (2)

where 0 ≤ γ ≤ 1 is the discount factor and S := CTC ∈
Rn×n and R = RT ∈ Rm×m are positive semi-definite and
positive definite matrices, respectively. Further, the state
vector xk+l for any l ∈ N is generated by the system (1).
In this paper, we assume that (A,B,C) is stabilizable and
detectable.

For a given policy K, we define its value function VK as

VK(xk) = J(yk;{uk+l}∞
l=0)|uk+l=−Kxk+l ,

=
∞

∑
l=0

γ l (xT
k+lSxk+l +uT

k+lRuk+1
)
|uk+l=−Kxk+l ,

and a policy K is defined to be admissible if VK(x) is finite
for all x ∈ Rn. For notational convenience, S+KT RK is
denoted by SK , i.e., SK := S +KT RK, and AK as AK :=
A−BK.

Then, the value function VK can be rewritten as the fol-
lowing Bellman equation:

VK(xk) = xT
k Sxk +uT

k Ruk + γVK(xk+1). (3)

In the LQR case, any value can be expressed in a quadratic
in the state, i.e., VK(xk) = xT

k PKxk for a positive semi-
definite matrix P ∈ Rn×n. Then, the discounted cost LQR
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Bellman equation becomes

xT
k PKxk = xT

k SKxk + γ xT
k+1PKxk+1,

which can also be expressed as the following Lyapunov
matrix equation:

RicK(PK) = 0, (4)

where the Lyapunov operator RicK(P) is defined as

RicK(P) := γAT
KPAK−P+SK . (5)

Solving the LQR problem is equivalent to finding the
optimal policy K∗, which minimizes the performance in-
dex J, and the corresponding optimal value function V ∗ :=
VK∗ . Here, the optimal solution (V ∗,K∗) of the DT LQR
problem can be characterized by the Bellman’s optimality
principle [9, 10], which states that the optimal value func-
tion V ∗(x) satisfies

V ∗(xk) = min
uk
{xT

k Sxk +uT
k Ruk + γV ∗(xk+1)},

∀xk ∈ Rn. (6)

Minimizing the right-hand side of (6) using the quadratic
representation, the optimal policy u∗ can be represented as

u∗(x) =−K∗x =−(R+ γ BT P∗B)−1γ BT P∗Ax. (7)

Moreover, substituting (7) into (6) yields the Lyapunov
operator RicK∗(P∗) = 0, which is expanded as follows:

S−P∗+ γ AT P∗A

− γ2 AT P∗B(R+ γBT P∗B)−1BT P∗A = 0. (8)

3. Q-LEARNING BASED ON GENERALIZED
POLICY ITERATION

In this section, we introduce a Q-function for the LQR
problem and then using the definition and time-series ex-
tension of the Q-function, present our new MGPI-based
Q-learning with its convergence analysis.

3.1. Derivation of Q-function
For a given admissible policy K, the Q-function

QK(xk,uk) is an action value function, meaning the value
of the performance metric obtained when an arbitrary
control action uk is applied at the current state xk and then
follows control policy uk+l = −Kxk+l thereafter [19, 24].
From the Bellman equation (3), QK(xk,uk) is defined as

QK(xk,uk)

:= xT
k Sxk +uT

k Ruk

+ γ
∞

∑
l=1

γ l−1 (xT
k+lSxk+l +uT

k+lRuk+1
)
|uk+l=−Kxk+l

= xT
k Sxk +uT

k Ruk + γ VK(xk+1). (9)

In a similar manner, for the optimal control policy u∗, the
optimal Q-function Q∗(x,u) can be defined as

Q∗(xk,uk) = xT
k Sxk +uT

k Ruk + γ V ∗(xk+1). (10)

Hence, the optimal control policy u∗ can be expressed in
terms of the optimal Q-function Q∗ as

u∗(x) = argmin{Q∗(x,u) : u ∈ Rm} (11)

To demonstrate the MGPI scheme, we rewrite (9) as

QK(xk,uk) =xT
k Sxk +uT

k Ruk

+
h−1

∑
l=1

γ l xT
k+lSKxk+l + γh ·VK(xk+h), (12)

with an arbitrary step h ∈ N. In fact, (12) is of the exactly
same form as (9), except that it extends VK(xk+1) up to
h-steps using (3). This restatement of the Q-function is
the key to derive our Q-learning scheme. Noting that both
Q-functions and value functions for the LQR problem can
also be always presented in a quadratic form [25], (12) can
be rewritten in a matrix form by substituting QK(xk,uk) =[
xT

k uT
k

]
H
[
xT

k uT
k

]T := zT
k Hzk and VK(xk) = xT

k Pxk as

QK(xk,uk)

= zT
k Hzk :=

[
xk

uk

]T [Hxx Hxu

Hux Huu

][
xk

uk

]
= xT

k Sxk +uT
k Ruk

+ γ
[

xk

uk

]T [AT

BT

]
SK

[
AT

BT

]T

︸ ︷︷ ︸
=

[
AT SK A AT SK B
BT SK A BT SK B

]

[
xk

uk

]
...

+ γh−1
[

xk

uk

]T [AT

BT

]
(Ah−2

K )T SKAh−2
K

[
AT

BT

]T [xk

uk

]
+ γh ·

[
xk

uk

]T [AT

BT

]
(Ah−1

K )T P Ah−1
K

[
AT

BT

]T [xk

uk

]
=

[
xk

uk

]T[[
S+∑h−2

l=0 γ l+1AT (Al
K)

T SK Al
K A ∑h−2

l=0 γ l+1AT (Al
K)

T SK Al
K B

∑h−2
l=0 γ l+1BT (Al

K)
T SK Al

K A R+∑h−2
l=0 γ l+1BT (Al

K)
T SK Al

K B

]
+ γh ·

[
AT (Ah−1

K )T PAh−1
K A AT (Ah−1

K )T PAh−1
K B

BT (Ah−1
K )T PAh−1

K A BT (Ah−1
K )T PAh−1

K B

]][xk

uk

]
,

(13)

where the matrix H have the following block-matrix com-
ponents associated with P:

Hxx = S+ γ AT ΠhA, Hxu = γ AT ΠhB,

Hux = (Hxu)T = γ BT ΠhA, Huu = R+ γBT ΠhB

with Πh is defined as

Πh =
h−2

∑
l=0

γ l(Al
K)

T SKAl
K + γh−1(Ah−1

K )T PAh−1
K . (14)
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If h = 1, (12) is simplified to (10) and Πh to P. Solving
∂Q(xk ,uk)

∂uk
= 0 to (13), we obtain the improved control policy

uk =−(Huu)−1Huxxk =−(R+ γBT ΠhB)−1γBT ΠhAxk.
(15)

3.2. Q-learning algorithm
Based on the results of the previous subsection, we

propose a Q-learning based on MGPI. The proposed Q-
learning algorithm consists of a series of iterations be-
tween two successive steps of the policy evaluation and
the policy improvement. Basically, the Q-learning algo-
rithms in [17, 24–26] have been developed based on PI
and VI schemes. The following discussion summarizes
Q-learning schemes based on VI and PI, where the differ-
ence comes from the policy evaluation processes.

Algorithm: Q-learning based on VI

1 Approximate Policy Evaluation:

Qi+1(xk,uk) = xT
k Sxk +uT

k Ruk + γ Qi(xk+1,uk+1)

2 Policy Improvement:

ui+1(x) =−Ki+1(x) = argmin
u

Qi+1(xk,u)

Algorithm: Q-learning based on PI

1 Approximate Policy Evaluation:

Qi+1(xk,uk) = xT
k Sxk +uT

k Ruk + γ Qi+1(xk+1,uk+1)

2 Policy Improvement:

ui+1(x) =−Ki+1(x) = argmin
u

Qi+1(xk,u)

Meanwhile, the GPI scheme [19, 21, 27] has a sub-
iteration in the policy evaluation step, and contains the
above PI and VI scheme as special cases. Specifically, in
this paper, the multirate concept is employed at the policy
evaluation; we demonstrate the MPGI-based Q-learning
by considering the j-th sub-iteration of the policy eval-
uation step. For i = 1,2,3, ..., and j = 0,1, ..., the MGPI
algorithm can be described by the following two iterations
i and j. The approximate policy evaluation of the j-th sub-
iteration can then be described as follows:

Qi| j+1(xk,uk) =xT
k Sxk +uT

k Ruk +
M−1

∑
l=1

γ lxT
k+lSKi xk+l

+ γMQi| j(xk+M,−Kixk+M),

where the index j increases from 0 to N− 1. Here, M is
the multirate index and j is the number of sub-iterations
in the policy evaluation. For the j-th sub-iteration, the
iterative Q-function is updated, while the control policy
unchanged. After obtaining Qi+1 from this equation, the
policy is update by policy improvement using Qi+1. This
process continues until convergence. Algorithm 1 shows
the overall procedure of the proposed method.

Algorithm 1: Q-learning based on MGPI

1 Initialize:
K0 ∈ Rm×n, the initial policy;

H0 ∈ R(n+m)×(n+m), the initial Q function index;

N, M ∈ N, the iteration and time horizons;

2 i← 0 (and Q0(z) := zT H0z);
3 repeat

Approximate Policy Evaluation:
4 Hi|0← Hi (and Qi|0(x,u) := Qi(x,u));
5 for j = 0,1, · · · ,N−1 do
6 find Qi| j+1(zk) = zT

k Hi| j+1zk such that
∀zk ∈ Rn+m:

Qi| j+1(xk,uk) = xT
k Sxk +uT

k Ruk

+
M−1

∑
l=1

γ lxT
k+lSKi xk+l + γMQi| j(xk+M,−Kixk+M)

(16)

where xk+l+1 = AKi xk+l

(l = 0,1,2, · · · ,M−1);

7 Qi+1← Qi|N (and Qi+1(zk) = zT
k Hi+1zk);

8 Policy Improvement: update the next policy
Ki+1 by

ui+1(x) =−Ki+1(x) = argmin
u

Qi+1(xk,u)

9 i← i+1;
until convergence is met.

Because of the sub-iteration with index j and the mul-
tirate index M in the policy evaluation step, MGPI has
the advantages of both PI and VI. That is, MGPI has a
faster convergence speed than VI, and does not need the
initial stabilizing condition that is usually required in the
PI scheme. Note that (16) can be restated with new update
horizon L := M×N as

Qi+1(xk,uk) =xT
k Sxk +uT

k Ruk +
L−1

∑
l=1

γ lxT
k+lSKi xk+l

+ γLQi(xk+L,−Kixk+L)
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for the time horizon M and the iteration horizon N, which
is similar to the heuristic dynamic programming (HDP)
and dual HDP (DHP) cases mentioned in our previous re-
sults on MGPI [23].

Remark 1: The proposed Q-learning (Algorithm 1)
has special cases, PI (N → ∞ and/or M → ∞), VI (N =
M = 1), and GPI (M = 1 with arbitrary N).

3.3. Convergence analysis
We now analyze the convergence of the proposed Q-

learning algorithm. To do this, we first derive the equiva-
lent matrix formulas for the approximate policy evaluation
step and prove that these are equivalent to those of MGPI-
based HDP and DHP. Then, we present the convergence
of Q-learning based on the MGPI algorithm using these
matrix formulas, as similarly proven in [23]. In this sub-
section, we assume that P0 is positive semi-definite.

In the approximate policy evaluation step of Algorithm
1, Qi| j+h, obtained by an arbitrary h-th iteration of (16),
can be derived as

Qi| j+h(xk,uk) =xT
k Sxk +uT

k Ruk

+
hM−1

∑
l=1

γ lxT
k+lSKi xk+l

+ γhMQi| j(xk+hM,ui
k+hM). (17)

Since zk+l is defined as zk+l =
[
xT

k+l uT
k+l

]T for any l ∈N,
xk+l and uk+l can be presented as

xk+l = Al
Ki

xk = Al−1
Ki

xk+1,

uk+l =−Kixk+l =−KiAl−1
Ki

xk+1.

Then, (17) can be restated in a matrix form in terms of H,
as shown in Lemma 1.

Lemma 1: Matrices Hi| j and Hi| j+h (0 ≤ j ≤ j + h ≤
N) obtained by the approximate policy evaluation in (16)
satisfy the following matrix formula:

Hi| j+h

=

[
S 0
0 R

]
+

[
AT

BT

] hM−1

∑
l=1

γ lAl−1
Ki

SKi A
l−1
Ki

[
AT

BT

]T

+ γhM·
[

AhM−1
Ki

A AhM−1
Ki

B

−KiAhM−1
Ki

A −KiAhM−1
Ki

B

]T

Hi| j

[
AhM−1

Ki
A AhM−1

Ki
B

−KiAhM−1
Ki

A −KiAhM−1
Ki

B

]
.

(18)

Proof: Note that Qi| j+h and Qi| j can be rep-
resented in quadratic forms as Qi| j+h(xk,uk) =[
xT

k uT
k

]
Hi| j+h

[
xT

k uT
k

]T and Qi| j(xk+hM,−Kixk+hM) =
[xT

k+hM − xT
k+hMKT

i ]Hi| j[xT
k+hM − xT

k+hMKT
i ]

T , respectively.
Substituting these quadratic forms into (17) and using the
same expansions used to obtain (13), and omitting xk and
uk, we obtain the matrix equation (18), which completes
the proof. □

Equation (18) shows the relation between matrices Hi

and Hi| j+h obtained by the h-number of sub-iteration of
the policy evaluation. Now, let the matrix Pi| j be defined
as Pi| j =

[
I −KT

i

]
Hi| j

[
I −KT

i

]T . In what follows, we
show a key matrix equality between the matrices Pi| j and
Pi| j+h (0≤ j < j+h≤ N).

Lemma 2: Pi| j+h and Pi| j (0≤ j < j+h≤ N) satisfy

Pi| j+h =
hM−1

∑
l=0

γ l(Al
Ki
)T SKi A

l
Ki
+ γhM(AhM

Ki
)T Pi| jAhM

Ki
.

(19)

Proof: Multiplying
[
I −KT

i

]
and

[
I −KT

i

]T in both
sides of (18), we obtain by the definition of Pi| j+h

Pi| j+h =
[
I −KT

i

]
Hi| j+h

[
I −KT

i

]T

= SKi +
hM−1

∑
l=1

γ lAl
Ki

SKi A
l
Ki
+ γhM

× (AhM
Ki

)T
[

I
−Ki

]T

Hi| j

[
I
−Ki

]
AhM

Ki

=
hM−1

∑
l=0

γ l(Al
Ki
)T SKi A

l
Ki
+ γhM(AhM

Ki
)T Pi| jAhM

Ki
,

which completes the proof. □

Lemma 3: Pi| j+h and Pi| j (0 ≤ j < j + h ≤ N) satisfy
the following matrix formulas:

1) RicKi(Pi| j+h) = γhM(AhM
Ki

)T RicKi(Pi| j)AhM
Ki

, (20)

2) Pi| j+h = Pi| j +
hM−1

∑
l=0

γ l(Al
Ki
)T RicKi(Pi| j)Al

Ki
. (21)

Proof: See Appendix A. □

Remark 2: From Lemmas 1-3, one can notice that the
approximate policy evaluation step of the Q-learning al-
gorithm consists of the same matrix formulas as those of
HDP and DHP based on MGPI.

The next result is our main theorem, which shows the
convergence of the Q-learning based on MGPI.

Theorem 1: Assume that there exists α ∈ (0,1) such
that

√
γL∥AL

Ki
∥ ≤ α for all i ∈ Z+. Then, the sequences

{Hi}∞
i=0 and {Ki}∞

i=0 generated by Algorithm 1 converge to
the optimal ones, i.e., limi→∞ Hi = H∗ and limi→∞ Ki = K∗.

Proof: After the N-th iteration of the approximate pol-
icy evaluation and policy improvement step, i.e., j = 0,
h = N, and Pi|N = Pi+1, we obtain by Lemma 3 the follow-
ing matrix formulas:

1) RicKi+1(Pi+1)

= γL(AL
Ki
)T RicKi(Pi)AL

Ki
−∆KT

i (R+ γBT Pi+1B)∆Ki,

(22)
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2) Pi+1 = Pi +
L−1

∑
l=0

γ l(Al
Ki
)T RicKi(Pi)Al

Ki
, (23)

where ∆Ki := Ki+1−Ki.
Now, let define Ā and B̄ as Ā :=

√γ A and B̄ :=
√γ B.

Then, discounted cost LQR problem can be considered
as an undiscounted LQR one, and the Lyapunov opera-
tor (5) can be restated as RicK(P) = γAT

KPAK −P+ SK =
ĀT

KPĀK −P+ SK . Furthermore, the matrix formulas (22)
and (23) are restated as

1) RicKi+1(Pi+1)

= ĀL
Ki

RicKi(Pi)ĀL
Ki
−∆KT

i (R+ B̄T Pi+1B̄)∆Ki,

2) Pi+1 = Pi +
L−1

∑
l=0

(Āl
Ki
)T RicKi(Pi)Āl

Ki
,

which are the same equations of undiscounted cost case
[23]. Therefore, by following the same proof procedure
of Theorem 6 in [23], we can show that {Pi} obtained by
Algorithm 1 converge to the optimal matrix index P∗.

On the other hand, Lemma 1 and 2 state that iterating
on Hi matrix is equivalent to iterating on Pi. Since {Pi} is
a convergent sequence to P∗ and

Hxx
i = S+ γAT PiA, Hxu

i = γAT PiB, Huu
i = R+ γBT PiB,

Hxx
i , Hxu

i , and Huu
i also converge to S+ γAT P∗A, γAT P∗B,

and R+ γBT P∗B, respectively. Hence, {Hi} is also a con-
vergent sequence to H∗. This implies Ki converges to K∗,
and the proof is complete. □

4. ONLINE IMPLEMENTATION

In this section, we present an online implementation of
Q-learning based on MGPI. In Algorithm 1, Hi+1 is cal-
culated and updated at the end of the approximate policy
evaluation step, and a new control policy Ki+1 is updated at
the policy improvement step based on matrix Hi+1. Gen-
erally, (16) is solved online by batch least squares (LS) or
recursive LS (RLS). A batch LS based implementation is
demonstrated in this paper.

Note that for any vector a ∈Rna and matrix G ∈Rna×nb ,
the following relation is satisfied:

aT Ga = āT vec(G), (24)

where ā= [a2
1,a1a2, · · · ,a1ana ,a

2
2,a2a3, · · ·a2ana

, · · ·ana
ana ]

T

is the quadratic polynomial basis vector ā ∈ Rna(na+1)/2.
Further, vec(·) is the invertible map that converts an n×n
symmetric matrix into a column vector in Rn(n+1)/2 by
stacking the upper triangular part of the matrix with the
doubled off-diagonals [28].

To solve the LS problem for (16), data tuples zk to zk+M

must be obtained and Qi+1(zk) can be evaluated by the
N-steps recursion of (16) in the approximate policy eval-
uation step. Using (24), Qi| j(zk) is restated as zT

k Hi| jzk =

Fig. 1. Inputs with and without exploration noise.

z̄T
k vec(Hi| j). We can then represent the one-step recursion

in (16) as

z̄T
k vec(Hi| j+1) =xT

k Sxk +uT
k Ruk

+
M−1

∑
l=1

γ lxT
k+lSKi xk+l

+ γM z̄T
k+Mvec(Hi| j), (25)

where z̄ is the quadratic polynomial basis vector z̄ ∈
R(n+m)(n+m+1)/2. For the right hand side of (25), the term
xT

k Sxk + uT
k Ruk is the state performance metric obtained

when uk is applied and ξ (xk+1:k+M,Hi| j) is obtained by the
following control policy Ki thereafter, where

ξ (xk+1:k+M,Hi| j) =
M−1

∑
l=0

γ lxT
k+lSKi xk+l

+ γM z̄T
k+M vec(Hi| j). (26)

In fact, (16) is a scalar equation and at least f = (n+
m)(n+m+1)/2 data sets are required for solving the LS
solution. If we then collect s≥ f number of samples, ma-
trices are obtained as follows:

Zk =


z̄k

z̄k+M
...

z̄k+sM

 , Ξ(xk,Hi| j) =


ξ (xk+1:k+M ,Hi| j)

ξ (xk+M+1:k+2M ,Hi| j)

...
ξ (xk+(s−1)M−1:k+sM ,Hi| j)

 .

Then, the LS solution for Hi| j+1 in (16) becomes

vec(Hi| j+1) = (ZT
k Zk)

−1ZT
k Ξ(xk,Hi| j). (27)

Finally, recursively iterating (27) until j = N− 1, Hi+1 is
updated by the same rule (27) for j = N−1. Based on the
LS solution for Hi+1, a new control policy is updated in
the policy improvement, ui+1(x) =−(Huu

i+1)
−1Hux

i+1x.

Remark 3: To solve the LS problem (16) for Hi+1, the
quadratic basis set z̄k must satisfy the persistently excita-
tion (PE) condition. A small exploratory signal consisting
of sinusoids with different frequencies is usually added to
the control input to ensure the PE condition is satisfied
[25].
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Remark 4: Since the exploration signal is applied only
at the first time instant of learning period, the proposed
method improves the stability of the system during the
online learning by applying the input without exploration
noise (See Fig. 1.)

5. APPLICATION TO A 2-DOF HELICOPTER
MODEL

In this section, we apply the proposed algorithm to a
2-DOF helicopter model. As can be seen in Fig. 2, the
2-DOF helicopter (Quanser Consulting Inc., Canada) has
two degrees of freedom: a motion around the yaw axis
(Z-axis), and rotation around the pitch axis (Y -axis) repre-
sented by angles ψ and θ , respectively [4]. The nonlinear
equation of motion of the helicopter system is obtained
using the Euler Lagrangian energy based approach. That
is, substituting the kinetic and potential energies, the dif-
ferential equation of the 2-DOF helicopter system can be
presented as [4]

(Jeq,p +mhelil2
cm)θ̈

= kppVmp + kpyVmy−Bpθ̇
−mhelil2

cm sin(θ)cos(θ)ψ̇2−mheliglcm cos(θ),
(28)

(Jeq,y +mheli cos(θ)2l2
cm)ψ̈

= kyyVmy + kypVmp−Byψ̇ +2mhelil2
cm sin(θ)cos(θ)ψ̇.

(29)

To design an LQR controller of the helicopter, the dy-
namics of the system (28)-(29) need to be represented in
the form of the linear model by linearizing around the ori-
gin θ = 0, ψ = 0, θ̇ = 0, and ψ̇ = 0. Then, a state-space
representation of the helicopter is given by

ẋ(t) = Acx(t)+Bcu(t),

y(t) =Cx(t),

where the system states x(t), control input u(t), and ma-
trices Ac, Bc, and C are defined as follows [29]:

x =


θ
ψ
θ̇
ψ̇

 , u =

[
Vmp

Vmy

]
, y =

[
θ
ψ

]
,

Ac =


0 0 1 0
0 0 0 1
0 0 − Bp

Jeqp+mhelil2
cm

0

0 0 0 − By

Jeqy+mhelil2
cm

 ,

Bc =


0 0
0 0

Kpp

Jeqp+mhelil2
cm

Kpy

Jeqp+mhelil2
cm

Kyp

Jeqy+mhelil2
cm

Kyy

Jeqy+mhelil2
cm

 ,CT =


1 0
0 1
0 0
0 0

 .

Fig. 2. Diagram of a 2-DOF helicopter [29].

Table 1. System parameters.

Symbol Description Value [Unit]
Jp Total moment of inertia 0.0384[kg m2]

about the pitch axis
Jy Total moment of inertia 0.0432[kg m2]

about the yaw axis
Bp Equivalent viscous damping 0.8 [N/V]

about the pitch axis
By Equivalent viscous damping 0.318 [N/V]

about the yaw axis
mheli Total moving mass of the

helicopter
1.3872 [kg]

Kpp Thrust torque constant of the 0.204 [Nm/V]
yaw motor/propeller

Kyy Thrust torque constant acting
on the yaw axis from the yaw

0.072 [Nm/V]

motor/propeller
Kpy Thrust torque constant acting

on the pitch axis from the
yaw

0.0068 [Nm/V]

motor/propeller
Kyp Thrust torque constant acting

on the yaw axis from the
pitch

0.0219 [Nm/V]

motor/propeller
lcm Center of mass length along

the helicopter body from the
0.186 [m]

pitch axis

Table 1 shows the symbols, descriptions, and values of
system parameters. Using zero-order hold discretization
with 0.1 [s], the difference equation is obtained in the form
of (1). For the purpose of simulation, we choose matrices
S, R and discount factor γ as S = diag{[20,15,10,20]},
R = I2, and γ = 0.9, respectively. Furthermore, we set the
time and iteration horizon indices M and N as M = 2 and
N = 2.

The optimal values of H∗ and K∗ are then obtained by
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Fig. 3. Trajectories of outputs θ and ψ .
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Fig. 4. Trajectories of outputs dθ/dt and dψ/dt.

solving the DT ARE (8) and relation between P∗ and H∗,
i.e.,

H∗

=


152.7263 −4.0399 12.4843 −2.0146 2.6134 −0.0835
−4.0399 129.7929 −0.5165 22.2790 0.3506 1.5895
12.4843 −0.5165 12.7879 −0.2895 0.8704 0.0042
−2.0146 22.2790 −0.2895 39.3844 0.4475 1.7295
2.6134 0.3506 0.8704 0.4475 1.3077 0.0506
−0.0835 1.5895 0.0042 1.7295 0.0506 1.1564

,
and

K∗ =
[

1.9019 0.2043 0.6324 0.2703
−0.1516 1.2950 −0.0242 1.4070

]
.

Figs. 3 and 4 present the states trajectories of the he-
licopter, i.e., θ , ψ , dθ/dt, and dψ/dt. From the results
shown in these figures, we identify that all states converge
to zero as desired. Due to the advantages of the Q-learning
scheme, knowledge about the system matrices is not re-
quired even the optimal solution is obtained.
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with L = 4.
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Fig. 6. Trajectories of H22, H23, H24, H33, H35, and H44

with L = 4.

Figs. 5 and 6 present the trajectories of the parameters
of Hi over time and iterations, respectively. These param-
eters converge to the optimal ones, which means that the
optimal control gain has been obtained. In detail, after 11-
th iterations, the approximate optimal values are obtained
and converge to the corresponding optimal values.

To satisfy the PE condition of the LS problem, a explo-
ration noise w is applied at the first time instant of each
learning period, i.e., u = −Kx+w. After all the parame-
ters of Hi converge to the optimal ones (∥Hi−H∗∥ < ε),
a exploration noise is terminated.

6. CONCLUSION

In this paper, a novel Q-learning based on MGPI was
developed for solving the discounted cost infinite hori-
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zon optimal control for DT linear systems. The proposed
method combines two advantages: 1) the ability to solve
the optimal control problem without knowing any system
dynamics and 2) a two-step iteration for the approximate
policy evaluation that is free to choose the update horizon
and the convergence speed to the optimal solution.

In the analysis of the equations of the approximate pol-
icy evaluation and improvement steps, the convergence
property was also proved under certain conditions. Fi-
nally, a 2-DOF helicopter was simulated to demonstrate
the effectiveness of the proposed approach.

APPENDIX A: PROOF OF LEMMA 3

Proof: From Lemma 2, we have

Pi| j+h =
hM−1

∑
l=0

γ l(Al
Ki
)T SKi A

l
Ki
+ γhM(AhM

Ki
)T Pi| jAhM

Ki
.

Next, by the definition of the Lyapunov operator (5), we
have RicKi(Pi| j) = γAT

Ki
Pi| jAKi −Pi| j +SKi and hence,

Pi| j+h =
hM−1

∑
l=0

γ l(Al
Ki
)T SKi A

l
Ki
+ γhM(AhM

Ki
)T Pi| jAhM

Ki

=
hM−2

∑
l=0

γ l(Al
Ki
)T SKi A

l
Ki
+ γhM−1(AhM−1

Ki
)T

×
[
RicKi(Pi| j)+Pi| j

]
AhM−1

Ki
.

Repeating this procedure until the first summation term
vanishes, we obtain (21). To prove (20), note that

RicKi(Pi| j+h) = γAT
Ki

Pi| j+hAKi −Pi| j+h +SKi (A.1)

also holds by the definition in (5). Substituting (21) into
(A.1), we have

RicKi(Pi| j+h)

= γAT
Ki

( hM−1

∑
l=0

γ l(Al
Ki
)T RicKi(Pi| j)Al

Ki

)
AKi

−
hM−1

∑
l=0

γ l(Al
Ki
)T RicKi(Pi| j)Al

Ki
+ γAT

Ki
Pi| jAKi −Pi| j +SKi︸ ︷︷ ︸

=RicKi (Pi| j)

= γhM(AhM
Ki

)T RicKi(Pi| j)AhM
Ki
−RicKi(Pi| j)+RicKi(Pi| j)

= γhM(AhM
Ki

)T RicKi(Pi| j)AhM
Ki

,

which completes the proof. □
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