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Inertial Parameter Estimation of an Excavator with Adaptive Updating
Rule Using Performance Analysis of Kalman Filter
Kwang-seok Oh* and Ja-ho Seo

Abstract: This paper presents a rotational inertia estimation algorithm for excavators based on recursive least-
squares with forgetting and an adaptive updating rule that uses the performance analysis of the Kalman filter.
Generally, excavators execute a swing motion with various materials, and the rotational inertia of the excavator
is changed greatly due to the excavator’s working posture. The large variation in the rotational inertia of the
excavator has an influence on the dynamic behaviors of the excavator, and an estimation of the excavator’s rotational
inertia is essential to developing a safety system based on prediction of dynamic behavior. Therefore, a real-time
rotational inertia estimation algorithm has been proposed in this study using a swing dynamic model. The proposed
estimation algorithm has been designed using only swing velocity, utilizing the recursive least squares method
with multiple forgetting for practical application to actual excavators. Two updating rules have been applied to
the estimation algorithm in order to enhance the estimation performance. The first proposed rule is the damping
coefficient updating rule. The second rule is the forgetting factor updating rule based on real-time analysis of linear
Kalman filter estimation performance. The performance evaluation of the estimation algorithm proposed in this
paper has been conducted based on the excavator’s typical dumping scenario. The performance evaluation results
show that the developed inertia estimation algorithm can estimate actual rotational inertia with the two designed
updating rules using only excavator swing velocity.

Keywords: Dumping scenario, forgetting factor, Kalman filter, recursive least squares (RLS), rotating inertia, up-
dating rule.

1. INTRODUCTION

The excavator is one of the most important pieces
of heavy equipment in construction sites. Excavators
perform various functions, such as digging and ground-
leveling. Furthermore, an excavator carries various mate-
rials using its operational elements, consisting of a boom,
arm, and bucket that move with a swing motion. While
performing the swing motion, the working posture of the
excavator changes greatly. In addition, blindspots exist
around the excavator because the operator must continu-
ously look forward to monitor its dynamically changing
position. Since the excavator often operates with work-
ers nearby, life-threating accidents, such as collisions with
nearby workers, can occur due to blindspots and opera-
tor carelessness. Most fatal accidents in construction are
caused by workers being struck by objects, such as heavy
equipment, in construction sites; this accounts for 87%
of all construction-related fatalities [1]. Therefore, much
research has been conducted to reduce fatal accidents at
construction sites by using various environmental sensors.
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Lee et al. [2] suggested a safety monitoring system to
decrease fatal accidents for workers at construction sites.
Seward et al. [3] proposed a hazard factor analytic report
to define safety requisites for an autonomous robotic exca-
vator based on a design of an excavator and a safety man-
agement system. Feng et al. [4] developed a robot system
and algorithm which can establish an assembly plan au-
tomatically using a computer-based architectural design.
Giretti et al. [5] performed analytic research on the de-
velopment and application of a next-generation real-time
automatic health and safety management system at con-
struction sites. In their study, ultra-wideband (UWB) tech-
nology was used for real-time location tracking between
workers and equipment at construction sites where sur-
roundings change dynamically. Riaz et al. [6] proposed a
conceptual model that uses a next-generation information
and communication technology (ICT) solution to make an
innovative, leading health and safety management system
using a global positioning system (GPS) with smart sen-
sors and wireless networks called SightSafety. The system
also provides reports on dangerous events that
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have occurred, thereby enabling managers to learn from
their experiences during the construction of a project. Park
et al. [7] developed a Bluetooth-based proximity detec-
tion and alert system that can be used in roadway work
zones, and evaluated its reliability and utility. Cho et al.
[8] developed a hybrid LIDAR system and a projection-
recognition-projection (PRP) framework to enhance the
safety and productivity of construction sites by permitting
heavy equipment operators to perceive three-dimensional
work environments in real-time at dynamic construction
sites, and evaluated its performance. Wang et al. [9] estab-
lished an automatic object perception system using a fast
surface modeling technique for rapid perception of three-
dimensional work environments when operating heavy
equipment at construction sites. Teizer et al. [10] de-
veloped a technical system for real-time location tracking
by collecting and analyzing data to automatically classify
static and dynamic hazard factors at construction sites.
The suggested technical system automatically gathers and
analyzes spatial-temporal conflicts between workers-on-
foot and the identified hazards. Ray et al. [11] proposed a
new technology that dynamically detects equipment blind
spots using the head posture of the operator, based on the
random forests algorithm. Wenzel et al. [12] proposed a
model-based vehicle estimator, which can be utilized for a
combined estimation of vehicle states and parameters us-
ing the dual extended Kalman filter (DEKF) technique.

After careful review of previous research, existing stud-
ies focus on hazard warning systems based on sensor sys-
tem development to perceive surrounding objects, and the
status and position of equipment. However, because these
studies do not take into consideration active safety sys-
tems, such as collision avoidance, additional investiga-
tions are needed to ensure safety at construction sites.
Therefore, this study proposes a rotational inertia estima-
tion algorithm for an excavator as an active safety system.
Because an excavator dynamically changes its working
posture, and works with various materials, its rotational
inertia varies greatly. This relatively massive change in ro-
tational inertia affects the dynamic rotational behavior of
an excavator. Therefore, estimating the rotational inertia
of an excavator by predicting its rotational behavior is crit-
ical for avoiding collisions with nearby objects, including
workers. Rotational speed was assumed to be measured
to estimate the rotational inertia of an excavator, and the
linear Kalman filter (LKF) was used to estimate rotational
acceleration. The study estimated rotational inertia based
on recursive least squares (RLS) with a multiple forget-
ting factor method using estimated angular acceleration
and rotational speed. In addition, a swing dynamic model
of an excavator was used to design an estimation algo-
rithm. Updating rules were used to enhance rotational in-
ertia estimation performance. The first rule is the updating
rule, which updates estimated values based on a damping
coefficient. The second rule is a rule that updates the for-

getting factor by analyzing the estimated error of the LKF,
which is used to predict rotational acceleration. The per-
formance of the proposed algorithm has been evaluated by
analysis and by comparison with analytically-derived ro-
tational inertia. The derived inertia is based on a dumping
scenario, which is a typical working pattern of an excava-
tor. Performance evaluation of the rotational inertia esti-
mating algorithm was designed and conducted in the Mat-
lab/Simulink environment. The result of the performance
evaluation showed rotational inertia estimation efficiency
in real time, despite various changes in material and work-
ing postures. The remainder of this paper is organized as
follows.

Section 2 explains the rotational inertia estimation al-
gorithm. Section 3 describes the updating rules for esti-
mation performance enhancement. Section 4 analyzes the
results of the performance evaluation based on an actual
working scenario. Finally, Section 5 discusses the results
and offers suggestions for future work.

2. ROTATIONAL INERTIA ESTIMATION
ALGORITHM

The RLS method using multiple forgetting factors has
been used to estimate the rotational inertia of an excavator,
and the mathematical model used is the swing dynamic
model. Fig. 1 illustrates the model schematics for the in-
ertia estimation algorithm.

In Fig. 1, an LKF block estimates the rotational speed
and rotational acceleration of an excavator, and transmits
them to a block that executes RLS analysis with multiple
forgetting. Analyzed error information is then transmitted
to the error analysis block to analyze errors in real time.
The recursive least squares with multiple forgetting block
estimates required values other than rotational inertia, and
transmits them to the updating block. The updating block
transmits renewed estimated values based on the updat-
ing rule defined by analyzed errors and estimated values
to RLS with the multiple forgetting block. For practical
use of the algorithm, this study assumes that only the ro-
tational velocity of an excavator is measurable, and the
rotational damping coefficient of working equipment can

Fig. 1. Model schematics for the estimation algorithm.
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be deduced with experiments. The formula below indi-
cates the swing dynamic model of an excavator used in
the proposed estimation algorithm:

Jt θ̈sw =−bθ̇sw −Tf +Tsw, (1)

where Jt and b are the total rotational inertia and damping
coefficients, respectively; θ̈sw and θ̇sw are the rotational ac-
celeration and rotational speed, respectively; and Tf and
Tsw are the static friction torque and swing torque, respec-
tively. Rotational inertia Jt is the sum of the rotational
inertia of an excavator and that of materials in the bucket.
The next section explains the estimation algorithm of rota-
tional speed and rotational acceleration based on the LKF
in order to estimate the rotational inertia of an excavator.

2.1. Rotational state estimation using the LKF
Information about the rotational speed and rotational

acceleration of an excavator is required to develop the ro-
tational inertia estimation algorithm. Therefore, the study
utilizes the LKF, which uses rotational acceleration as a
measurement to estimate rotational speed and rotational
acceleration. It also assumes that only the swing veloc-
ity of an excavator is measurable, and it can be measured
by sensors to develop a practical estimation algorithm. A
double integrator model was used to estimate rotational
acceleration, and the discrete-time invariant linear system
used in this study is as follows:

xk = Fk−1xk−1 +wk−1,

yk = Hkxk + vk, (2)

where xk =
[

θ̇sw,k θ̈sw,k
]T ; y represents the output vec-

tor; and wk and vk mean process noise and measurement
noise, respectively. wk and vk are both assumed to be a
white Gaussian distribution of which each mean is 0. F
and H are the state transition and observation matrices,
respectively, and are defined by the following formula:

F =

[
1 ∆T
0 1

]
, H =

[
1 0

]
, (3)

where ∆T is sampling time used in the LKF, defined as 0.1
in the study. Since the defined process noise and measure-
ment noise are assumed as uncorrelated zero-mean white
Gaussian distributions, each covariance Qk and Rk can be
expressed as the formula below:

wk = N (0,Qk) , vk = N (0,Rk) , (4)

E
[
wkvT

k

]
= 0. (5)

Covariance matrix Qk (process noise) can be expressed as
diag[0,a]. Here, a means noise variance of rotational ac-
celeration of an excavator, and it cannot be determined
properly by a stationary random process. Thus, the study
defines the mean value of rotational acceleration which an

excavator generally uses during work in an actual work-
ing scenario. It is also assumed that the estimated ini-
tial values for estimates and error covariance are given
with uncertainty. LKF estimates of the state vector are
applied with the following two steps: (step-1] prediction,
and (step-2] update. In step-1, a priori estimates of the
state vector and error covariance are calculated as follows:

x̂k|k−1 = Fk−1x̂k−1, (6)

Pk|k−1 = Fk−1Pk−1FT
k−1 +Qk−1. (7)

In step-2, a priori values are updated by using the Kalman
gain and a priori estimates. The optimal Kalman gain, K,
can be computed from the following performance index
that is the sum of the expectation of estimation errors.

Jk = E
[
(x1 − x̂1)

2
]
+ · · ·+E

[
(xn − x̂n)

2
]
. (8)

The optimal Kalman gain that minimizes the performance
index Jk and a priori estimates are described as follows:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k +Rk
)−1

, (9)

x̂k = x̂k|k−1 +Kk
(
yk −Hkx̂k|k−1

)
, (10)

Pk = (I −KkHk)Pk|k−1, (11)

where I means a unit matrix. The next section explains
the rotational inertia estimation algorithm based on RLS
estimation with the multiple forgetting method by using
estimated rotational speed and acceleration.

2.2. RLS estimation with multiple forgetting
In this study, the RLS estimation method, which is a

multivariable state estimation method, is used to estimate
the rotational inertia of an excavator, Jt . As explained in
the previous section, the rotational inertia of an excava-
tor varies with working posture and materials. In order
to estimate rotational inertia, the estimation of variables
other than rotational inertia defined in swing dynamics
is required. Furthermore, better estimation performance
can be obtained by considering the rate of change of each
variable using multiple forgetting factors [13]. To apply
the RLS estimation with multiple forgetting method, the
swing dynamic model used for LKF can be rewritten into
a kind of linear regression model as follows:

y = ϕ T θ , (12)

ϕ T =
[

ϕ1 ϕ2 ϕ3
]
=
[

ˆ̈θsw
ˆ̇θsw −1

]
, (13)

θ =
[

θ1 θ2 θ3
]
=
[

Jt b (Tsw −Tf )
]
, (14)

where y has a constant value of 0 by the mathematical
definition; and θ1, θ2, θ3 are the values that need to be
estimated, and which can be defined as the estimated ro-
tational inertia, damping coefficient, and difference value
between swing torque and frictional torque, respectively.
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Because the defined estimates vary by working condition
with different rates of change, reasonable estimation is
possible by applying multiple forgetting factors individ-
ually. To apply forgetting factors (λ1, λ2, λ3) individually,
a decoupled cost function related to each estimate is de-
fined as follows:

J
(
θ̂1(k), θ̂2(k), θ̂3(k),k

)
=

1
2

k

∑
i=1

λ k−i
1

(
y(i)−ϕ1(i)θ̂1(k)−ϕ1(i)θ2(i)

−ϕ1(i)θ3(i))
2

+
1
2

k

∑
i=1

λ k−i
2

(
y(i)−ϕ1(i)θ1(i)−ϕ1(i)θ̂2(k)

−ϕ1(i)θ3(i))
2

+
1
2

k

∑
i=1

λ k−i
3 (y(i)−ϕ1(i)θ1(i)−ϕ1(i)θ2(i)

−ϕ1(i)θ̂3(k)
)2
. (15)

The right term of the cost function defined above repre-
sents the estimated error at the k-step. To calculate an op-
timal estimate while minimizing the cost function, a par-
tial differentiation equation about each estimate can be de-
duced as follows:

∂J
∂ θ̂1(k)

= 0,
∂J

∂ θ̂2(k)
= 0,

∂J
∂ θ̂3(k)

= 0. (16)

By solving the partial differentiation equation above for
θ1, θ2, θ3, the value is obtained as follows:

θ̂1(k) =

(
k

∑
i=1

λ k−i
1 ϕ1 (i)

2

)−1

×

(
k

∑
i=1

λ k−i
1 (y(i)−ϕ2(i)θ2(i)−ϕ3(i)θ3(i))

)
,

(17)

θ̂2(k) =

(
k

∑
i=1

λ k−i
2 ϕ2 (i)

2

)−1

×

(
k

∑
i=1

λ k−i
2 (y(i)−ϕ1(i)θ1(i)−ϕ3(i)θ3(i))

)
,

(18)

θ̂3(k) =

(
k

∑
i=1

λ k−i
3 ϕ3 (i)

2

)−1

×

(
k

∑
i=1

λ k−i
3 (y(i)−ϕ1(i)θ1(i)−ϕ2(i)θ2(i))

)
.

(19)

For real-time parameter estimation, the equation above
could be rearranged to a recursive form as follows:

θ̂1 (k) = θ̂1 (k−1)+L1 (k)
(
y(k)−ϕ1 (k) θ̂1 (k−1)

−ϕ2 (k)θ2 (k)−ϕ3 (k)θ3 (k)) ,

θ̂2 (k) = θ̂2 (k−1)+L2 (k)(y(k)−ϕ1 (k)θ1 (k)

−ϕ2 (k) θ̂2 (k−1)−ϕ3 (k)θ3 (k)
)
,

θ̂3 (k) = θ̂3 (k−1)+L3 (k)(y(k)−ϕ1 (k)θ1 (k)

−ϕ2 (k)θ2 (k)−ϕ3 (k) θ̂3 (k−1)
)
. (20)

Here, Li (i = 1, 2, 3) is the optimal estimation gain cal-
culated for parameter estimation. The optimal estimation
gain is calculated in each step based on the parameters,
forgetting factors, and covariance of the estimate. Assum-
ing that the true value (θ(k)) and the estimate (θ̂(k)) of
parameters have an error sufficiently small to ignore in the
calculation of an individual estimate, such an estimate can
be arranged as follows: θ̂1 (k)

θ̂2 (k)
θ̂3 (k)


=

 1 L1(k)ϕ2(k) L1(k)ϕ3(k)
L2(k)ϕ1(k) 1 L2(k)ϕ3(k)
L3(k)ϕ1(k) L3(k)ϕ2(k) 1

−1

×

 θ̂1 (k−1)+L1(k)
(
y(k)−ϕ1(k)θ̂1 (k−1)

)
θ̂2 (k−1)+L2(k)

(
y(k)−ϕ2(k)θ̂2 (k−1)

)
θ̂3 (k−1)+L3(k)

(
y(k)−ϕ3(k)θ̂3 (k−1)

)
.

(21)

Because the elements that compose the inverse matrix
of the equation above have values that are never zero, an
inverse matrix value of (21) always exists. In order to de-
rive a proof for the convergence properties of the designed
adaptive inertia estimation algorithm, the following gen-
eralization of the recursive equations must be considered
[14].

θ̂ (k) = θ̂ (k−1)+a(k)L(k)e(k) , (22)

P(k)

=
1

λ (k)

×

[
P(k−1)−a(k)

P(k−1)ϕ (k)ϕ (k)T P(k−1)
1+ r (k)

]
.

(23)

Here, a(k) is a time-varying scalar function to be deter-
mined in a class which will be specified in terms of the
inverse of (23).

P(k)−1 = λ (k)P(k−1)−1

+β (k)λ (k)ϕ (k)ϕ (k)T , (24)

β (k) =
a(k)

1+ r (k)−a(k)r (k)
, (25)

r (k) = ϕ (k)T P(k−1)ϕ (k) . (26)
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Equation (24) can be considered as a discrete-
time system with the state P(k)−1 and input
β (k)λ (k)ϕ (k)ϕ (k)T . If the value of a(k) is one, β (k)
has the value of one, and the P−1 = 0 will be the glob-
ally attractive equilibrium point for the free motion of the
system ( 24). The input term β (k)λ (k)ϕ (k)ϕ (k)T tends
to prevent the convergence of P−1 (k) to the equilibrium
point P−1 = 0, and β (k) is bounded by Assumption 1
described as follows:

Assumption 1: There exists c > 0 such that
a(k)/(1+ r (k)−a(k)r (k))≥ c, ∀t.

With the additional Assumption 2 described as below,
the convergence analysis has been carried out.

Assumption 2: The data generation mechanism is de-
scribed by y(k) = ϕ (k)T θ (k).

The analysis is conducted without taking any persistent
excitation assumption on ϕ (k)T for granted. Based on the
aforementioned assumptions, the unexcitation subspace S̄
and excitation subspace S are defined as follows:

S̄ =

{
x ∈ Rn |∋ L < ∞ : xT

N

∑
1

tϕ (k)ϕ (k)Tx < L,∀N

}
,

(27)

S = S̄⊥. (28)

Equation (29) describes the defined Lyapunov-like
function for the convergence proof of the estimation.

V (k) = θ̃ (k)T P(k)−1 θ̃ (k) . (29)

Here, θ̃ (k) is the error between estimated state and actual
state θ̂ (k)− θ (k). The state estimation error θ̃ (k) can
then be projected on subspaces S and S̄, denoted by θ̃E (k)
and θ̃U (k), respectively. In order to obtain the conver-
gence results described in the following theorem, behavior
analysis was conducted based on the defined Lyapunov-
like function in (29).

Theorem 1: Based on the data generation mechanism
described by Assumption 1 and estimation equation (22),
the following statements are satisfied for any given θ̃ (0)
and P(0)> 0.

1)
∥∥θ̃ (k)

∥∥≤ h for all k, h is a proper constant.
2) lim

k→∞
θ̃E (k) = 0.

Based on (22), (23), and (29), and the defined error
state, the dynamics of the Lyapunov-like function can be
derived as follows:

V (k) = λ (k)V (k−1)−a(k)λ (k)
e(k)2

1+ r (k)
. (30)

The following inequality can be entailed since the value of
a(k) is always larger than zero.

V (k)≤ λ (k)V (k−1) . (31)

The decrease rate of V (k) is controlled by the forgetting
factor. The following inequality condition can be obtained
by repeatedly using (24) and (31) with P(0)−1 and V (0) =
θ̃(0)T P(0)−1θ̃(0).

k

∏
i=1

λ (i)V (0)≥ θ̃ (k)T
[
P(0)−1+ cM (k)

]
θ̃ (k)

k

∏
i=1

λ (i),

(32)

Here, M (k) = ∑k
i=1 ϕ (k)ϕ (k)T . Equation (32) then im-

plies the following equations:

V (0)≥ λmin

[
P(0)−1

]∥∥θ̃ (k)
∥∥2

, (33)

V (0)/c ≥ θ̃ (k)T M (k) θ̃ (k) . (34)

It can be shown that the inequality condition in (34) is
sufficient to ensure that the estimation error tends to zero
along the defined excitation subspace. Based on the afore-
mentioned proof, it can be shown that the adaptive param-
eter estimation algorithm proposed in this study is in a
steady state condition with updating rules. The next sec-
tion explains the real-time updating rules that the study
suggests using to improve the estimation performance of
the RLS estimation.

3. UPDATING RULES FOR ESTIMATION
PERFORMANCE ENHANCEMENT

Since the rotational inertia estimation algorithm sug-
gested in the study should estimate three variables at the
same time, reasonable initial estimates and an appropri-
ate forgetting factor that can closely follow the changes in
the estimates are essential. Therefore, two updating rules
have been applied in the study to address the limitation
of the estimation algorithm. The first updating rule is as
follows: If it is assumed that a damping coefficient of an
excavator can be deduced by experiment, estimates can be
updated by a deduced nominal damping coefficient when
the estimated damping coefficient is outside of a certain
error range. The second updating rule is a rule designed to
estimate the rotational speed and rotational acceleration
of an excavator, considering the estimation performance
of the LKF. An excavator generates rapid changes in rota-
tional acceleration when it accelerates or decelerates dur-
ing work, and they converge to the true value due to a
decrease in estimation performance of the applied LKF
after a certain time. While the value estimated by the
LKF converges to the true value, the estimation perfor-
mance of rotational inertia also declines by estimated er-
rors. Therefore, to enhance estimation performance, the
updating rules have been designed in the study not to di-
verge, but to converge by monitoring estimated errors of
the LKF in real time and by updating the forgetting factor
defined for each estimate when estimation performance
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decreases. In order to determine the point at which es-
timation performance starts to decline, the study used the
error dynamics of the LKF. The next section describes de-
tailed updating rules.

3.1. Damping coefficient updating rule

The damping coefficient updating rule applied in the
study is illustrated in Fig. 2. The nominal damping coeffi-
cient (θ̄2) in Fig. 2 is the rotational damping coefficient (b)
of a real excavator, which is assumed to be given by ex-
periments. To enhance the estimation performance of the
RLS-based estimation algorithm, the algorithm has been
composed as follows: When the absolute value of error
between the estimated damping coefficient and the defined
nominal damping coefficient is calculated to be greater
than a certain value, (ε), the estimate is placed in the up-
dating region, and it can be renewed into a nominal damp-
ing coefficient. However, if the estimate exists in the no
updating region in Fig. 2, updating does not occur because
it is considered to be a reasonable estimation. The value of
ε , which classifies the updating region, should be defined
experimentally considering the LKF and the performance
of the rotational inertia estimating algorithm. This study
defined defines the value of (ε) as 5. The following equa-
tions explain the proposed updating rule for the damping
coefficient applied to the estimation algorithm.

If
∣∣θ̄2 − θ̂2

∣∣≤ ε : No updating

θ̂2 (k) = θ̂2 (k−1)+L2 (k)(y(k)−ϕ1 (k)θ1 (k)

−ϕ2 (k) θ̂2 (k−1)−ϕ3 (k)θ3 (k)
)

else: updating

θ̂2 (k) = θ̄2 +L2 (k)(y(k)−ϕ1 (k)θ1 (k)

−ϕ2 (k) θ̂2 (k−1)−ϕ3 (k)θ3 (k)
)

end (35)

The next section explains the updating rule for the for-
getting factor, i.e., the second rule that updates the forget-
ting factor in real time based on the LKF.

Fig. 2. Updating rule for damping coefficient.

3.2. Forgetting factor updating rule
The forgetting factor updating rule is an updating rule

that considers estimating the performance of the LKF as
mentioned previously. Since it is the rule that updates
the forgetting factor when there is a relatively large de-
cline in the estimation performance of the LKF, a quanti-
tative analysis of the estimation performance of the LKF
is needed. In addition, because the estimation perfor-
mance of the Kalman filter can be quantitatively analyzed
based on the error dynamics of the Kalman filter, a math-
ematical analysis of the error dynamics is conducted in
this study based on estimation algorithm equations of the
LKF [15, 16]. To derive the error dynamics, the existing
LKF equations are arranged as follows, using the defini-
tion x̃k = xk − x̂k of state estimation error.

x̂k = x̂k|k−1 +Kk
(
yk −Hkx̂k|k−1

)
, (36)

x̃k = xk −Fk−1x̂k−1 −Kk (yk −HkFk−1x̂k−1) . (37)

By substituting output vector y in equation (37), an equa-
tion is deduced as follows:

x̃k = xk −Fk−1x̂k−1 −Kk (Hkxk + vk −HkFk−1x̂k−1) .
(38)

Collecting terms reduces the LKF error dynamics to:

x̃k = (I −KkHk)(xk −Fk−1x̂k−1)−Kkvk. (39)

By substituting the definition of state vector in formula (2)
for formula (39), the result is as follows:

x̃k = (I −KkHk)(Fk−1xk−1 +wk−1 −Fk−1x̂k−1)−Kkvk.
(40)

Using the definition or error state in the k-1 step, the esti-
mation error dynamics for the LKF are finally derived as
follows:

x̃k = (I −KkHk)(Fk−1x̃k−1 +wk−1)−Kkvk. (41)

The Kalman gain K used in the above equation is an ap-
plied steady state gain. To identify a point at which the
estimation performance largely declines, a rotational ac-
celeration term among disturbance terms in error dynam-
ics is needed. Therefore, formula (41) can be rearranged
to a state space equation form as follows:

x̃k = (I −KkHk)Fk−1x̃k−1 +(I −KkHk)wk−1 −Kkvk.
(42)

A disturbance term defined by equation (I −KkHk)wk−1−
Kkvk can be calculated by steady state Kalman gain, pro-
cess noise, and measurement noise (43) in each step. A
probabilistic analysis has been conducted. Since the anal-
ysis of estimation performance of the rotational accelera-
tion of an excavator is required to estimate the rotational
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Fig. 3. Disturbance distribution.

inertia efficiently, disturbance (element (2,1)) of the rota-
tional acceleration estimation in disturbance term (d) of
the formula (42) is described as follows:

d21 =−Kss,(2,1)w(1,1)+w(2,1)−Kss,(2,1)v(1,1). (43)

Since it is assumed that the defined process noise and
measurement noise are Gaussian distributions of which
each mean is 0, the disturbance of rotational acceleration,
d21, which is a Gaussian distribution, has been described
as follows:

d21 ∼ N
(

0,K2
ss,(2,1)Q

2
(1,1)+Q2

(2,1)+K2
ss,(2,1)R

2
(1,1)

)
.

(44)

By using standard deviation√
K2

ss,(2,1)Q
2
(1,1)+Q2

(2,1)+K2
ss,(2,1)R

2
(1,1)

of the disturbance, a point at which the estimation per-
formance rapidly declines compared to the real-time stan-
dard deviation of the residual value of the LKF has been
derived. In a case in which the estimation performance
of LKF rapidly declines when an excavator accelerates or
decelerates during rotation, the rotational acceleration es-
timation performance is decreased. This situation is the
point at which the forgetting factor must be updated. To
determine this, the study compared the standard deviation
of the LKF residual with the derived disturbance based on
error dynamics. Fig. 3 illustrates the disturbance distribu-
tion of the LKF.

σ21 in Fig. 3 is the standard deviation√
K2

ss,(2,1)Q
2
(1,1)+Q2

(2,1)+K2
ss,(2,1)R

2
(1,1)

of the disturbance of rotational acceleration. To classify
the time when the estimation performance declines rela-
tively largely, 3σ21, which is the largest value, occurring

with a 99.7% probability, is defined as a boundary value
and is compared with the standard deviation of the LKF
residual calculated in real time. The mathematical defini-
tion of the LKF residual and standard deviation calculated
in real time is as follows:

x̃k,residual = Kk
(
yk −Hkx̂k|k−1

)
, (45)

s2
k,residual =

1
vk

[
(λvk−1)s2

k−1,residual

+
wk −1

wk
(x̃k − x̃k−1)

2
]
, (46)

wk =
k

∑
i=1

λ k−i, vk =
2λr
(
1−λ k−1

r

)
(1−λr)(1+λr)

. (47)

To calculate the standard deviation (sresidual) of the LKF
residual, recursive variance with the forgetting method has
been used. λr represents the forgetting factor used to cal-
culate the real-time standard deviation, and it is defined as
0.9 in this study to reasonably apply the degree of change
of the standard deviation. The value should be defined
with consideration for the rate of change of the rotational
acceleration, which is generally used while an excavator
works. The updating rule is designed to perform updating
of the forgetting factor if the calculated standard devia-
tion(s) in real time are larger than the maximum value,
3σ21, which covers 99.7% of occurrences under the error
dynamic disturbance distribution, and not to perform up-
dating otherwise. This is the rule that determines the time
when the estimation performance of the LKF decreases.
Moreover, the forgetting factors have been updated in real
time based on the analyzed result of the disturbance term
of the LKF error dynamics. The proposed updating rule of
the real-time forgetting factor can be arranged as follows:

if s ≥ 3σ21 : Forgetting factor updating

λ updating
1 , λ2, λ updating

3

else: No updating

λ1, λ2, λ3

end (48)

λ1 in Table 1 is designed so that the forgetting factor
should be renewed to a value that is close to 1, and not
to diverge unless there occurs a considerable change in
the estimate of rotational inertia under the condition of
low estimation performance of the LKF. However, λ3 is
designed to be renewed to a value close to 0 when a rel-
atively large change occurs under the updating condition,
as the forgetting factor is related to the torque of the equip-
ment. λ2 is designed to maintain a certain value without
being updated because it is the forgetting factor related to
the damping coefficient, which remains constant. How-
ever, since the changes in the value of the forgetting factor
(very close to 0) can cause poor estimation performance,
the convergence performance has been checked by updat-
ing the third forgetting factor, λ3, to 0 in this study. The
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Table 1. Defined forgetting factors for updating.

Forgetting factor No updating Updating
λ1 0.5 0.99
λ2 1 1
λ3 0.99 0.1

Fig. 4. Typical working scenario: dumping.

next section explains the performance evaluation of the al-
gorithm based on an actual working scenario.

4. ACTUAL WORKING SCENARIO BASED
PERFORMANCE EVALUATION

In this study, for realistic validation of the estimation
algorithm, a performance evaluation was conducted using
actual data based on dumping, which is a typical work-
ing scenario of an excavator. The true value of rotational
inertia as a comparison value can be obtained using the an-
alytical rotational value derived using common software.
It is also assumed that only the rotational speed of an ex-
cavator is measurable.

Step-1 is the stage of placing materials in the bucket
to translocate them, and step-2 is the stage of moving to
translocate materials to the goal position with a rotational
motion. A performance evaluation of the estimation algo-
rithm is conducted in step-2, since the proposed estimation
algorithm uses the rotational speed of an excavator to es-
timate the rotational inertia. Finally, step-3 is the stage of
dumping the materials in the bucket. Fig. 5 below illus-
trates the dynamic behavior of an excavator regarding the
working scenario defined in Fig. 4.

For a realistic performance evaluation, the study ap-
plies noise that has a zero mean and 0.01 standard devi-
ation Gaussian distribution to swing velocity. The perfor-
mance evaluation was conducted in step-2, at which point
the collision risk is relatively high and the rotational iner-
tia changes largely due to the change in working posture
among the defined working steps. A simulation was per-
formed using a swing dynamic model of an excavator un-
der the Matlab/Simulink environment in the performance
evaluation, and properties of an actual five-ton excavator
were applied to the swing dynamic model. A quantita-
tive performance evaluation of error analysis in the time
domain was conducted by comparing the analytical rota-
tional inertia with the estimated rotational inertia. In ad-
dition, the analytical rotational inertia was computed by

(a) Working parts’ angles: boom, arm,
bucket, and body.

(b) Working angles and swing velocity.

Fig. 5. Typical working scenario: dumping.

Table 2. Change rate and estimation error.

Division
Rotational inertia

average change rate
(kgm2/sec)

Estimation error (%)

Average Standard
deviation

Without
material 396.46 -0.41 7.84

With
material 1,563.88 -1.53 5.18

using commercial software, which is capable of dynamic
body modeling and analysis. Figs. 6 and 7 illustrate the
estimated result of rotational inertia using the proposed
algorithm.

Table 2 shows a summary of the average change rate
and estimated errors of rotational inertia according to the
working conditions.
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(a) Estimation result: rotational inertia.

(b) Rotational inertia estimation error distribution: with up-
dating.

(c) Estimation result: damping coefficient.

(d) Updating result: damping coefficient. (e) Swing acceleration estimation.

(f) Standard deviation: LKF residual. (g) Updating result: forgetting factors.

Fig. 6. Results: without material.

As illustrated in Figs. 6 and 7, even under the with-
material condition (sand stone, 425 kg) in which rotational
inertia largely changes, the proposed rotational inertia es-
timation algorithm showed a reasonable estimation result,

with an average 0% estimation error and 5% standard de-
viation. Moreover, although rotational inertia changes due
to the working posture of working parts, it has been vali-
dated that good estimation performance is achieved by ap-
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(a) Estimation result: rotational inertia.

(b) Rotational inertia estimation error distribution: with up-
dating.

(c) Estimation result: damping coefficient.

(d) Updating result: damping coefficient. (e) Swing acceleration estimation.

(f) Standard deviation: LKF residual. (g) Updating result: forgetting factors.

Fig. 7. Results: with material (sand stone, 425 kg).

plying a reasonable forgetting factor independently. Fig. 6
presents a situation in which rotational inertia increases by
approximately 1,500 kgm2, in general, through position
change without having materials in the bucket. It has been

confirmed that the estimation performance of the LKF de-
creases due to the rapid change in rotational acceleration
when an excavator decelerates during rotation. However,
by the damping coefficient and forgetting factor updating
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rules suggested in the study, it is confirmed that the es-
timate does not diverge from the nominal value and the
actual rotational inertia is reasonably estimated. Fig. 7 il-
lustrates the condition in which a five-ton excavator, the
object excavator, works containing the maximum amount
of materials based on the data. It is a working condition
under which the excavator rotates with a rotational inertia
changing by approximately 7,000 kgm2due to the working
posture change of the equipment. As illustrated in Table
2, the rate of change of rotational inertia under the with-
material condition is approximately four times that under
the without-materials condition. This shows a relatively
large change in rotational inertia. However, it is confirmed
that rotational inertia is reasonably estimated by the esti-
mation algorithm based on the updating rule. As shown
in Figs. 6 and 7, the updating rule of the suggested for-
getting factor calculates the standard deviation of the LKF
residual in real time. In addition, parameter estimation
was possible by reasonably considering the change char-
acteristics possessed by each estimate, and comparing this
to the disturbance which is analyzed based on error dy-
namics. If the damping coefficient, which is estimated
not to diverge by the defined damping coefficient updat-
ing rule, is outside of a certain range, it was confirmed
that the value is updated and becomes convergent.

4.1. Comparison with another estimation algorithm
The performance of the inertia estimation algorithm

proposed in this paper was analyzed by comparing it with
another estimation algorithm. In order to conduct the
performance analysis, the Sliding Mode Observer (SMO)
based estimation algorithm was used [17]. The observer
equation was defined based on the swing dynamics in (1)
to estimate rotational inertia. The defined observer equa-
tion formed as a state space equation is shown as[ ˙̂xs,1

˙̂xs,2

]
=

[
0 1
0 0

][
x̂s,1

x̂s,2

]
+

[
0

−bxs,2 −Tf +Tsw

]
v,

(49)

where x̂s,1 and x̂s,2 represent estimated states of θsw and
θ̇sw, respectively; and v is a discontinuous injection term.
In order to secure the stability of the SMO, the observer
and linear coordinate transformation matrices have been
defined as follows:

C =
[

1 1
]T

, (50)

TC =
[

nullspace(C)T C
]T

. (51)

Without a loss of generality of the transformed swing
dynamic equation and observer equation, the error dynam-
ics can be divided into two parts, state and output. The
separate equations are as follows:

ė1 = A11e1 +A12ey +F1v, (52)

ėy = A21e1 +A22ey +F2v. (53)

Fig. 8. Estimation results using SMO.

Ai j (i & j = 1, 2) and Fi (i = 1, 2) are the transformed
system and disturbance matrices, respectively, from (49);
and e1 and ey represent error terms for state and output,
respectively. Based on the eta-reachability condition in
SMO, ey can converge to zero in finite time using the in-
jection term in (54).

v = ρsign(ey), (54)

where ρ is the magnitude of the injection term that should
be determined to meet the eta-reachability condition for
stability. The equivalent injection term veq can then be
derived based on (53) as follows:

veq =−F−1
2 A21e1. (55)

By substituting the equivalent injection term into (52),
the error dynamics for states can be derived as follows:

ė1 =
(
A11 −F1F−1

2 A21
)

e1. (56)

It can be found that the pole of the error dynamics for
states in (56) always has a value of -1. Therefore, stability
can always be secured. Based on the comparison between
the observer equation and the swing dynamic equation,
it can be found that the derived equivalent injection term
represents the inverse of rotational inertia. The rotational
inertia can be estimated based on the following equation:

Jt ≈ 1
/

veq. (57)

The equivalent injection term has been derived using
a first-order filter. Fig. 8 presents the estimation results
using SMO, and Fig. 9 shows the comparison results of
the proposed algorithm and the SMO-based algorithm.

The tau in Fig. 8 is the time constant of the first-order
filter used to generate the equivalent injection. As can
be seen in Fig. 8, the variation of the estimated value de-
creases as the value of tau increases. However, it can be
seen that the estimation delay increases as the value of tau
increases. In Fig. 9, the estimation results are shown using
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Fig. 9. Comparison results: the proposed algorithm (with
material) and SMO-based algorithm.

Table 3. Comparison of the two estimation algorithms.

Division RLS-based
algorithm

SMO-based
algorithm

Disadvantage

Relatively exact
initial conditions

are required
(rotational inertia

and velocity)

All parameters are
required;

proper tau value is
required

Advantage

All parameters are
not required (only
swing velocity and
damping coefficient

are required)

Initial conditions
are not required

(convergence
property)

two algorithms, the RLS-based algorithm and the SMO-
based algorithm. All of the results in Fig. 9 show reason-
able estimation performance. However, some differences
exist between the proposed algorithm and the SMO-based
algorithm. Table 3 presents a comparison of the two esti-
mation algorithms.

After a careful comparison of the two estimation algo-
rithms, it is found that the estimation algorithm proposed
in this study uses only rotational velocity and a nominal
damping coefficient. Relatively exact initial conditions of
rotational inertia and velocity are required to secure the
property of convergence. It was confirmed that rotational
inertia can be reasonably estimated using the proposed es-
timation algorithm when it largely changes in the dumping
scenario. However, there exists a limitation in which the
estimation algorithm should have access to certain char-
acteristics of the system, such as process noise and mea-
surement noise, used in the linear LKF. Therefore, we are
planning to develop a real-time rotational inertia estima-
tion algorithm by using an unscented Kalman filter with-
out noise information about the system in future studies.
The next section presents the conclusions of the study.

5. CONCLUSION

This study proposed an algorithm is based on RLS with
a multiple forgetting factor to estimate the rotational in-

ertia of an excavator in real time. An excavator normally
operates with rotational motion. Fatal accidents, such as
those involving collisions with surrounding objects, of-
ten occur due to the carelessness of equipment operators
and blind spots. Applying safety control systems such as
emergency braking systems is critical to prevent typical
accidents at construction sites, such as collisions. How-
ever, the rotational inertia of the equipment, which affects
the dynamic behavior of excavators, varies with the mate-
rials and working posture. Therefore, a rotational inertia
estimation is required to implement a safety control sys-
tem for collision avoidance. In this paper, two updating
rules were applied to enhance the estimation performance
of the suggested rotational inertia estimation algorithm.
The first rule updates the damping coefficient, which can
be derived by experiment and can maintain a relatively
certain value. The second rule updates the forgetting fac-
tor by considering the estimation performance of the ap-
plied LKF. To update the forgetting factor, the study an-
alyzed the disturbance of the error dynamics of the LKF
based on probabilistic analysis. A performance evalua-
tion of the estimation algorithm was conducted using ro-
tational inertia, which was analytically deduced based on
an actual working scenario. In addition, the SMO-based
estimation algorithm was compared with the RLS-based
estimation algorithm proposed in this study [17, 18]. Re-
sults of the performance evaluation demonstrated a rea-
sonable estimation in a working scenario. In addition, it
was shown that materials largely affect the change in ro-
tational inertia. Overall, it was confirmed that the updat-
ing rules can enhance estimation performance. Further-
more, the proposed estimation algorithm achieves reason-
able estimation performance, despite using only rotational
velocity and a nominal damping coefficient. It was also
found that a limitation exists in which the estimation per-
formance of the proposed algorithm is affected by the es-
timated initial value, as well as whether or not the noise
statistics information used for the LKF is known. The dif-
ficulties involved in using the proposed algorithm can be
summarized as follows:

1) Initial conditions, such as rotational inertia, speed,
and covariance should be known.

2) The damping coefficient should be known.

3) Forgetting factors are not optimized for estimation.

Therefore, we plan to improve the estimation perfor-
mance of rotational inertia estimation by developing and
applying a change detection algorithm for errors that
have probabilistic traits, along with applying an unscented
LKF. We also plan to develop a realistic performance eval-
uation by applying field tests. The proposed estimation al-
gorithm and performance evaluation have been designed
and conducted in a Matlab/Simulink environment. It is
expected that the results of this study can be practically
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applied to the safety control systems of actual excavators
in the future.
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