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Adaptive Pinning Synchronization of Complex Networks with Negative
Weights and Its Application in Traffic Road Network
Dan Wang*, Wei-Wei Che, Hao Yu*, and Jia-Yang Li

Abstract: As local traffic congestion and uncertainty factors existing on roads may lead to cascading failures or
even large area traffic network congestion, a pinning control method is proposed to divert the traffic and then
restore the smooth flow of traffic. To eliminate the impacts of uncertainties and negative weights for the traffic
network performance, the adaptive pinning control and coupling adjustment strategies are designed to estimate
controller parameters and adjust coupling strength to compensate for the impacts on the pinned nodes and un-
pinned nodes. Based on Lyapunov stability theory, adaptive pinning controllers and network adjusters are developed
to guarantee the achievement of network synchronization even in the presence of the uncertainties and negative
weights. In addition, we investigate the effects of the type of nodes on pinning synchronization performance.
Numerical simulations show that if the network’s degree and the single node energy index are considered, better
synchronization performance can be obtained by comparing with the pervious pinning schemes.

Keywords: Adaptive pinning control, complex traffic road network, negative weights, synchronization.

1. INTRODUCTION

The studies of synchronization problem on real-world
complex dynamical systems with nonlinearities have been
focused over the last few years. Since a system will always
be affected by some unexpect factors, such as time-delays
[1], actuator faults and saturations [2–5], insensitive pa-
rameters [6, 7], many useful control techniques have been
presented to deal with the factors and ensure the stability
of the synchronous state of complex dynamical systems,
including adaptive feedback control, backsteeping, linear
matrix inequality (LMI), sliding mode, stochastic control,
and so on (see e.g., [8–15]). Under normal conditions,
complex networks need to be controlled to have a very
large quantity of nodes, hence the complete control which
constructs controllers for each node in the networks is ex-
pensive, and even can not be achieved. To reduce com-
putational burden and economize equipment resource, the
pinning control method which constructs controllers for
only a small portion of nodes has been presented in the
past few years [15–18].

It should be noted that the above results are obtained for
the unweighted or positive weighted complex networks.
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However, some factors in the complex networks have a
negative effect on the stability of the network [15]. For in-
stance, the fault of resistances in the Chua’s circuits may
cause the damage of the whole circuitry [19]; the attenu-
ating connection among ions of neuron networks may be
unable to trigger the networks [20]; the heavy traffic flow
in the traffic road networks may lead to road congestion,
and even result in cascading failures.

On the other hand, the recent study of urban traffic road
networks based on the complex network theory has made
a lot of meaningful results [21–23]. However, these re-
searches are mostly concerned about the static properties
of the traffic network, for example, the degree distribution
of traffic intersections and roads, average shortest paths,
and so on [23, 24]. There are few researches on the dy-
namic characteristic, including the consideration of traffic
flow, driving behaviors, road conditions, traffic incidents,
weather conditions, especially their negative weight im-
pacts on the urban traffic road networks.

Inspired by the above discussions, the problem of urban
traffic road networks is investigated from a new perspec-
tive of complex networks with negative weights in this pa-
per. First, we take the negative weight as the negative im-
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pect of vehicle jam on the urban traffic road networks.
Based on that, a new urban traffic road networks model
with negative weights is established by introducing dy-
namic characteristic approaches. Then, to combine the
adaptive feedback control techniques with pinning con-
trol methods, the adaptive pinning control of urban road
traffic networks with negative weights is studied based on
the Lyapunov stability theory. Compared with the existing
state-feedback control and output-feedback control, such
as [25], the proposed control strategy can self-acting coun-
terbalance the effect of nonlinearity and uncertainties of
systems. At last, the efficient select pinned-nodes strate-
gies for complex networks are proposed based on the net-
work topology and the node energy index.

The rest of the paper is organized as follows. The model
and the theory of complex traffic networks with negative
weights are constructed in Section 2. The synchronization
criterion is presented in Sections 3, which includes con-
structing adaptive pinning controllers. Numerical simula-
tions are given to verify the effectiveness of the obtained
results in Section 4. In Section 5, conclusions of this paper
are given.

2. THE COMPLEX NETWORK MODEL WITH
NEGATIVE WEIGHTS

2.1. A new urban traffic road network model
A new urban traffic road network model, which is not

only focusing on static network topology characteristics,
but also considering dynamic characteristics of the traffic
road networks, is established in this subsection. In a tradi-
tional traffic road network, urban traffic intersections are
considered as the network nodes and there is one edge be-
tween two nodes if there is a road between two traffic in-
tersections. Different from traditional traffic road network
model, every edge of the proposed model in this paper
has positive or negative weight properties according to the
dynamic information of every road. The dynamic infor-
mation includes: road traffic flow, vehicle queues, traffic
accidents, and etc.

In our model of traffic congestion, we introduce the
negative weights as the new system parameters to discuss
the effect of critical congestion for the whole traffic net-
work besides 0 or 1. Let us suppose that ai j represents the
compositive weight of traffic flow density and the grade of
the road between the ith and the jth traffic intersections. If
there is the status of one section of the road with smooth
traffic between the ith node and jth node, we set ai j = 1.
Contrarily, we set ai j = −1, if there is the status of one
section of the road with critical traffic congestion between
i and j, which normally has a few features: 1) All of the
cars on this section stop moving. 2) The congestion is be-
coming worse until “death”. 3) Status of adjacent sections
is changing from “+1” to “-1” as the features above ap-
pear. A bigger critical congestion is potentially going to

happen.
Now, in order to determine the importance of intersec-

tions, we define a energy index [26] by (1). The initial
energy of the intersection is derived from the traffic road
network itself, which can be the design traffic capacity of
the intersection.

Definition 1: The energy index [26] is defined by

EIi = EIii +
d

∑
j=1

ci jEI j j, 1 ≤ i ≤ N, (1)

where EIii is normal energy of the ith node by

EIii =
|ĒIii|
ĒIsum

, (2)

where ĒIii is the original energy of the ith node , ĒIsum is
the overall energy of the network, d is the degree of the
node i, which represents the sum of all roads through the
ith intersection, ci j represents the coupling strength be-
tween i and j. Note that if the intersection provides a
positive role to the traffic network, ĒIii > 0, otherwise,
ĒIii < 0.

According to the formula (1), the energy index of the
intersection includes not only traffic capacity of the inter-
section itself, but also the importance in the subnetwork.
The larger the energy index EIi of the intersection is, the
greater the contribution of the intersection to the subnet-
work. If the intersection with bigger energy index exists
traffic accidents or congestion, the subnetwork may ap-
pear cascading failures or even a large area of traffic net-
work congestion.

2.2. The theory of complex traffic network with nega-
tive weights

In 1955, two British famous scholars Lighthill and
Whitham, presented the kinematic model of traffic flow,
and set up a continuous motion equation [27]. Based on
the study of this literature, we construct a complex traffic
road network consisting of N nodes, traffic flow of the ith
node at time t is updated by the following law:

ẋi = f (xi)+
N

∑
j=1

ci jai jΓx j +gi(xi), i = 1,2, . . . ,N, (3)

where xi = [xi1,xi2, . . . ,xin]
T ∈ Rn is the traffic flow vector

of the ith node at time t; f (xi) ∈ Rn is a nonlinear func-
tion, which is the index of the traffic flow and is continu-
ously differentiable. The constant matrix Γ is a positive-
definite diagonal and an inner coupling; gi(xi) ∈ Rm de-
scribes the uncertainness in traffic networks that may in-
clude traffic incidents, driving behavior, external road con-
ditions, etc; ci j represents the coupling strength between
the traffic intersection i and j, C is a constant parameter,
and 0 < ci j ≤C; ai j denotes the traffic road network topol-
ogy. Here, ai j = 1 represents there is a road between the
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intersection i and j, while ai j = 0 represents there is no
road. It is worth noting that if the traffic capacity between
intersection i and j is very heavy or there is a traffic ac-
cident in this section, the topology property is denoted as
ai j =−1. Moreover, it can be transformed at intervals ac-
cording to the change of traffic information, such as the
handling of the accident, the change of traffic flow. Here,
we call L as the graph Laplacian and define it as

li j =


ci jai j if j ̸= i,

−
N
∑

k=1,k ̸=i
cikaik if j = i. (4)

Based on the characteristic of Laplacian matrix L :=
[li j]n×n defined in (4), we can determine that if there are
many ai j = −1, the Laplacian matrix L will have some
positive eigenvalues [15, 28]. Here, based on the practical
traffic cases, we assume any one case of traffic network
congestion can be considered to belong into a congestion
mode. Then, we denote the following congestion mode
set:

∆Ld = {Ld(t) : ad
i j =−1, i = 1,2, . . . ,N, j ̸= i},

where d = 1,2, . . . ,D is the congestion mode and D is the
total mode.

To achieve the synchronization of (3), many adaptive
pinning controllers can be designed to control a small frac-
tion of the network nodes. Then (3) can be written as

ẋi = f (xi)+
N
∑
j=1

ci jai jΓx j +gi(xi)+δiui,

i = 1,2, . . . ,N,
(5)

where δi = 1 when the ith node is pinned, otherwise
δi = 0.

If s is a solution of node equation, ẋ = f (xi(t)), we de-
note ei = xi − s. Based on the characteristic of Laplacian
matrix L := [li j]n×n defined in (4), we have

N

∑
j=1

ci jai jΓx j =
N

∑
j=1, j ̸=i

ci jai jΓ(x j − xi)

=
N

∑
j=1, j ̸=i

ci jai jΓ(e j − ei) =
N

∑
j=1

ci jai jΓe j.

Hence, (3) can be described by

ėi = f (xi, t)− f (s, t)+
N

∑
j=1

ci jai jΓe j +gi(xi)+δiui,

i = 1,2, . . . ,N. (6)

Here we introduce two normal assumptions in complex
network researches as follows:

Assumption 1: Suppose that fi(x) always satisfies a
Lipshitz condition, namely, there is a positive definite ma-
trix P = diag{p1, p2, . . . , pn} make the following inequal-
ity hold true:

(x1 − x2)
T P( fi(x1, t)− fi(x2, t))≤ qi∥x1 − x2∥2, (7)

where qi > 0, x1,x2 ∈ Rn. p is a minimum value of p1 to
pn, that is to say, p = min{p1, p2, . . . , pn}.

Assumption 2: Suppose that gi(x) and s(t) are piece-
wise continuous functions, and there exist three positive
constants h1, h2 and σ satisfying

∥gi(xi(t), t)∥ ≤ h1i∥xi(t)∥+h2i, ∥s(t)∥ ≤ σ . (8)

The objective here is designing a pinning controller and
coupling adjustor to make the synchronization error con-
verge to a small region with the effects of uncertainties
and negative weights.

3. THE SYNCHRONIZATION CRITERION OF
COMPLEX NETWORK WITH NEGATIVE

WEIGHTS

To achieve the synchronization of (6), we design the
following pinning controllers to eliminate the effects of
uncertainties and negative weights for pinned nodes:

ui =−k̂1iei(t)− k2i, i = 1,2, . . . ,Npin,

ui = 0, i = Npin +1,Npin +2, . . . ,N, (9)

where Npin is the number of pinned nodes, k̂1i is the esti-
mate of k1i which is defined by

k1i := max{(qi +λ∥P∥∥Γ∥)p−1}, (10)

where λ is the largest eigenvalue of matrix Ls, Ls =
L+LT

2
for any ai j ∈ ∆Ld when choosing ci j(t) as ci j(0), and L is
defined in (4).

Here, k̂1i, i = 1,2, . . . ,Npin is is defined as:

dk̂1i(t)
dt

= κi p∥ei∥2, (11)

where κi, i = 1,2, . . . ,Npin is a positive constant; k2i is a
control gain function to counterbalance the impact of the
nonlinearity and uncertainties of networks, which is con-
structed by

k2i(t) =
βiPei k̂3i(t)
∥eT

i P∥+αi
, i = 1,2, . . . ,Npin, (12)

where αi and βi are two suitable positive constants satify-
ing

βi∥eT
i P∥ ≥ ∥eT

i P∥+αi, i = 1,2, . . . ,Npin, (13)

and k̂3i(t) ∈ R is defined as:

dk̂3i(t)
dt = γi∥eT

i P∥, i = 1,2, . . . ,Npin, (14)

where γi is any positive constant.
For the sake of compensating for the impacts of un-

certainties and negative weights for un-pinned nodes, the
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following adaptive law is designed to adjust the coupling
strength ci j(t):

dci j(t)
dt

= Proj[ci j ,c̄i j ]
{Lci j(t)}{

0, if ci j(t) = ci j and Lci j(t)≤ 0,
Lci j(t), otherwise,

(15)

where ci j is the lower bound of ci j, ci j is the upper bound
of ci j, and

Lci j(t) =−η̂i j|ai j|∥eT
i ∥2, (16)

where i = Npin + 1,Npin + 2, . . . ,N, η̂i j is the estimates of
ηi j satisfying

N
∑

j=1, j ̸=i
ηi j|ai j|>

N
∑

j=1, j ̸=i
(qi +λi∥P∥∥Γ∥), (17)

with the updated adaptive law

dη̂i j(t)
dt

(t) = ri jci j|ai j|∥eT
i ∥2,

i = Npin +1,Npin +2, . . . ,N, (18)

where ri j > 0 is the weighting of η̂i j.
Remark 1: According to (15) and (16), we know that

ċi j(t) is a decreasing function. Then, the initial value
ci j(0) is the largest value of ci j(t) based on the adjustment
law of (15).

Let

k̃1i = k̂1i − k1i,

k̃3i = k̂3i − k3i, (19)

where i = 1,2, . . . ,Npin.
Substituting (9) into (6) has the following error system:

ėi = f (xi, t)− f (s, t)+
N

∑
j=1

ci jai jΓe j +gi(xi)

−δi(k̂1iei + k2i), i = 1,2, . . . ,N. (20)

Theorem 1: Under Assumptions 1 and 2, we choose
controllers ui, i = 1,2, . . . ,Npin described in (9) with adap-
tive laws (11), (14), and if the control gain functions (10),
(12) and coupling strength adjustment (15) with the con-
dition (17) and adaptive law (18) hold, then the complex
system signals are bounded and the synchronization error
is bounded by ε where

ε ≤ max(ε1,ε2), (21)

where

ε1 :=
N

∑
i=Npin+1

(h1iσ +h2i)∥P∥
((N −1)ci j −1)(qi +λ∥P∥∥Γ∥)

, (22)

and

ε2 :=
Npin

∑
i=1

αi

(βi −1)∥P∥
. (23)

Proof: Consider the following Lyapunov function:

V (t) =
N

∑
i=1

eT
i Pei +

Npin

∑
i=1

κ−1
i k̃2

1i +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

c2
i j

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

r−1
i j η̃2

i j +
Npin

∑
i=1

z−1
i k̃2

3i, (24)

where η̃i j = η̂i j −ηi j. Then, the derivative of V (t) along
the trajectories of Eq. (20) can be calculated as

dV (t)
dt

=
N

∑
i=1

ėT
i Pei +

N

∑
i=1

eT
i Pėi +

Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j

+
Npin

∑
i=1

2z−1
i k̃3i

˙̃k3i

= 2
N

∑
i=1

eT
i P( f (xi, t)− f (s, t))+2

N

∑
i=1

eT
i P

N

∑
j=1

ci jai jΓe j

+2
N

∑
i=1

eT
i Pgi(xi, t)−2

Npin

∑
i=1

eT
i Pk̂1iei −2

Npin

∑
i=1

eT
i Pk2i

+
Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j +

Npin

∑
i=1

2z−1
i k̃3i

˙̃k3i. (25)

Under the condition of Assumptions 1, 2 and
∑N

j=1, j ̸=i ci jai j > 0, we can rewrite (25) as

dV (t)
dt

≤ 2
N

∑
i=1

qi∥eT
i ∥2 −2

Npin

∑
i=1

eT
i Pk̂1iei

+2
N

∑
i=1

∥eT
i P∥

N

∑
j=1

ci jai j∥Γ∥∥e j∥+
Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i

−2
Npin

∑
i=1

eT
i Pk2i +2

N

∑
i=1

(h1iσ +h2i)∥eT
i P∥

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j

+
Npin

∑
i=1

2z−1
i k̃3i

˙̃k3i

≤ 2
N

∑
i=1

qi∥eT
i ∥2 +2∥P∥∥Γ∥ζ T Lsζ −2

Npin

∑
i=1

eT
i Pk̂1iei

+
Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i −2
Npin

∑
i=1

eT
i Pk2i +2

N

∑
i=1

(h1iσ +h2i)∥eT
i P∥
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+
Npin

∑
i=1

2z−1
i k̃3i

˙̃k3i +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j, (26)

where ζ = (∥e1∥, . . . ,∥eN∥)T , Ls =
L+LT

2 , L = [li j](N)×(N)

defined in (4). Since Ls is a real symmetric ma-
trix, then there exists an orthogonal matrix Q satisfy-
ing Ls = QT diag{λ1, . . . ,λN}Q, where λ1 ≥ ·· · ≥ λN

are the eigenvalues of the matrix Ls. Thus, ζ T Lsζ =

ζ T QT diag{λ1, . . . ,λN}Qζ ≤
N
∑

i=1
λ∥ei∥2, where λ is the

largest value of λi for any ai j ∈ ∆Ld when choosing ci j(t)
as ci j(0).

From the definitions (10) and (19), we have

dV (t)
dt

≤ 2
N

∑
i=1

(qi +λi∥P∥∥Γ∥)∥eT
i ∥2 −2(

Npin

∑
i=1

p∥eT
i ∥2k̃1i

+
Npin

∑
i=1

p∥eT
i ∥2k1i)+

Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j +2

N

∑
i=1

(h1iσ +h2i)∥eT
i P∥

−2
Npin

∑
i=1

eT
i Pk2i +2

Npin

∑
i=1

γ−1
i k̃3i

˙̃k3i. (27)

Then, by using the constructed control gain function k2i

in (12) with adaptive law (13), we have

dV (t)
dt

≤ 2
N

∑
i=Npin+1

(qi +λi∥P∥∥Γ∥)∥eT
i ∥2

−2
Npin

∑
i=1

p∥eT
i ∥2k̃1i +

Npin

∑
i=1

2κ−1
i k̃1i

˙̃k1i

+
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2ci j ċi j +
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

2r−1
i j η̃i j ˙̃ηi j

+2
N

∑
i=1

(h1iσ +h2i)∥eT
i P∥−2

Npin

∑
i=1

∥eT
i P∥k̂3i

+2
Npin

∑
i=1

γ−1
i k̃3i

˙̃k3i. (28)

According to (11), (15), and (16), (28) can be rewritten
as

dV (t)
dt

≤ 2
N

∑
i=Npin+1

(qi +λi∥P∥∥Γ∥)∥eT
i ∥2

−2
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

ηi jci j|ai j|∥eT
i ∥2

+2
N

∑
i=Npin+1

(h1iσ +h2i)∥eT
i P∥

+2
Npin

∑
i=1

(h1iσ +h2i)∥eT
i P∥

−2
Npin

∑
i=1

∥eT
i P∥k̂3i +2

Npin

∑
i=1

γ−1
i k̃3i

˙̃k3i. (29)

Since h1i, h2i, σ are unknown bounded constants, there
always exist constants k3i such that

k3i ∥ eT
i P ∥≥ (h1iσ +h2i) ∥ eT

i P ∥, i = 1,2, . . . ,Npin.
(30)

Next, based on the adaptive law (14), and by using (17)
and (19), (29) can be rewritten as

dV (t)
dt

≤ 2
N

∑
i=Npin+1

(qi +λi∥P∥∥Γ∥)∥eT
i ∥2

−2
N

∑
i=Npin+1

N

∑
j=1, j ̸=i

ci j(qi +λi∥P∥∥Γ∥)∥eT
i ∥2

+2
N

∑
i=Npin+1

(h1iσ +h2i)∥eT
i P∥

< 2ζ
T
2

N

∑
i=Npin+1

((qi +λ∥P∥∥Γ∥

− (N −1)ci j(qi +λ∥P∥∥Γ∥))∥eT
i ∥

+(h1iσ +h2i)∥P∥)ζ
1
2 . (31)

If

∥eT
i ∥>

(h1iσ +h2i)∥P∥
((N −1)ci j −1)(qi +λ∥P∥∥Γ∥)

, (32)

then dV (t)
dt < 0.

On the other hand, according to (13), we can get

∥eT
i ∥ ≥

αi

(βi −1)∥P∥
. (33)

By using (21)-(23), the synchronization error is bounded
by ε . This ends the proof. □

Remark 2: Theorem 1 is indicated that the adjustment
of coupling strength can bring positive effects of synchro-
nization of networks. It is well known that the network
topological structure and coupling strength afford the es-
sential information of the synchronization of networks.
Some studies (see e.g., [10, 11]) have demonstrated that
synchronization of un-pinned notes can be achieved by
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adjusting coupling strength, which means it can indeed
engender control effects for un-pinned notes.

Remark 3: There are two parts of control efficiency to
deal with the congestion problem in this paper. The first
one is the control inputs from adaptive controllers which
are designed for the pinned nodes. The second one is the
adjustments of coupling strength from adaptive adjustors
which are designed for un-pinned nodes. According to the
results of Theorem 1, the adjustments of coupling strength
can also afford the control efficiency as controller pro-
vided, and the congestion problem of un-pinned nodes can
be dealt with.

4. NUMERICAL SIMULATIONS

Previous research results show that urban traffic road
networks have the characteristics of small-world networks
[29] and the traffic flow fulfills the nonlinear behavior
[21, 27]. Suppose that traffic flow fulfills Lorenz chaotic
system, thus, the node dynamics can be described by

ẋ1(t) = 10[x2(t)− x1(t)],

ẋ2(t) = 28x1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)−
8
3

x3(t).

(34)

Consider a WS small-world network with N = 16, p =
0.2. The topology matrix L = (ai j)16×16 is composed by
the elements with ai j = 0, ai j = 1, or ai j = −1 which
means the traffic flow is very heavy between i and j. The
negative connection is assumed to appear randomly but
satisfies the following condition ∑N

j=l+1 ai j > 0. Then we
given the following parameters and initial conditions for
the simulation:

k̂1i(0) = 5, k̂3i(0) = 0, κi = 1, αi = 0.05,

βi = 10, γi = 20,

i = 1,2, . . . ,12,

η̂i j(0) = 10, ci j(0) = 20, ci j = 2,

i = 13,14, . . . ,16,

P = I3, g(xi) = log2(|xi|+2)+ sin(t),

i = 1,2, . . . ,16, (35)

where I3 denotes a 3-dimensional identity matrix.
Figs. 1 and 2 denote the orbits of xi(t) and ei(t) re-

spectively, which exemplify the designed distribute adap-
tive controllers can guarantee network synchronization.
Fig. 3 denotes the response curves of the estimate of k̂3i(t).
Figs. 4 and 5 show the orbits of network adjustment ci j

and the estimates of weighings ηi j. It is clear that all sig-
nals of the system can be ensured to converge into a small
bounded region.

Finally, the average network synchronization time is in-
vestigated according to three kinds of pinning schemes:
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Fig. 1. The orbits of xi(t) (red, blue and black curves rep-
resent xi1, xi2 and xi3, i = 1,2, . . . ,N, respectively).
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Fig. 2. The orbits of ei(t) (red, blue and black curves rep-
resent ei1, ei2 and ei3, i = 1,2, . . . ,N, respectively).
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Fig. 3. The orbits of k3i(t), i = 1,2, . . . ,Npin.

(a) the random pinning scheme (labeled RPS in Fig. 6), (b)
the specifical pinning scheme according to the higher de-



788 Dan Wang, Wei-Wei Che, Hao Yu, and Jia-Yang Li

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

t

c
ij

Fig. 4. The orbits of ci j(t), i = Npin +1, . . . ,N.
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Fig. 5. The orbits of ηi j(t), i = Npin +1, . . . ,N.

gree (labeled SPS HD in Fig. 6), (c) the specifical pinning
scheme according to the the higher energy index (labeled
SPS HEI in Fig. 6). The parameters and initial conditions
are the same ones previously defined, and there is only
one pinned node, Npin = 1. In Fig. 6, the abscissa indi-
cates different types of networks, the coordinate “1” rep-
resents a random network, the coordinate “2” represents
a small-world network, and the coordinate “3” represents
a scale-free network. Fig. 6 shows that the pinning nodes
are chosen based on the bigger energy index of the net-
work, which can better realize the synchronization of the
network. Hence the type of the pinned nodes plays a cru-
cial role in constructing the controllers.

The simulation result of Fig. 6 reveals that the appropri-
ate readjustment of the traffic capacity of the pivotal traffic
intersection is beneficial for maintaining the complex traf-
fic road network. For example, city planners can try to
improve the traffic capacity of the pivotal traffic intersec-
tion to increase the the energy index of the node, and to
reduce the average synchronization time during the rush
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Fig. 6. The average network synchronization time for
three kinds pinning schemes in three kinds of net-
work, respectively, with N = 10, Npin = 1.

hours by controlling several traffic intersections.

5. CONCLUSIONS

In this paper, an adaptive pinning control strategy has
been investigated to handle the synchronization problem
for complex traffic road networks with negative weights.
The energy index has also been introduced to indicate
the importance of the node. Moreover the relationship
between pinning strategies and network synchronization
performance has been studied. The results indicated that
higher energy index nodes have greater impact on the net-
work synchronization.

There are many issues which are worth our further
studying. First of all, how many nodes should be pinned to
obtain the network synchronization under scale-free net-
works with negative weights? In addition, how many neg-
ative links can result in whole network instability? Fur-
thermore, the importance of the node’s energy index in
traffic road networks as well as the locations of the nega-
tive links are also worthy to be further investigated.
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