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Decentralized Backstepping Control of a Quadrotor with Tilted-rotor un-
der Wind Gusts
Abdul-Wahid A. Saif*, Abdulrahman Aliyu, Mujahed Al Dhaifallah, and Moustafa Elshafei

Abstract: Conventional unmanned aerial vehicles, quadrotor have a plethora of applications for civilian and military
purposes. Quadrotors as the name implies usually have four input variables (fixed rotors) which are used to drive
six outputs (i.e., 3 translational and 3 rotational motions), and this leads to coupling between motions. Tilt- rotor
quadrotors are more versatile because they have more input variables to independently control its orientation and
position without coupling. In this paper, a decentralized backstepping control approach is used to generate a new
set of inputs capable of independently and simultaneously achieve decoupling of motions while rejecting wind
disturbances. The tiltrotor quadrotor dynamic is first decentralized to achieve six subsystems, then controller inputs
for each subsystem are generated via Lyapunov based backstepping method whereby the controller parameters are
optimized by Differential Evolution (DE) technique. This system exhibits robustness capability because it is able
to reject external disturbances.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been exten-
sively used for various civilian and military purposes. Ex-
amples of such applications are pick and place objects, de-
livery, surveillances, traffic monitoring, rescue missions,
patrolling forests in case of fire outbreak, warfare, and
other risky missions.

A comprehensive history on the evolution of UAVs is
presented in [1]. Quadrotor UAVs, have attracted more at-
tention because of its compact nature and versatility. Mod-
eling of conventional quadrotors exists in numerous liter-
ature mainly based on Euler-Lagrange or Newton-Euler
formalism. These modeling techniques presented in [1–4],
have different control schemes to achieve various flight
modes. For instance, in [1], a PID, LQR, SMC and back-
stepping methods are used to control the quadrotor orien-
tations. In [2], a quadrotor, carrying payloads was con-
trolled by PID controllers. In [3], feedback linearization
technique was used to decompose the quadrotor dynam-
ics into nested loops where, the inner loop was used for
attitude control while the outer loop for position control.
In [4], a hybrid backstepping and feedback linearization
control via visual feedback are used.

In spite of the milestone recorded with the conventional
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quadrotor, its model structure still possesses some limita-
tions regarding the orientation angles (roll, pitch and yaw)
and position (x,y,z) coupling because of insufficient in-
puts. Typically, the outputs are either the position together
with yaw angle for tracking purposes or orientation an-
gle together with altitude for vertical takeoff and landing
(VTOL), hence making it incongruous for some particu-
lar tasks. In light of this, different modeling and control
schemes have been employed to its structure so as to com-
plement such deficiencies. In order to address the flaws
associated with the conventional quadrotors, tilt-wing and
tilt-rotor quadrotors evolved as in [5–8] thereby improving
the actuation capacity of the conventional quadrotor.

In [5], a tilt-rotor quadrotor was used to perform a “tilt-
ing on the spot” flight mode by introducing four additional
inputs in a bid to decouple motion, but the quadrotor body
is tilted as well. This was achieved using an output feed-
back linearization control technique. In [6], the rotors
of a quadrotor are placed on a tilt-wing with the aim of
achieving a hovering and airplane flight mode. Where, an
LQR controller was utilized to achieve this object. In [7],
twelve inputs model was introduced to achieve different
flight modes and to showcase fault tolerance capability us-
ing PID controllers. In [8], an adaptive control technique
was applied to a tilt-roll quadrotor structure. A cascade
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PID was first used to test the quadrotor performance. In
[9], a thrust tilting approach was also introduced. Hith-
erto, additional inputs have only been successfully aimed
at decoupling the quadrotor orientation either to achieve
forward flight mode or hovering as the case may be. This
is particularly useful in applications requiring high ma-
neuverability.

External disturbances are inevitable and are sometimes
referred to as constants in some research papers, for in-
stance in [10], however, the increase in wind speed is usu-
ally neglected. This may lead to misleading conclusions
about the flight accuracy. However, atmospheric distur-
bances, particularly wind gust models, incorporated in the
modelling dynamics reflect a more realistic approach. For
conventional quadrotors, various wind modelling tech-
niques have been investigated in [11–13]. In [11] and [12],
a PID controller and decentralized PID neural network
controller respectively, were used to reject wind distur-
bance derived from the Dryden wind modelling technique.
In [13], a macro approach to wind modeling was intro-
duced to study the effect of wind disturbance on a quadro-
tor. In [14] ducted fans were used to generate wind gust
in an experimental setup and a switching MPC controller
was utilized to achieve some robustness against such dis-
turbance.

In [15], backstepping control was compared to slid-
ing mode control technique on a conventional quadrotor,
which shows that the former is able to better control orien-
tation angles in the presence of high perturbations. Back-
stepping control has also been used in some other research
works whereby the quadrotor model equations are broken
into subsystems as in [16–18]. This is intuitive because
the conventional quadrotor can now be directly driven by
four available inputs. However, selecting the gains for
backstepping controller gives commendable results, but
using optimization techniques are better. For instance, in
[19] for conventional quadrotor whereby the controller pa-
rameters gotten from Particle Swarm Optimization (PSO)
were proven to produce better results when compared to
GA. In [20], the backstepping controller was used to con-
trol the quadrotor under external disturbance which was
considered as a constant in this case. However, in [21],
a robust optimal controller was introduced to control a
hexarotor structure in which a time varying wind distur-
bance was considered. In [22] a robust control technique
based on disturbance observer was used where the dis-
turbance included some nonlinearities and Dryden wind
model was considered an external disturbance.

The effect of wind disturbance on a tilt-rotor quadro-
tor under various orientation flight modes is an important
mission but yet to be investigated. However, the conven-
tional quadrotor is incapable of completely achieving this
objective because, for instance, it cannot hover at a tilt an-
gle on the spot. In this paper, a decentralized backstepping
controller is used to precisely control the tilt-rotor quadro-

tor orientation and position individually under wind dis-
turbance whereby a more robust optimization technique is
used to derive the controller gains. This decentralization
method was applied in [23] for a class of nonlinear MIMO
systems, but the controller parameters are empirically se-
lected. In [24], the same approach was only used to con-
trol conventional quadrotors but the wind disturbance was
not considered. In [25, 26], feedback linearization control
of quadrotor with tiltable rotors and wind disturbance was
presented.

In [27], optimization techniques, Differential Evolution
(DE), PSO and Evolutionary Algorithms (i.e., GA), under-
went a comparative study, over 34 widely used benchmark
problems. Also, in [28], DE, PSO, and GA were compared
for hard clustering problems. In all cases, the results show
that Differential Evolution (DE) consistently outperforms
PSO and GA. In [29], DE was also proven to surpass PSO
when compared over twelve constraint nonlinear test func-
tions. DE sets a more outstanding results in addition to its
simplicity, robustness, convergence time and finds opti-
mum values in almost every run. Recently, PSO was used
in [30] for PID tuning of conventional quadrotor but in
[31], DE, PSO and Artificial Bee Colony (ABC) algorithm
were compared for PID tuning. Although DE surpassed
PSO, ABC exhibited some unique characteristics.

This is the motivation behind choosing the DE as the
optimization technique to derive our controller parame-
ters where the wind disturbance model used in this work
exhibits some advantages over the regularly used Drysden
wind model as would be discussed later.

The paper is organized as follows: Section 2 dis-
cusses the dynamic model of tilt rotor quadrotor. Sec-
tion 3 presents the decentralization of the tiltrotor quadro-
tor while Section 4 gives the wind gust modelling tech-
nique based on macro approach. In Section 5, the back-
stepping control methodology applied is given. Section 6
gives the simulation for different test cases and advantages
of the quadrotor design. Section 7 summarizes the conclu-
sion of this work.

2. DYNAMIC MODELING

For a realistic simulation, mathematical model of a
quadrotor is essential for good controller design. The
mathematical model considered in this work is a modi-
fied version of that represented in [7], whereby the motion
have been decoupled. The following assumptions applies;

- Translation dynamics is expressed with respect to a
fixed world coordinate frame, while the rotational dy-
namic is expressed with respect to body fixed frame for
the purpose of simplicity.

- Body frame origin and center of gravity are assumed
to be coincident.

- Air friction and drag moment together with external
wind forces are considered.
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Fig. 1. Quadrotor structure.

- Structure is assumed inflexible and symmetric.
- Propellers are assumed to be rigid (no blade flapping).
- The rotors are located at points O1, O2, O3, and O4,

tilted with respect to the fixed rotor points as shown in
Fig. 1.

- These rotor frames are taken parallel to the body fixed
reference frame at the center of gravity.

- The translational and rotational dynamic equations are
established according to Newton-Euler formation.

Let RB
ri

represent the orientation rotor axis Oi with re-
spect to the fixed rotor body frame. By denoting αi, the
rotational angle about yi and βi, the rotational axes about
zi as shown in above Fig. 1. Then the rotational matrix
from the rotors-rotating frame to the fixed rotor frame is
given by:

RB
ri
=

 cβ icαi −sβi cβisαi

sβcαi cβi sβ isαi

−sαi 0 cα i

 , (1)

where c denotes cosine and s denotes sine. The rotor thrust
(Li) and moments (Td) at the center of gravity is propor-
tional to square of the rotor speed (w). Typically,

Li = bw2
i , Tdi = dw2

i ,

where b and d are the lift and drag constants respectively.
For each rotor thrust, Fi is therefore given by:

Fi =

 cβ icαi −sβi cβisαi

sβcαi cβi sβ isαi

−sαi 0 cα i

 0
0

bw2
i

 . (2)

The moments Mi, consists of the drag moment MiA and
moments generated by the thrust component MiB given by:

Mi =MiA +MiB

=

 cβ icαi −sβi cβisαi

sβcαi cβi sβ isαi

−sαi 0 cα i

 0
0

dω2
i .δ (i)

+ rixFi.

(3)

δ (i) = [1,1,−1,−1] accounts for the direction of ro-
tation to each rotor (i.e., rotors 1 and 2 rotates counter

clockwise, and rotors 3 and 4 rotates clockwise) and ri

represents the vector from center of gravity (CoG) to the
reference point of the rotors given by:

r1 = [l,0,−h] , r2 = [0, l,−h] ,

r3 = [−l,0,−h] , r4 = [0,−l,−h] . (4)

l and h respectively represents the horizontal and vertical
displacements from the rotors to CoG.

The translational dynamic equation established in the
reference earth frame is given by:

mr̈ =
[

0 0 −mg
]T −Fa +F +D, (5)

where Fa represents the aerodynamic drag, F represents
the thrust force and D may represent any disturbance and
[0 0 −mg]T represents acceleration due to gravity:

m

 ẍ
ÿ
z̈

=

 0
0

−mg

−

 K1ẋ
K2ẏ
K3ż

+R
4

∑
i=1

Fi +

 d1

d2

d3

 .

(6)

For small objects, air is approximately proportional to
velocity and K1, K2 and K3 [27], are the drag coefficients.
d1, d2, and d3 are the disturbances components of wind
gust that will be discussed later. R is the body Euler trans-
formation matrix with respect to the earth inertia frame
given by:

R =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψsθ cψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

,
(7)

where the roll angle, φ is rotation about x axis, pitch angle,
θ is rotation about y axis and yaw angle [3], ψ is rotation
about z axis.

The rotational dynamic established in the reference
body frame is given by:

Ω̈ = I−1[
(
−Ω̇× IΩ̇

)
−Mg − M f +M+Md ], (8)

where ΩT = [φ θ ψ ], Md represents a random distur-
bance moment, M f is the drag/friction moments with K4,
K5 and K6representing the drag coefficients [27], and is
given by:

Md =
[

md p mdq mdr
]T
, (9)

M f =
[

K4φ̇ K5θ̇ K6ψ̇
]T
. (10)

I, the body inertia matrix and Mg the gyroscopic forces are
respectively given by:

Mg = IR

4

∑
i=1

(Ωxωi)δ (i) ;
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I =

 Ix 0 0
0 Iy 0
0 0 Iz

 , (11)

IR; rotor inertia and

ωi =

 cβ iαi −sβi cβisβi

sβcαii cβi sβ isβi

−sαi 0 cβ i

 0
0
ωi

 , (12)

M =
4

∑
i=1

Mi. (13)

The equations of motion can be represented as:

Ẋ = f (X ,U) , (14)

where

X =
[
x, ẋ,y, ẏ,z, ż,φ, φ̇,θ , θ̇ ,ψ, ψ̇

]
;

U = [w1,α1,β1,w2,α2,β2,w3,α3,β3,w4,α4,β4].
(15)

Therefore,

Ẋ =



x2
1/m((cx11cx9)u1

+(−sx11cx7 + cx11sx9sx7)u2

+(sx11sx7 + cx11sx9cx7)u3

−K1x2 +d1)


x4

1/m((sx11cx9)u1

+(cx11cx7 + sx11sx9sx7)u2

+(−cx11sx7 + sx11sx9cx7)u3

−K2x4 +d2)


x6 −g+1/m((−sx9)u1

+(cx9sx7)u2 +(cx9cx7)u3

−K3x6 +d3)


x8(

x10x12I1 +1/Iuu(u4 − IR (x12S2 + x10S3)
−K4x8 +md p)

)
x10(

x8x12I2 +1/Ivv(u5 − IR(x12S1 − x8S3)
−K5x10 +mdq)

)
x12(

x8x10I3 +1/Iww(u6 − IR (−x10S1 + x8S2)
−K6x12 +mdr)

)



,

(16)

where u1

u2

u3


=

[
i=4
∑

i=1
cβisαibw2

i

i=4
∑

i=1
sβ isαibw2

i

i=4
∑

i=1
cα ibw2

i

]T

; S1

S2

S3



=

[
i=4
∑

i=1
cβisαiωiδ (i)

i=4
∑

i=1
sβisαiωiδ (i)

i=4
∑

i=1
cαiωiδ (i)

]T

, u4

u5

u6



=




4

∑
i=1

cβisαidωi
2δ (i)−bω1

2 (−sβ1sα1h)

−bω2
2 (−cα2l − sβ2sα2h)

−bω3
2 (−sβ3sα3h)

−bω4
2 (−cα4l − sβ4sα4h)




4

∑
i=1

sβisαidωi
2δ (i)

−bω1
2 (cα1l + cβ1sα1h)

−bω2
2 (cβ2sα2h)

−bω3
2 (−cα3l − cβ3sα3h)

−bω4
2 (cβ4sα4h)

i=4

∑
i=1

sβisαiωiδ (i)




4

∑
i=1

cαidωi
2δ (i)−bω1

2 (−sβ1sα1l)

−bω2
2 (cβ2sα2l)−bω3

2 (sβ3sα3l)
−bω4

2 (−cβ4sα4l)





.

In order to check the correctness of our model, substitute
αi and βi equal to zero in the dynamic equation (16) of the
tiltrotors quadrotor, it becomes similar to that of conven-
tional quadrotor.

3. DECENTRALIZATION OF TILTROTOR
QUADROTOR

Consider a class of nonlinear MIMO system:

ẋ = f (x)+g(x)u,

y = h(x), (17)

where x ∈ Rn is the state and u ∈ Rm is the control input.
Let the system (17) be subdivided into m subsystems ∑1,
∑2, . . . , ∑m with interactions block such that yi = hi (x),
i = 1, 2, . . . , m with x = [x1, x2, . . . , xm], xi ∈ Rvi, 1 ≤ i ≤ m
and ∑m

i=1 vi = n. Also, the control signal u is divided into
m vectors as:

w1=


u1

0
...
0

 , w2=


0
u2
...
0

 , wm=


0
0
...

um

 .

(18)

ith wi ∈ Rm and ∑m
i=1 wi = u. Assuming that the functions

f (x) and g(x) can be decomposed accordingly as:

ẋi = fvi (x)+gvi (x)u,
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yi = hi (x) , ∀ 1 ≤ i ≤ m. (19)

One more decomposition of fvi (x) and gvi (x) as follows:

fvi (x) = ψvi1 (x)+ψvi2 (x) ,

gvi (x) = φvi1 (x)+φvi2 (x) , (20)

where ψvi1 (x) and φvi1 (x) depend on xi only. Then ∑si can
be written as:

ẋi =[ψvi1 (x)+ψvi2 (x)]

+ [φvi1 (x)+φvi2 (x)]u

=ψvi1 (x)+φvi1 (x)wi

+

ψvi2 (x)+φvi2 (x)wi +
m

∑
j = i
j ̸= i

gvi (x)w j

 ,

yi =hi (x) , ∀ 1 ≤ i ≤ m. (21)

Define

Fi (x)△i (x,u, t)

=

ψvi2 (x)+φvi2 (x)wi+
m

∑
j = 1
j ̸= 1

gvi (x)w j

 ,

∀ 1 ≤ i ≤ m, (22)

where Fi (x) depends only on xi and △i(x,u, t)∈Rvi con-
tains all interactions and plant parameters. Then the global
system, is transformed into the following set of subsys-
tems:

ẋi = ψvi1 (xi)+ψvi2 (xi)wi+Fi (x)△i (x,u, t) ,

yi = hi (x) , ∀ 1≤i≤m, (23)

where Fi (x)△i (x,u, t) considered the uncertainty term.
However, the effect of the uncertainty term is left for fu-
ture investigation in this work.

Now, consider the mathematical model of the tiltrotor
quadrotor from (16) which can be re-written as:

Ẋ = f (x)+g(x)u+ l(t), (24)

where

f (x) =



x2

−K1x2

x4

−K2x4

x6

−K3x6 −g
x8

−K4x8 + x10x12I1

x10

−K5x10 + x8x12I2

x12

−K6x12 + x10x8I3



, (25)

g(x) =



0 0
1/m(cx11cx9) 1/m(−sx11cx7 + cx11sx9sx7)

0 0
1/m(sx11cx9) 1/m(cx11cx7 + sx11sx9sx7)

0 0
1/m(−sx9) 1/m(cx9sx7)

0 0
0 0
0 0
0 0

0 0 0 0
1/m(sx11sx7 + cx11sx9cx7) 0 0 0

0 0 0 0
1/m(−cx11sx7 + sx11sx9cx7) 0 0 0

0 0 0 0
1/m(cx9cx7) 0 0 0

0 1/Ix 0 0
0 0 1/Iy 0
0 0 0 0
0 0 0 1/Iz


,

(26)

l (t) =



0
0
0
0
0
0
0

(− IR
Iuu
)(x12S2 + x10S3)

0
(− IR

Ivv
)(x12S1 − x8S3)

0(
− IR

Iww

)
(−x10S1 + x8S2)



. (27)

Define

ua = (1/m)(sx11sx7 + cx11sx9cx7) ;

ub = (1/m)(−cx11sx7 + sx11sx9cx7) ;

uc = (1/m)(cx9cx7) ;

ud = (1/m)(−sx11cx7 + cx11sx9sx7) ;

ue = (1/m)(cx11cx7 + sx11sx9sx7) ;

u f = (1/m)(cx9sx7) ;

ug = (1/m)(cx11cx9) ;

uh = (1/m)(sx11cx9) , and ui = (1/m)(−sx9) . (28)

In this work, S1, S2 and S3 are neglected because IR is
negligibly small compared to the dynamics of the quadro-
tor. This will make l (t) = 0. Transforming (24) into m
subsystems will be given in the following steps.

Decomposing f (x) as:

f (x) =


fv1

fv2

fv3

fv4

=


ψv11 +ψv12

ψv21 +ψv22

ψv31 +ψv32

ψv41 +ψv42

 , (29)

where

ψv11 =
(

x2 −K1x2 x4 −K2x4 x6 −K3x6
)T ;
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ψv12 =
(

0 0 0 0 0 −g
)T
,

ψv21 =

(
x8

−K4x8

)
; ψv22 =

(
0

x11x12I1

)
,

ψv31 =

(
x10

−K5x10

)
; ψv32 =

(
0

x10x12I2

)
,

ψv41 =

(
x12

−K6x12

)
; ψv42 =

(
0

x10x11I3

)
.

Also decomposing g(x) as:

g(x) =


gv1

gv2

gv3

gv4

=


ϕv11 +ϕv12

ϕv21 +ϕv22

ϕv31 +ϕv32

ϕv41 +ϕv42

 , (30)

where

ϕv11 =


0 0 0 0 0 0
ug ud ua 0 0 0
0 0 0 0 0 0
uh ue ub 0 0 0
0 0 0 0 0 0
ui u f uc 0 0 0

 .

ua, ub, uc, ud , ue, u f , ug, uh and ui are given in (28), and

ϕv12 = 06x6,

ϕv21 =

(
0 0 0 0 0 0
0 0 0 1/Ix 0 0

)
; ϕv21 = 06x2,

ϕv31 =

(
0 0 0 0 0 0
0 0 0 0 1/Iy 0

)
; ϕv32 = 06x2,

ϕv41 =

(
0 0 0 0 0 0
0 0 0 0 0 1/Iz

)
; ϕv42 = 06x2.

Define

[w1 =
(

u1 0 0 0 0 0
)T ;

w2 =
(

1 u2 0 0 0 0
)T ;

w3 =
(

0 0 u3 0 0 0
)T ;

w4 =
(

0 0 0 u4 0 0
)T ;

w5 =
(

0 0 0 0 u5 0
)T ;

w6 =
(

0 0 0 0 0 u6
)T
.

Then, following the decentralized approach, each sub-
system is given as follows:

S̃1 can be written as:

˜̇x1 =
(

x2 −K1x2 x4 −K2x4 x6 −K3x6
)T

+


0 0 0 0 0 0

(ug) 0 0 0 0 0
0 0 0 0 0 0

(uh) 0 0 0 0 0
0 0 0 0 0 0

(ui) 0 0 0 0 0

w1

+


0 0 0 0 0 0
0 ud 0 0 0 0
0 0 0 0 0 0
0 ue 0 0 0 0
0 0 0 0 0 0
−g u f 0 0 0 0

w2

+


0 0 0 0 0 0
0 0 ua 0 0 0
0 0 0 0 0 0
0 0 ub 0 0 0
0 0 0 0 0 0
0 0 uc 0 0 0

w3, (31)

which is further decomposed in three subsystems:

S̃11; ˜̇x11 =

(
x2

−K1x2

)
+

(
0 0 0 0 0 0
ug 0 0 0 0 0

)
w1

+

(
0 0 0 0 0 0
0 ud 0 0 0 0

)
w2

+

(
0 0 0 0 0 0
0 0 ua 0 0 0

)
w3,

S̃12; ˜̇x12 =

(
x4

−K2x4

)
+

(
0 0 0 0 0 0
0 ue 0 0 0 0

)
w2

+

(
0 0 0 0 0 0
uh 0 0 0 0 0

)
w1

+

(
0 0 0 0 0 0
0 0 ub 0 0 0

)
w3,

S̃13; ˜̇x13 =

(
x6

−K3x6

)
+

(
0 0 0 0 0 0
0 0 uc 0 0 0

)
w3

+

(
0 0 0 0 0 0
ui 0 0 0 0 0

)
w1

+

(
0 0 0 0 0 0
−g u f 0 0 0 0

)
w2.

Similarly, S̃2, S̃3, S̃4 are given as:

S̃2; ˜̇x2

=

(
x8

−K4x8

)
+

(
0 0 0 0 0 0
0 0 0 1/Ix 0 0

)
w4

+

(
0

x11x12I1

)
+

(
0 0 0 0 0 0
0 0 0 0 0 0

)
w4,

(32)

S̃3; ˜̇x3

=

(
x10

−K5x10

)
+

(
0 0 0 0 0 0
0 0 0 0 1/Iy 0

)
w5
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+

(
0

x10x12I2

)
+

(
0 0 0 0 0 0
0 0 0 0 0 0

)
w5,

(33)

S̃4; ˜̇x4

=

(
x12

−K6x12

)
+

(
0 0 0 0 0 0
0 0 0 0 0 1/Iz

)
w6

+

(
0

x10x11I3

)
+

(
0 0 0 0 0 0
0 0 0 0 0 0

)
w6.

(34)

4. WIND GUST MODELLING

The modeling approach used in this work is based on
[13]. This approach takes the following into considera-
tion:

- The effect of wind velocity change (increasing or de-
creasing).

- Gust duration.
- Wind velocity change with respect to altitude.
- Wind direction change.

The wind force expression depending on the effective
influence area on the quadrotor is also derived. However,
this model is suitable, based on the finding in [32], the ef-
fect of wind gust in small quadrotors is significantly cor-
related to the rate of increase or duration of a gust rather
than the magnitude of the gust.

At any point in time the effect of wind felt at the differ-
ent elements of the body is assumed to have equal mag-
nitude and direction. The wind model velocity takes the
form (35):

|V |

=



Voi, t ≤ t0i,

V0i +
|Vmi − V0i|

2

(
1− cos

(
π (t − t0i)

dni − t0i

))
,

t0i < t ≤ dni, Vmi ≥V0i,

V0i +
|Vmi − V0i|

2

(
cos

(
π (t − t0i)

dni − t0i

)
−1

)
,

t0i < t ≤ dni, Vmi <V0i,

Vmi, t ≤ tm,
(35)

where

- tm; represents the maximum flight time.
- n represents a discrete random variable to determine

the number of wind steps for tm.
- Voi; represents the wind velocity before each step.
- toi; represents a discrete random variable to determine

each wind step start.
- dni; represents a discrete random variable to deter-

mine each duration of gust.

Fig. 2. Simulation showing wind velocity before and after
wind gust.

- Vm; represents each gust magnitude.

Simulation example of the model given in [13], for t0 =
[0;9;16;19] s, Vm = [1;4.5;0;1] m/s, dn = [7;5;2;5] s, tm =
25 s and V0 = 0.5 m/s is shown in Fig. 2.

However the following limitations apply when generat-
ing random values:

n ∈
[
0,

tm
10

,
]

; di ∈ [0, ti+1 − ti] ; vi ∈ [0,Vmax] ;

|vi − vi−1|
di

< a (a : restriction of the rate of step rise),

vi; represents a discrete random variable to determine each
gust magnitude.

Also, the point at which wind blows as a wind direction
be the azimuth (Ψw), measured from the north through
east.

Wind direction changes at each wind velocity step given
by:

Ψw(i+1) = Ψwi ±∆Ψwi, (36)

where ∆Ψw is the random value of wind direction change.
Since the wind velocity changes with altitude, the aver-

age wind velocity is determined by:

Vcz =Voz

(
z
zo

)p

, (37)

where
Vcz; wind velocity at the altitude of z,
V0z; specified wind velocity at the altitude of zo,
p; energetic wind profile index.
The wind force is given by:

Fw = SeAVcz
2, (38)
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where
Se; effective area influenced by the wind and A is a con-

version factor to Nm2.
With reference to the influence force, we decompose

into the following components for more appropriate or
easier application:

Fwx = SeAVcz
2cos(Ψw); Fwy = SeAVcz

2 sin(Ψw). (39)

For simplicity, the quadrotor surface area is represented
as a cylinder. So the surface area:

Sk = µ2πrh+σ2πr2. (40)

The right hand representing the sum of lateral area and
bases and µ , σ representing the fill factors here. Therefore
if wind affects only half of the quadrotor the effective area
will be given by:

Sex = µπrhcos(θ)+σπr2sin(θ);
Sey = µπrhcos(φ)+σπr2 sin(φ) (41)

with θ and φ representing the pitch and yaw angles.

5. BACKSTEPPING CONTROL OF
DECENTRALIZED SYSTEM

The theory of backstepping is given in [33]. Each sub-
system is in the form below:

S̃i : ẋi = ψvi1 (x)+φvi1 (x)wi +Fi (x)△i (x,u, t) ,

i = 1, 2, 3, 4, (42)

where Fi (x)△i (x,u, t) is considered as the uncertainty
term. Fi (x) depends only on xi and △i(x,u, t) ∈ Rvi con-
tains all interactions and plant parameters. Then each sub-
system is treated separately without the uncertainty term
to generate control inputs using backstepping method.

For S̃2:

S̃2; ˜̇x2 =

(
x8

−K4x8

)
+

(
0 0 0 0 0 0
0 0 0 1/Ix 0 0

)
w4

+

(
0

x11x12I1

)
+

(
0 0 0 0 0 0
0 0 0 0 0 0

)
w4.

Without the uncertainty term, S̃2 represents the roll an-
gle subsystem which is now in a strict feedback form:

˜̇x2 =

(
x8

−K4x8

)
+

(
0 0 0 0 0 0
0 0 0 1/Ix 0 0

)
w4.

Extracting those gives:

ẋ7 = x8,

ẋ8 =−K4x8 +u4(1/Ix).

To achieve a change of state, we add and subtract ux7;
where ux7 is a function of x7. Thus we have:

ẋ7 =x8 +ux7 −ux7

=ux7 +(x8 −ux7) = ux7 + e2. (43)

So that,

ė2 = ẋ8 − u̇x7 =−K4x8 +u4(1/Ix)− u̇x7 = v2.

Define the Lyapunov function V (x7,e2):

V =
1
2
(
x7 − xd

7

)
+

1
2

e2
2. (44)

The time derivative,

V̇ =
(
x7 − xd

7

)
ẋ7 + e2ė2

=
(
x7 − xd

7

)
(ux7+e2)+ e2v2

=
(
x7 − xd

7

)(
ux7)+e2(x7 − xd

7 + v2
)
.

To ensure V̇ is negative definite in order to guarantee
stability:

ux7 = −k21
(
x7 − xd

7

)
,

and

v2 = −k22e2 −
(
x7 − xd

7

)
; k21, k22 > 0.

Therefore,

V̇ =−k21
(
x7 − xd

7

)2
+ e2[

(
x7 − xd

7

)
− k22e2 −

(
x7 − xd

7

)
].

Hence,

V̇ =−k21e2 − k22e2
2 < 0.

So,

u4 = Ix(K4x8 + u̇x7 + v2),

u4 = Ix(K4x8 + u̇x7 +
(
−k22e2 −

(
x7 − xd

7

))
).

But, u̇x7 = −k21ẋ7 = −k21x8 and e2 = ẋ7 − ux7 = x8 +
k21

(
x7 − xd

7

)
.

This gives

u4 =Ix(K4x8 − k21x8 +(−k22(x8 + k21
(
x7 − xd

7

)
)

−
(
x7 − xd

7

)
)),

u4 =Ix((K4 − k21 − k22)x8

+(−k22k21 −1)
(
x7 − xd

7

)
). (45)

Similarly two other inputs are generated from S̃3 and S̃4

for pitch and yaw respectively:

u5 =Iy((K5 − k31 − k32)x10

+(−k32k31 −1)
(
x9 − xd

9

)
), (46)
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Fig. 3. Block diagram of decentralized backstepping control.

u6 =Iz((K6 − k41 − k42)x12

+(−k42k41 −1)
(
x11 − xd

11

)
). (47)

Now, for subsystem S̃1, which comprises S̃11, S̃12 and
S̃13 are used to generate three inputs; u1, u2 and u3.

For instance, backstepping control is applied to S13 as
follows:

S̃11; ˜̇x11 =

(
x2

−K1x2

)
+

(
0

ugu1

)
,

[ẋ1 = x2,

ẋ2 =−K1x2 +ugu1.

Again, to achieve a change of state, we add and subtract
ux1; where ux1 is a function of x1 we have:

ẋ1 =x2 +ux1 −ux1

=ux1 +(x2 −ux1

=ux1 + e1. (48)

So that,

ė1 = ẋ2 − u̇x1 =−K1x2 +ugu1 − u̇x1 = v1.

The Lyapunov function is similar as previously defined,
so, to ensure V is negative definite;

ux1 = −k11
(
x1 − xd

1

)
and

v1 =−k12e1 −
(
x1 − xd

1

)
; k11,k12 > 0.

From

v1 = −K1x2 +ugu1 − u̇x1,

u1 = (1/ug)(v1 +K1x2 + u̇x1).

But, u̇x1 = −k11ẋ1 = −k11x2 and e1 = ẋ1 − ux1 = x2 +
k11

(
x1 − xd

1

)
v1 =− k12(x2 + k11

(
x1 − xd

1

)
)−

(
x1 − xd

1

)
,

u1 =(1/ug)(−k12(x2 + k11
(
x1 − xd

1

)
)−

(
x1 − xd

1

)
+K1x2 − k11x2),

u1 =(1/ug)((−k12k11 −1)
(
x1 − xd

1

)
+(K1 − k11 − k12)x2). (49)

Similarly, from S̃12 and S̃13 we have:

u2 =(1/ue)((−k62k61 −1)
(
x3 − xd

3

)
+(K2 − k61 − k62)x4), (50)

u3 =(1/uc)((−k72k71 −1)
(
x5 − xd

5

)
+(K3 − k71 − k72)x6). (51)

Fig. 3 shows the structure of the decentralized-back-
stepping system.The backstepping method in conjunction
with Lyapunov function introduced the controller param-
eters ki j. These control inputs are not a function of the
orientations, αi and βi. In subsequent sections, we will in-
troduce a PD control of the orientation angles which is fol-
lowed by the optimization technique for all the controller
parameters.
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6. WIND FORCE CANCELLATION

Forces are generated in different axis due to tilting of
the quadortor. This concept has dual advantages in that,
it can be used to calcel wind gust whilst keeping the ori-
entation as desired [25]. However, for both rotors 1 and
3, β1.3 angles are set to zero while α1,3 angles are allowed
the flexiblity of tilting so as to move in the x-direction and
concurrently cancel wind disturbance in the same direc-
tion. For rotors 2 and 4, the concept is the same only that
β2,4 are now set to 90 degrees so that the α2,4 can now
be directed towards the y direction when needed. The PD
controller used to effectively control the orientations αi is
given by;

α1,3 = Kpα1,3 ex +Kdα1,3

(
eix − e(i−1)x

)
, (52)

α2,4 = Kpα2,4 ey +Kdα1,3

(
eiy − e(i−1)y

)
, (53)

where er = rd − r, for r = (x,y), in the body-fixed frame.
Kp and Kd are the proportional and derivative control
gains, and they are given in Table 2.

7. CONTROLLER PARAMETERS
OPTIMIZATION TECHNIQUE

A significant evolution of optimization theory have em-
anated over time. A recent algorithm for evolutionary al-
gorithm called the Differential Evolution (DE) was first
introduced by Rainer Storn and Keneth Price in 1995 [29].

In brief, DE works in the following way; First, we ran-
domly select and initialize control parameters and then
evaluate the objective function. Thereafter, the follow-
ing processes will be executed so long as the stopping
criteria is not met; For each individual in the population
an offspring of controller parameters is created using the
weighted difference of parent solutions. Finally, the fit-
ter vector between the parent and offspring is passed on
to the next iteration of the algorithm. Subsequently the
controller parameters are passed on to the controller.

Fig. 4 shows the flowchart for the process of DE. First,
it starts, with (Np) initial population generated randomly
between two bounds (Xj,max,Xj,min). Each solution (X)
comprises of (D) elements which is the dimension of the
problem (number of problem parameters needed to be op-
timized). Additional factors need to be defined, such as
generation number or iteration (Ng), mutation factor (F ∈
[0,1]) which control the convergence speed, and crossover
factor (CR ∈ [0,1]) which plays role in the smoothness of
the convergence and also ensures the diversity of the solu-
tions in order not to be trapped in a local minimum during
the optimization process. Let G be the number of genera-
tions.

Gi =
[
X i

1,X
i
2, . . . ,X

i
Np

]
, (54)

Fig. 4. DE Flowchart.

where i is the generation number, and each solution has
(D) parameters which are the controller gains for this case.

X i
n = [Xn1,Xn2, . . . ,XnD] ,

Xi, j = X j,min + random number(X j,max −X j,min) . (55)

In the next two steps, the fitness or objective function
for each solution will be calculated, and according to it
the best solution among the population will be nominated.
A good set of control parameters will result in minimiza-
tion of performance criteria which includes overshoot, rise
time, settling time and steady state error. The objective
function is selected based on the minimum Integral Square
Error (ISE), the error being the difference between the de-
sired response and actual response. The ISE of a step re-
sponse is computed at each iteration until a minimum error
that guarantees the best performance criteria is achieved:

ISE =
∫ ∞

0
e(t)2dt

minimize ISE(X)
X=ki j

. (56)

Then the stopping criteria will be checked which may
result in terminating or continuing to the next step. This
step includes mutation and crossover processes which are
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Fig. 5. Crossover procedure.

the heart of the differential evolution algorithm. Here, a
variant vector solution (offspring) is generated for each
solution in the population by using the following formula:

V (G+1)
i =X (G)

i +F
(

X (G)
best −X (G)

i

)
+F(X (G)

r1 −X (G)
r2 ), (57)

where X (G)
r1 and X (G)

r2 are randomly selected solution vec-
tors from the current generation (different from each other
and the corresponding Xi) and X (G)

best is the solution achiev-
ing best fitness function.

Then a trial solution will be generated by copying the
parameters form the parent solution or the offspring so-
lution based on randomly generated probability and the
crossover factor. Fig. 5 which is the crossover proce-
dure illustrates the process of generating the trial solution,
where a random probability number between [0, 1] is gen-
erated and then compared to the crossover factor. If the
random number is found to be larger than the crossover,
then the trial solution will take the parameter from the par-
ent and from the offspring otherwise. In one solution this
procedure will be repeated (D) times until the trial solution
is formed.

In the last step, there will be Np trial solutions corre-
sponding to the original population. The fitness function
will be calculated for them. The new generation will be
formed by comparing the parent solution to the trial solu-
tion and takes the one which has the best fitness function
as the member (new parent) for the new generation. The

Table 1. DE algorithm parameters.

Cross over factor (CR) 0.5
Mutation factor (F) 0.5

Generation 50
Population size 25

Table 2. Controller parameters.

Backstepping
controller Gains

ki j; i = 1 : 6, j = 2 35.1197, 33.3426, 38.8252,
14.2395, 40.6587,24.4382

ki j; i = 1 : 6, j = 2 0.0684, 0.0114, 2.0, 0.0262,
0.0262, 0.01

PD controller Gains
Kp, Kd 0.0226, 2.9097

whole procedures will be repeated again and again until
the stopping criteria is satisfied or the generation (itera-
tion number) number is reached.

As long as the number of solutions and iterations
gets larger, the possibility to reach the global minimum
increases. However, the resulting parameters used to
achieve the minimum ISE are selected as the controller
parameters. The DE algorithm parameters and controller
gains derived are given in Tables 1 and 2, respectively.
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Table 3. Prameters of the quadrotor.

Parameter Definition Value Unit

g Acceleration
due to gravity 9.81 m/s2

m Mass 0.5 Kg
r, h radius, height 0.2 m

Ix = Iy x, y inertia 4.85×10−3 kg.m2

Iz z inertia 8.81×10−3 kg.m2

IR Rotor inertia 3.36×10−5 kg.m2

b Trust factor 2.92×10−6 kg.m
d Drag factor 1.12×10−7 kg.m2

K1, K2, K3 Drag coefficients 0.01 Ns/m
K4, K5, K6 Drag coefficients 0.012 Ns/m

A Rate of
wind velocity 0.61 Nm2

µ , σ Fill factors 0.2, 0.4 M

Fig. 6. Elevation to [0,0,50] m under wind gust.

8. SIMULATION RESULTS AND DISCUSSION

Simulation is carried out in MATLAB environment and
the control and dynamic parameters used are given in the
Table 3.

Quadrotor commanded move to the following coordi-
nate [0,0,50] m. Fig. 6, shows that the target height is
reached and the tiltrotor quadrotor is able to hover at 50 m.
Fig. 7 depicts the 3D plot which shows a location track-
ing of the coordinate with a negligibly small error in all
translational axes.

As earlier mentioned, wind gust is seen to cause random
fluctuation in the velocities as shown in Fig. 8, which de-
picts the translational rates, although negligible. However,
the angular orientation is not affected due to the feature of
the quadrotor. Fig. 9. shows the orientations αi as con-
trolled by the PD controller. The βi orientation angle are
given in Fig. 10, which shows the values that are set in
order to achieve desired trajectory. Figs. 11-13 shows the

Fig. 7. 3D plot of elevation to [0,0,50] m under wind.

Fig. 8. Translational rates of elevation to [0,0,50] m under
wind gust.

backstepping control input to the quadrotor for the trans-
lational orientation, although the rotational inputs are un-
affected as because they are not triggered.

9. CONCLUSION

A decentralized control approach is successfully
demonstrated on a tilt-rotor quadrotor under wind dis-
turbance. A Differential evolution (DE) optimization
technique was first established to compute controller
gains based on Integral Square Error. Different simu-
lation modes show how the tilt-rotor quadrotor system
are decoupled and controlled independently. The results
shows that the system exhibits robustness against wind
gust disturbance. The future work is to build a proto-
type of the tilt-rotor quadrotor system and use different
nonlinear control techniques for comparisons.
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Fig. 9. Orientation angles αi’s.

Fig. 10. Orientation angles βi’s.

Fig. 11. Input for z direction.
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