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Robust H∞ Control of Uncertain Stochastic Systems with Time-varying
Interval Delays
Cheung-Chieh Ku* and Guan-Wei Chen

Abstract: A robust delay-dependent stability criterion for discrete-time uncertain stochastic systems is proposed to
achieve asymptotical stability and H∞ performance in this paper. Based on modeling approaches, Linear Parameter
Varying (LPV) system with multiplicative noise term is built to represent uncertain stochastic systems. Moreover,
state and input delays are considered as two individual time-varying interval cases for general effect. Employing
a novel Lyapunov-Krasovskii function, Jensen inequality and transform technology, some relaxed sufficient con-
ditions are derived into Linear Matrix Inequality (LMI) forms to apply convex optimization algorithm. Through
solving the derived conditions, Gain-Scheduled (GS) controller can be designed such that robust asymptotical sta-
bility and H∞ performance of closed-loop system are achieved in the mean square. At last, two numerical examples
are provided to demonstrate applicability and effectiveness of this paper.

Keywords: Discrete Jensen ineqaulity, H∞ control scheme, LPV systems, Lyapunov-Krasovskii function, Stochas-
tic systems.

1. INTRODUCTION

Practically, stochastic behavior often appears around
operated environment and it causes poor performance in
control engineering. Thus, control problem of stochastic
systems is an important issue and has been widely dis-
cussed by [1–5]. In [1, 2], an external disturbance was
employed to describe stochastic behavior of systems. Re-
ferring to [3, 4], some sliding-mode control schemes have
been proposed to stabilize stochastic systems described by
Markovian jumping parameters. Different to [1–4], the
stochastic behavior was formulated as multiplicative noise
term by using stochastic modeling approach [5]. Based on
the modeling approach, many stability criteria have been
developed for linear stochastic systems [6–8] and nonlin-
ear stochastic systems [9]. Moreover, H∞ controller design
methods have been proposed by [10–16] to guarantee sta-
bility and attenuation performance of stochastic systems.
Robust stability criteria [12–14, 17, 18] have been devel-
oped for stochastic systems with admissible uncertain-
ties. Some delay-dependent control problems of stochas-
tic systems have been discussed by [19]. Studying the
above literature, it should be noted that stability criteria of
stochastic systems can be easily developed by extending
fundamental results of deterministic systems. Therefore,
the stochastic modeling approach is applied to describe
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stochastic systems.
Generally, uncertainty of stochastic systems is consid-

ered as a bounded description [12–14, 17, 18]. However,
the bounded description limits characterization of uncer-
tain systems. Besides, LPV system [20] provides a general
description of linear system whose elements are depend-
ing on a set of time-varying parameters. Based on struc-
ture of the LPV system, uncertain systems can be com-
pletely described via combining several linear systems and
weighting functions. Therefore, many robust stability cri-
teria [21–27] have been proposed via LPV systems. Fur-
thermore, GS design method [25–27] has been applied for
controller synthesis of the LPV systems. Applying the GS
design method, a H∞ GS controller design method [25,26]
and the delay-dependent stability criteria [27] have been
developed for the LPV systems, respectively. Unfortu-
nately, control issue of uncertain stochastic systems has
been discussed in few literature [28]. To extend the re-
sults of [28], the delay-dependent control issue of uncer-
tain stochastic systems is disucssed in this paper.

It is well known that time delay in great number of dy-
namic processes involving propagation/transportation of
material, information or energy [29–36] via common and
wicked phenomenon in industries and engineering sys-
tems. For the reason, it is an important issue for discussing
control problems of delayed dynamic systems. In the ex-
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isting researches, delay-independent criteria [29–31] and
delay-dependent criteria [32–37] are proposed to deal with
the effect of time-delay on dynamic systems. According
to length of delays, the delay-dependent criteria [31–33]
are often developed for analyzing stability of delayed sys-
tems, small delays especially. In addition, interval delay
[34–36] is a particular case that varies in a region whose
lower bound is not restricted to zero. From [27], a delay-
dependent stability criterion was proposed for LPV sys-
tems with state and input delays. However, the state and
input delays were considered as the same case in [27].
To consider general delay effect, state and input delays
are concerned as individual time-varying interval delay in
this paper. To the best of our knowledge, the robust H∞
delay-dependent stability criterion of LPV stochastic sys-
tems with state and input delays is still an open problem.

Motivated the above illustration, the H∞ delay-
dependent robust criterion is proposed to deal with stabil-
ity and stabilization problem of uncertain stochastic sys-
tems with time delays. To propose the delay-dependent
criterion for LPV stochatic systems with time-delays,
some sufficient conditions are derived and converted into
extended LMI form to apply convex optimization algo-
rithm [37]. Through solving those LMI conditions, one
can find some feasible solutions to build GS controller
such that the uncertain stochastic system with time delays
is asymptotically stable with H∞ performance index in the
mean square. The advantages of this paper are furtherly
concluded as follows: 1) A more general robust stability
criterion than the related works [20–25, 27] is developed
according to the consideration of stochastic behaviors. 2)
State and input delays are considered as two individual
time-varying interval cases for general delay effect on
the system. 3) The disturbance attenuation performance
is dealt with H∞ control shceme. 4) A novel parameter
dependent Lyapunov-Krasovskii function is proposed to
derive some sufficient conditions to propose a relaxed
GS controller design method. Finally, two examples are
proposed to demonstrate the advantages of this paper.

Notation: The following notations are applied in this
paper. The I denotes identity matrix. The diag{•,•} de-
notes a block-diagonal matrix with element •. The ΛΛΛdiag

2×2
denotes the two blocks in diagonal matrix with element

ΛΛΛ, such as ΛΛΛdiag
2×2 =

[
ΛΛΛ 0
0 ΛΛΛ

]
. The ΛΛΛi× j denotes a matrix

with dimension i× j and its elements are ΛΛΛ, for example:

ΛΛΛ2×2 =

[
ΛΛΛ ΛΛΛ
ΛΛΛ ΛΛΛ

]
. The E {Q(•)} denotes the expected

value of Q(•).

2. SYSTEMS DESCRIPTIONS AND PROBLEM
FORMULATIONS

In this section, the following discrete-time LPV
stochastic systems with time-varying interval delays are

considered.

x(k+1)

= A(α (k))x(k)+At (α (k))x(k−h(k))

+B(α (k))u(k)+Bt (α (k))u(k−g(k))

+E(α (k))w(k)

+
q

∑
e=1

((
Āe (α (k)) x(k) + Āte (α (k))x(k−h(k))

+ B̄e (α (k))u(k)+ B̄te (α (k))u(k−g(k))

+Ēe (α (k))w(k)
)

βe (k)
)
, (1)

x(k) = ξ (k) , k ∈ [−τ,−τ +1, . . . , 0] ,

τ = max(hmax,gmax) ,

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the con-
trol input vector, x(k−h(k)) ∈ Rn and u(k−g(k)) ∈ Rm

are respectively the state delay vector and the control in-
put delay vector which satisfy, 0 ≤ hmin ≤ h(k) ≤ hmax

and 0 ≤ gmin ≤ g(k) ≤ gmax, w(k) ∈ Rp is the ex-
ogenous input, βe (k) are discrete type Brownian mo-
tion satisfying independent increment property [5],
i.e., E {x(k)βe (k)} = 0, E {βi (k)β j (k)} = 0 for i ̸= j
and E

{
β 2

e (k)
}
= ρ2

e , and ξ (k) is the initial condition
of system (1). A(α (k)) ∈ Rn×n, At (α (k)) ∈ Rn×n,
B(α (k)) ∈ Rn×m, Bt (α (k)) ∈ Rn×m, E(α (k)) ∈ Rn×p,
Āe (α (k)) ∈ Rn×n, Āte (α (k)) ∈ Rn×n, B̄e (α (k)) ∈ Rn×m,
B̄te (α (k)) ∈ Rn×m and Ēe (α (k)) ∈ Rn×p are the ma-
trices depending on time-varying parameters vector
α (k)=

[
α1 (k) α2 (k) · · · αr (k)

]
. Moreover, these

matrices can be furtherly defined by the following equa-
tion:[

A(α (k)) At (α (k)) B(α (k)) Bt (α (k))
Āe (α (k)) Āte (α (k)) B̄e (α (k)) B̄te (α (k))

E(α (k))
Ēe (α (k))

]
=

N

∑
i=1

ϑi (k)
[

Ai Ati Bi Bti Ei

Āie Ātie B̄ie B̄tie Ēie

]
, (2)

where N = 2r, and ϑi (k) is measurable at each time instant
and satisfies ∑N

i=1 ϑi (k) = 1 and 0 ≤ ϑi (k) ≤ 1. The Ai,
Ati , Bi, Bti , Ei, Āie, Ātie , B̄ie, B̄tie and Ēie are the constant
matrices with appropriate dimensions. For simplifying the
following context, α (k) ∆

= α and ϑi (k)
∆
= ϑi are defined.

Based on (2), system (1) can be furtherly rewritten as fol-
lows:

x(k+1) =
N

∑
i=1

ϑi (Aix(k)+Ati x(k−h(k))

+Biu(k)+Bti u(k−g(k))+Eiw(k)

+
q

∑
e=1

((
Āiex(k)+ Ātie x(k−h(k))

+B̄ieu(k)+ B̄tie u(k−g(k))
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+Ēiew(k)
)

βe (k)
))

. (3)

In this paper, stabilization problem of system (1) is dealt
with the following state feedback GS controller.

u(k) =−F(α)x(k) , (4a)

or

u(k) =−

(
N

∑
j=1

ϑ jF j

)
x(k) . (4b)

Since the existence of input delay, the follwing delayed
GS controller is naturally and necessarily assumed.

u(k−g(k)) =−F(α)x(k−g(k)) , (5a)

or

u(k−g(k)) =−

(
N

∑
j=1

ϑ jF j

)
x(k−g(k)) . (5b)

It should be pointed out that g(k) is not strictly required
equal to h(k). Substituting (4) and (5) into system (1), the
following closed-loop system can be inferred.

x(k+1) =X(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k)

+
q

∑
e=1

((
X̄e (α)x(k)+ Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)

βe (k)
)

=
N

∑
i=1

N

∑
j=1

ϑiϑ j (Xi jx(k)+Ati x(k−h(k))

−Yti j x(k−g(k))+Eiw(k)

+
q

∑
e=1

((
X̄i jex(k)+ Ātie x(k−h(k))

−Ȳti je x(k−g(k))+ Ēiew(k)
)

βe (k)
))

.
(6)

where X(α) = A(α)−Y(α), X̄e (α) = Āe (α)− Ȳe (α),
Y(α) = B(α)F(α), Ȳe (α) = B̄e (α)F(α), Yt (α) =
Bt (α)F(α), Ȳte (α) = Bte (α)F (α), Xi j = Ai − Yi j,
X̄i je = Āie− Ȳi je, Yi j = BiF j, Ȳi j = B̄iF j, Yti j = Bti F j and
Ȳti je = B̄tie F j.

Remark 1: It should be noted that Takagi-Sugeno (T-S)
fuzzy system and LPV system are expressed as the simi-
lar polytopic-type description. Referring to [17–19], the
combination of states is important index to build a mem-
bership function of T-S fuzzy system. Thus, the final out-
put of fuzzy system is determined by the stated function
of time. For LPV system [20–22, 28], the combination of
time-varying parameters is applied to design the weight-
ing functions to determine output of LPV system. There-
fore, the structural component of T-S fuzzy system is not
the same one of LPV system. However, according to the

similar polytopic-type description, most analysis methods
used to T-S fuzzy systems can also be applied to LPV sys-
tems.

In order to discuss control issue of the closed-loop sys-
tem (6), the following lemmas and definitions are pro-
posed for the derivative of this paper. Firstly, the following
lemmas are introduced to deal with delay terms.

Lemma 1 [33]: For any compatible constant ma-
trices R = RT > 0 , scalars hmin and hmax satisfy-
ing 0 ≤ hmin ≤ h(k) ≤ hmax and vector function ϖ :
[hmin, hmin +1, ..., hmax] → Rn such that the following
sums are well-defined, it holds that

− (∆h+1)
k−hmin

∑
k−hmax

ϖT (k)Rϖ (k)

<−

(
k−hmin

∑
k−hmax

ϖ (k)

)T

R

(
k−hmin

∑
k−hmax

ϖ (k)

)
, (7)

where ∆h = hmax −hmin. □
Lemma 2 [36]: For symmetric positive definite matrix

R and any matrix M satisfying
[

R M
MT R

]
≥ 0, scalars

hmin > 0 and hmax > 0 satisfying hmin < hmax, and vector
function ϖ̃ :

[
hmin, hmin +1, ..., hmax

]
→Rn such that

the following sums are well-defined, it holds that

−∆h
k−hmin

∑
k−hmax

ϖT (k)Rϖ (k)

≤−


k−h(k)−1

∑
s=k−hmax

ϖ (s)

k−hmin−1
∑

s=k−h(k)
ϖ (s)


T[

R M
MT R

]
k−h(k)−1

∑
s=k−hmax

ϖ (s)

k−hmin−1
∑

s=k−h(k)
ϖ (s)

,
(8)

where ∆h = hmax −hmin. □
Besides, the following definitions are applied to ensure

H∞ performance index and stability concept of the closed-
loop system (6).

Definition 1 [32]: Given a positive real number η , the
H∞ performance constraint for the closed-loop system (6)
is introduced in the following form:

∞

∑
0

xT (k)Sx(k)< η2
∞

∑
0

wT (k)w(k) , ∀w(k) ̸= 0, (9)

where η is a prescribed value which denotes the worst
case effect of w(k) on x(k), and S is a positive definite
weighting matrix. □

Definition 2 [5]: If the following condition holds, the
closed-loop system (6) is asymptotically stable in the
mean square.

E
{
∥x(k)∥2

}
< E

{
∥x(0)∥2

}
. (10)

□



246 Cheung-Chieh Ku and Guan-Wei Chen

Based on the above lemmas and definitions, some suf-
ficient conditions are derived in the following section
for guaranteeing the robust asymptotical stability and H∞
performance of the closed-loop system (6) in the mean
square.

3. ROBUST H∞ DELAY-DEPENDENT STABILITY
CRITERION

In this section, a relaxed robust H∞ delay-dependent sta-
bility criterion is developed via using a novel Lyapunov-
Krasovskii function and the above lemmas. Based on the
proposed criterion, the asymptotical stability and H∞ per-
formance of the closed-loop system (6) are verified via
achieving the above definitions.

Theorem 1: Given a value η and time delay constants
hmax, hmin, gmax and gmin, if there exists the feedback gains
Fi, positive definite matrices Pi, S and Qb for b = 1, 2, . . .,
10, and any matrices M and N satisfying the following
conditions, then the closed-loop system (6) is asymptot-
ically stable with disturbance attenuation η in the mean
square.

ΘΘΘ+Z+ΓΓΓ < 0 for i, j, l = 1, 2, . . ., N, (11a)[
Q8 M
MT Q8

]
≥ 0, (11b)

and [
Q10 N
NT Q10

]
≥ 0, (11c)

where

φ =
[

φX φE 0 0 φAt 0 0 φYt

]
,

X̃i j = Xi j − I,

φT
X =

[
XT

i j X̃T
i j ×ΛΛΛ1×4 X̄T

i je ×ΛΛΛ1×5
]
,

φT
E =

[
ET

i j ×ΛΛΛ1×5 ĒT
i je ×ΛΛΛ1×5

]
,

ΓΓΓ = diag
{

S, −η2I, 06×6
}
,

φT
At
=
[

AT
ti j
×ΛΛΛ1×5 ĀT

ti je
×ΛΛΛ1×5

]
,

φT
Yt
=
[
−YT

ti j
×ΛΛΛ1×5 −ȲT

ti je
×ΛΛΛ1×5

]
,

ΘΘΘ =
q

∑
e=1

ρ2
e φTℵℵℵdiag

2×2φ,

ℵℵℵ = diag
{

Pl , h2
minQ7, ∆h2Q8, g2

minQ9, ∆g2Q10
}
,

Z =



Z11 ∗ ∗ ∗
0 0 ∗ ∗
0 0 −(Q1 +Q8) ∗

Q7 0 M Z44

0 0 Q8 −M Q8 −MT

0 0 0 0
Q9 0 0 0
0 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Z55 ∗ ∗ ∗
0 −Q4 −Q10 ∗ ∗
0 N Z77 ∗
0 Q10 −N Q10 −NT Z88


,

Z11 = Q1 +Q2 +(1+∆h)Q3 +Q4 +Q5

+(1+∆g)Q6 − (Q7 +Q9 +P j) ,

Z44 =−(Q2 +Q7 +Q8) ,

Z55 = M+MT − (Q3 +2Q8) ,

Z77 =−(Q5 +Q9 +Q10)

and

Z88 = N+NT − (Q6 +2Q10) .

Proof: Choose the following Lyapunov-Krasovskii
function:

V (x(k)) =
9

∑
j=1

Vj (x(k)) , (12)

where

V1 (x(k)) = xT (k)P(α (k))x(k) ,

η (k) = x(k+1)− x(k) ,

V2 (x(k)) =
k−1

∑
s=k−hmax

xT (s)Q1x(s)

+
k−1

∑
s=k−hmin

xT (s)Q2x(s)

+
k−1

∑
s=k−h(k)

xT (s)Q3x(s) ,

V3 (x(k)) =
k−1

∑
s=k−gmax

xT (s)Q4x(s)

+
k−1

∑
s=k−gmin

xT (s)Q5x(s)

+
k−1

∑
s=k−g(k)

xT (s)Q6x(s) ,

V4 (x(k)) =
−hmin+1

∑
d=−hmax+2

k−1

∑
s=k+d−1

xT (s)Q3x(s) ,

V5 (x(k)) =
−gmin+1

∑
d=−gmax+2

k−1

∑
s=k+d−1

xT (s)Q6x(s) ,

V6 (x(k)) =
−1

∑
d=−hmin

k−1

∑
s=k+d

hminηT (s)Q7η (s) ,

V7 (x(k)) =
−hmin−1

∑
d=−hmax

k−1

∑
s=k+d

∆hηT (s)Q8η (s) ,
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V8 (x(k)) =
−1

∑
d=−gmin

k−1

∑
s=k+d

gminηT (s)Q9η (s) and

V9 (x(k)) =
−gmin−1

∑
d=−gmax

k−1

∑
s=k+d

∆gηT (s)Q10η (s) .

Calculating the difference of V (x(k)) along the trajec-
tories of (6) and taking the mathematical expectation of it,
one has

E {∆V1 (x(k))}= E
{

xT (k+1)P(α (k+1))x(k+1)

−xT (k)P(α (k))x(k)
}

= E {(X(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k)

+
q

∑
e=1

((
X̄e (α)x(k) + Āte (α)x(k−h(k))

− Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)

βe (k)
))T P(ε)(X(α)x(k)

+At (α)x(k−h(k))−Yt (α)x(k−g(k))

+E(α)w(k)+
q

∑
e=1

((
X̄e (α)x(k)

+Āte (α)x(k−h(k))− Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)

βe (k)
))

−xT (k)P(α)x(k)
}
,
(13)

where P(ε) = P(α (k+1)) and ε ∆
= ε (k). Without loss

of generality, P(ε) = ∑N
l=1 εlPl is well defined with εl

∆
=

εl (k). And, εl is a time varying parameter satisfying
∑N

l=1 εl = 1 and 0 ≤ εl ≤ 1.

E {∆V2 (x(k))}

= E

{
k

∑
s=k−hmax+1

xT (s)Q1x(s) −
k−1

∑
s=k−hmax

xT (s)Q1x(s)

+
k

∑
s=k−hmin+1

xT (s)Q2x(s)−
k−1

∑
s=k−hmin

xT (s)Q2x(s)

+
k

∑
s=k−h(k+1)+1

xT (s)Q3x(s)−
k−1

∑
s=k−h(k)

xT (s)Q3x(s)

}
= E

{
xT (k)(Q1 +Q2 +Q3)x(k)

− xT (k−hmax)Q1x(k−hmax)

− xT (k−hmin)Q2x(k−hmin)

− xT (k−h(k))Q3x(k−h(k))

+
k−1

∑
s=k−h(k+1)+1

xT (s)Q3x(s)−
k−1

∑
s=k−h(k)+1

xT (s)Q3x(s)

}
= E

{
xT (k)(Q1 +Q2 +Q3)x(k)

− xT (k−hmax)Q1x(k−hmax)

− xT (k−hmin)Q2x(k−hmin)

− xT (k−h(k))Q3x(k−h(k))

+
k−h(k)

∑
s=k−h(k+1)+1

xT (s)Q3x(s)

}
≤ E

{
xT (k)(Q1 +Q2 +Q3)x(k)

− xT (k−hmax)Q1x(k−hmax)

− xT (k−hmin)Q2x(k−hmin)

− xT (k−h(k))Q3x(k−h(k))

+
k−gmin

∑
s=k−gmax+1

xT (s)Q6x(s)

}
, (14)

E {∆V3 (x(k))}
≤ E

{
xT (k)(Q4 +Q5 +Q6)x(k)

− xT (k−gmax)Q4x(k−gmax)

− xT (k−gmin)Q5x(k−gmin)

− xT (k−g(k))Q6x(k−g(k))

+
k−gmin

∑
s=k−gmax+1

xT (s)Q6x(s)

}
, (15)

E {∆V4 (x(k))}

= E

{
−hmin+1

∑
d=−hmax+2

k

∑
s=k+d

xT (s)Q3x(s)

−
−hmin+1

∑
d=−hmax+2

k−1

∑
s=k+d−1

xT (s)Q3x(s)

}

= E

{
∆hxT (k)Q3x(k)−

k−hmin

∑
s=k−hmax+1

xT (s)Q3x(s)

}
,

(16)

E {∆V5 (x(k))}

= E

{
−gmin+1

∑
d=−gmax+2

k

∑
s=k+d

xT (s)Q6x(s)

−
−gmin+1

∑
d=−gmax+2

k−1

∑
s=k+d−1

xT (s)Q6x(s)

}

= E

{
∆gxT (k)Q6x(k)−

k−gmin

∑
s=k−gmax+1

xT (s)Q6x(s)

}
,

(17)

E {∆V6 (x(k))}

= hminE

{
−1

∑
d=−hmin

k

∑
s=k+d+1

ηT (s)Q7η (s)

−
−1

∑
d=−hmin

k−1

∑
s=k+d

ηT (s)Q7η (s)

}
= E

{
h2

minηT (k)Q7η (k)

−hmin

k−1

∑
s=k−hmin

ηT (s)Q7η (s)

}
. (18)
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Substituting (6) into the first term of the right-hand side
in (18), i.e., E

{
h2

minηT (k)Q7η (k)
}

, one has

E
{

h2
minηT (k)Q7η (k)

}
≤ h2

minE
{(

X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k)

+
q

∑
e=1

((
X̄e (α)x(k)+ Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))+ Ēe (α)w(k)
)

×βe (k)))
T Q7

(
X̃(α)x(k)

+At (α)x(k−h(k))−Yt (α)x(k−g(k))

+E(α)w(k)+
q

∑
e=1

((
X̄e (α)x(k)

+ Āte (α)x(k−h(k))− Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)

βe (k)
))}

, (19)

where X̃(α) = X(α)− I.
Based on Lemma 1, the following inequality can be ob-

tained from the second term of the right-hand side in (18),
i.e., −hmin ∑k−1

s=k−hmin
η (s)T Q7η (s).

−hmin

k−1

∑
s=k−hmin

η (s)T Q7η (s)

≤−
k−1

∑
s=k−hmin

η (s)T Q7

k−1

∑
s=k−hmin

η (s)

=−(x(k)− x(k−hmin))
T Q7 (x(k)− x(k−hmin)) .

(20)

According to (19) and (20), ∆V6 (x(k))can be furtherly
inferred as follows:

E{∆V6 (x(k))}
≤ h2

minE
{(

X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))

+ E(α)w(k))T Q7
(
X̃(α)x(k)

+At (α)x(k−h(k))−Yt (α)x(k−g(k))

+E(α)w(k))+
q

∑
e=1

ρ2
e

(
X̄e (α)x(k)

+ Āte (α)x(k−h(k))− Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)T Q7

(
X̄e (α)x(k)

+ Āte (α)x(k−h(k)) −Ȳte (α)x(k−g(k))

+Ēe (α)w(k)
)}

− (x(k)− x(k−hmin))
T Q7 (x(k)− x(k−hmin)) .

(21)

In addition, one has

E {∆V7 (x(k))}

= ∆h

(
−hmin−1

∑
d=−hmax

k

∑
s=k+d+1

ηT (s)Q8η (s)

−
−hmin−1

∑
d=−hmax

k−1

∑
s=k+d

ηT (s)Q8η (s)

)

=

(
∆h2ηT (k)Q8η (k)−∆h

−hmin−1

∑
s=−hmax

ηT (s)Q8η (s)

)
.

(22)

Substituting (6) into the first term of the right-hand
side in (22), i.e., E

{
∆h2ηT (k)Q8η (k)

}
, the following in-

equality can be inferred.

E
{

∆h2ηT (k)Q8η (k)
}

≤ ∆h2E
{(

X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k)

+
q

∑
e=1

((
X̄(α)x(k)+ Āt (α)x(k−h(k))

− Ȳte x(k−g(k)) +Ēe (α)w(k)
)

βe (k)
))T

×Q8
(
X̃(α) x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k)

+
q

∑
e=1

((
X̄e (α)x(k)+ Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))+Ēe (α)w(k)
)

βe (k)
))}

.
(23)

Based on Lemma 2, the following inequality can be ob-
tained from the second term of the right-hand side in (22),
i.e., −∆h∑k−hmin−1

s=−hmax
ηT (s)Q8η (s).

−∆h
−hmin−1

∑
s=−hmax

ηT (s)Q8η (s)

≤−


k−h(k)−1

∑
s=k−hmax

η (s)

k−hmin−1
∑

s=k−h(k)
η (s)


T[

R M
MT R

]
k−h(k)−1

∑
s=k−hmax

η (s)

k−hmin−1
∑

s=k−h(k)
η (s)


=−ξ T

h (k)Zhξh (k) , (24)

where ξh (k)=
[

x(k−hmax) x(k−hmin) x(k−h(k))
]T

and Zh =

 −Q8 ∗ ∗
M −Q8 ∗

Q8 −M Q8 −MT −2Q8

.

Based on (23) and (24), ∆V7 (x(k)) can be inferred.

E {∆V7 (x(k))}
≤ ∆h2E

{(
X̃(α)x(k) +At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k))T

×Q8
(
X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k))
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+
q

∑
e=1

ρ2
e

(
X̄e (α)x(k) + Āte (α)x(k−h(k))

− Ȳte (α)x(k−g(k))+ Ēe (α)

×w(k))T Q8
(
X̄e (α)x(k)+ Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))+ Ēe (α)w(k)
)}

−ξ T
h (k)Zhξh (k) . (25)

Furthermore, the following relations can be obtained
via the similar deriving process of ∆V6 (x(k)) and
∆V7 (x(k)), respectively.

E {∆V8 (x(k))}
≤ g2

minE
{(

X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))+E(α)w(k))T Q9
(
X̃ (α)x(k)

+At (α)x(k−h(k))−Yt (α)x(k−g(k))

+E(α)w(k))+
q

∑
e=1

ρ2
e

(
X̄e (α)x(k)+ Āte (α)

×x(k−h(k))− Ȳte (α)x(k−g(k))+ Ēe (α)w(k)
)T

×Q9
(
X̄e (α)x(k)+ Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))+ Ēe (α)w(k)
)}

− (x(k)− x(k−gmin))
T Q9 (x(k)− x(k−gmin)) ,

(26)

and

E {∆V9 (x(k))}
≤ ∆g2E

{(
X̃(α)x(k)+At (α)x(k−h(k))

−Yt (α)x(k−g(k))

+E(α)w(k))T Q10
(
X̃ (α)x(k)

+At (α)x(k−h(k))−Yt (α)x(k−g(k))

+
q

∑
e=1

ρ2
e

(
X̄e (α)x(k) + Āte (α)x(k−h(k))

−Ȳte (α)x(k−g(k))+ Ēe (α)w(k)
)T Q10

×
(
X̄e (α)x(k)+ Āte (α)x(k−h(k)) − Ȳte (α)

×x(k−g(k))+ Ēe (α)w(k)
)}

−ξ T
g (k)Zgξg (k) ,

(27)

where ξg (k)=
[

x(k−gmax) x(k−gmin) x(k−g(k))
]T

and Zg =

 −Q10 ∗ ∗
N −Q10 ∗

Q10 −N Q10 −NT −2Q10

. Via comb-

ing ∆Vi (x(k)) for i= 1, 2, . . ., 9, one can find the following
inequality:

E {∆V (x(k))} ≤
N

∑
i=1

N

∑
j=1

N

∑
l=1

ϑiϑ jεl (ΘΘΘ+Z) . (28)

Let us define the following performance function with
zero initial condition for all nonzero w(k).

JD =
t f

∑
0

(
xT (k)Sx(k)−η2wT (k)w(k)

)
. (29)

Then, for any nonzero w(k), one have

JD =E

{
t f

∑
0

(
xT (k)Sx(k)−η2wT (k)w(k)

)
+

t f

∑
0

∆V (x(k))−V (x(t f ))}

≤E

{
t f

∑
0

(
xT (k)Sx(k)−η2wT (k)w(k)

+∆V (x(k)))

}
=E
{

ξ T (k)ΨΨΨ(α)ξ (k)
}
, (30)

where ΨΨΨ(α) = ∑N
i=1 ∑N

j=1 ∑N
l=1 ϑiϑ jεl (ΘΘΘ+Z+ΓΓΓ) and

ξ (k) =
[

x(k) w(k) ξh (k) ξg (k)
]T .

According to 0 ≤ ϑi ≤ 1, 0 ≤ εl ≤ 1, ∑N
i=1 ϑi = 1 and

∑N
l=1 εl = 1, the following inequality can be obtained from

(11a).

N

∑
i=1

N

∑
j=1

N

∑
l=1

ϑiϑ jεl (ΘΘΘ+Z+ΓΓΓ)< 0. (31)

Obviously, because (11) holds, then ΨΨΨ(α) < 0 can be
found from (30). Due to ΨΨΨ(α)< 0, the following inequal-
ities can also be inferred.

JD < 0, (32)

or

E

{
t f

∑
0

xT (k)Sx(k)

}
< E

{
η2

t f

∑
0

wT (k)w(k)

}
.

(33)

According to (32) and (33), it is obvious to show that the
closed-loop system (6) driven by (4) and (5) satisfies H∞
performance in Definition 1 for all nonzero external dis-
turbance. Next, the asymptotical stability of (6) is proven.
If the sufficient conditions of this theorem are satisfied,
then ΨΨΨ(α) < 0 is held. By assuming w(k) = 0, the fol-
lowing inequalities can be found from (30).

E {∆V (x(k))}< E
{
−xT (k)Sx(k)

}
. (34)

According to S > 0, one can find E {∆V (x(k))}< 0 from
(34). Referring to Definition 2, the closed-loop system
(6) is asymptotically stable in the mean square due to
E {∆V (x(k))}< 0. The proof of this theorem is complete.

□
In Theorem 1, some sufficient conditions are derived to

analyze the asymptotical stability and H∞ performance of
the closed-loop system (6). However, those sufficient con-
ditions are not standard LMI problems that cannot be di-
rectly solved by the convex optimization algorithm. In the
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following theorem, the sufficient conditions are converted
into extended LMI form.

Theorem 2: Given a value η and time delay constants
hmax, hmin, gmax and gmin, if there exists the feedback gains
Ki, positive definite matrices P̄i, S̄ and Q̄b for b= 1, 2, · · · ,
10, any matrices M̄ and N̄, and a non-singular matrix G to
satisfy the following conditions, then closed-loop system
(6) is asymptotically stable with disturbance attenuation η
in the mean square.

Z̄ ∗ ∗ ∗ ∗ ∗
ΦΦΦ ∏∏∏P ∗ ∗ ∗ ∗

hmin ×Φ̃ΦΦ 0 ∏∏∏Q̄7 ∗ ∗ ∗
∆h×Φ̃ΦΦ 0 0 ∏∏∏Q̄8 ∗ ∗

gmin ×Φ̃ΦΦ 0 0 0 ∏∏∏Q̄9 ∗
∆g×Φ̃ΦΦ 0 0 0 0 ∏∏∏Q̄10

< 0

for i = j = l = 1, 2, . . ., N, (35a)[
Q̄8 M̄
M̄T Q̄8

]
≥ 0, (35b)

and [
Q̄10 N̄
N̄T Q̄10

]
≥ 0, (35c)

where

Z̄ =



Z̄11 ∗ ∗ ∗ ∗
0 −η2 ∗ ∗ ∗
0 0 −

(
Q̄1 + Q̄8

)
∗ ∗

Q̄7 0 M̄ Z̄44 ∗
0 0 Q̄8 −M̄ Q̄8 −M̄T Z̄55

0 0 0 0 0
Q̄9 0 0 0 0
0 0 0 0 ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

−
(
Q̄4 + Q̄10

)
∗ ∗

N̄ Z̄77 ∗
Q̄10 − N̄ Q̄10 − N̄T Z̄88


,

Z̄11 = Q̄1 + Q̄2 +(1+∆h)Q̄3 + Q̄4 + Q̄5

+(1+∆g)Q̄6 − Q̄7 − Q̄9 − P̄ j + S̄,

Z55 = M̄+M̄T −
(
Q̄3 +2Q̄8

)
,

Z̄77 =−
(
Q̄5 + Q̄9 + Q̄10

)
,

Z̄88 = N̄+ N̄T −
(
Q̄6 +2Q̄10

)
,

Z̄44 =−
(
Q̄2 + Q̄7 + Q̄8

)
,

P̄l = GT PlG, Q̄b = GT QbG, M̄ = GT MG,

N̄ = GT NG, S̄ = GT SG,

∏∏∏P̄ =
(
P̄l −GT −G

)
× Idiag

2×2,

∏∏∏Q̄7 =
(
Q̄7 −GT −G

)
× Idiag

2×2,

∏∏∏Q̄8 =
(
Q̄8 −GT −G

)
× Idiag

2×2,

∏∏∏Q̄9 =
(
Q̄9 −GT −G

)
× Idiag

2×2,

∏∏∏Q̄10 =
(
Q̄10 −GT −G

)
× Idiag

2×2,

ΦΦΦ =
q

∑
e=1

ρ2
e ×
[

AiG−BiK j Ei Ati G
ĀieG− B̄ieK j Ēie Ātie G

−BiK j 0 0 0 0
−B̄ieK j 0 0 0 0

]
,

and

Φ̃ΦΦ =
q

∑
e=1

ρ2
e ×
[

AiG−BiK j −G Ei Ati G
ĀieG− B̄ieK j Ēie Ātie G

−BiK j 0 0 0 0
−B̄ieK j 0 0 0 0

]
.

Proof: According to P−1
l > 0 and Q−1

b > 0, the follow-
ing inequalities can be held.

GT PlG−GT −G ≥−P−1
l , (36)

and

GT QbG−GT −G ≥−Q−1
b . (37)

Based on (36) and (37), if (35a) is held, the following in-
equality can be held.

Z̄ ∗ ∗ ∗ ∗ ∗
ΦΦΦ

⨿⨿⨿
P

∗ ∗ ∗ ∗
hmin ×Φ̃ΦΦ 0

⨿⨿⨿
Q7

∗ ∗ ∗

∆h×Φ̃ΦΦ 0 0
⨿⨿⨿

Q8
∗ ∗

gmin ×Φ̃ΦΦ 0 0 0
⨿⨿⨿

Q9
∗

∆g×Φ̃ΦΦ 0 0 0 0
⨿⨿⨿

Q10


< 0, (38)

where
⨿⨿⨿

P
=−P−1

l ×I2×2,
⨿⨿⨿

Q7
=−Q−1

7 ×I2×2,
⨿⨿⨿

Q8
=

−Q−1
8 × I2×2,

⨿⨿⨿
Q9

= −Q−1
9 × I2×2,

⨿⨿⨿
Q10

= −Q−1
10 ×

I2×2.
Pre- and pose- multiplying (38) by ϕ T and ϕ with

ϕ = diag
{(

G−1
)T × Idiag

8×8,I
diag
10×10

}
, the following inequal-

ity can be obtained as follows:

Z+ΓΓΓ ∗ ∗ ∗ ∗ ∗
χχχ

⨿⨿⨿
P

∗ ∗ ∗ ∗
hmin × χ̃χχ 0

⨿⨿⨿
Q7

∗ ∗ ∗

∆h× χ̃χχ 0 0
⨿⨿⨿

Q8
∗ ∗

gmin × χ̃χχ 0 0 0
⨿⨿⨿

Q9
∗

∆g× χ̃χχ 0 0 0 0
⨿⨿⨿

Q10


< 0, (39)
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where

χχχ =
q

∑
e=1

ρ2
e ×
[

Ai −BiF j Ei Ati
Āie − B̄ieF j Ēie Ātie

−BiF j 0 0 0 0
−B̄ieF j 0 0 0 0

]
and

χ̃χχ =
q

∑
e=1

ρ2
e ×
[

Ai −BiF j − I Ei Ati
Āie − B̄ieF j Ēie Ātie

−BiF j 0 0 0 0
−B̄ieF j 0 0 0 0

]
.

Applying Shur compliment [37] to (39), one has

ΘΘΘ+Z+ΓΓΓ < 0. (40)

Obviously, (40) is equal to (11a). Then, (11b) and (11c)
can be directly found by pre- and post-multiplying (35b)
and (35c) with

(
G−1

)T and G−1. Therefore, the proofs
of (35b) and (35c) are omitted here. Based on this proof,
it is obviously known that if one can find feasible solu-
tions to satisfy conditions (35) then the solutions can also
satisfy the conditions (11). The proof of this theorem is
completed. □

From Theorem 2, the convex optimization algorithm
can be directly used to find the feasible solutions of suffi-
cient conditions (35). With the obtained feasible solutions,
the feedback gains can be obtained by F j = K jG−1 to es-
tablish GS controllers (4) and (5) such that asymptotical
stability and H∞ performance of the closed-loop system
(6) are achieved in the mean square. In next section, some
simulated resluts are proposed to demonstrate the applica-
bility and effectiveness of the proposed design method.

Remark 2: In order to propose the relaxed GS con-
troller design method, a novel parameter-dependent
Lyapunov-Krasovskii function (12), Lemma 1 and
Lemma 2 are applied to derive some sufficient condi-
tions (11). Besides, these conditions are converted into
extended LMI form (35) to use convex optimization al-
gorithm. Although the conservatism of the sufficient
conditions is reduced, computational complexity and de-
mand are increased since many slack variables and huge
dimension. It is a worth issue to be discussed in our future
works.

4. SIMULATION RESULTS

In this section, two examples are empolyed to demon-
strate the applicability and effectiveness of the proposed
design method. The first example is to propose a compar-
ison between the proposed design method and method of
[27] to discuss their conservatism. In the second exam-
ple, a state-feedback stabilization problem of truck-trailer
system [38] with the added perturbation and multiplicative
noise terms is discussed.

Table 1. Compared results with fixing hmax = 1 .

η 0.03 0.04 0.05
[27] Infeasible feasible Feasible

This Paper Feasible Feasible Feasible
η 0.03 0.04 0.05

[27] Infeasible Infeasible Infeasible
This Paper Infeasible Feasible Feasible

Example 1: In this example, two cases are proposed
to discuss the conservatism of proposed design method by
comparing with the method of [27]. Referring to [27], the
delay-dependent criterion was developed for LPV deter-
ministic system with state and input delays which are the
same case. Let us consider the following LPV system.

x(k+1) =
2

∑
i=1

ϑi (k)(Aix(k)+Ati x(k−h(k))+Biu(k)

+Biu(k)+Bti u(k−h(k))+Eiw(k)) ,
(41)

where A1 =

[
0.013 −0.013

0 −0.117

]
, A2 =

[
0.013 −0.013

0 −0.013

]
,

At1 =

[
0 0.01
0 0.01

]
, At2 =

[
0 0.01
0 −0.01

]
, B1 =[

0.013
−0.052

]
, B2 =

[
0.013
−0.026

]
, Bt1 =

[
0

0.01

]
, Bt2 =[

0
−0.01

]
,E1 =

[
0

0.01

]
, E2 =

[
0

0.01

]
, 1 ≤ h(k) ≤

hmax, α1 (k) = |sin(k)| and α2 (k)= 1−|sin(k)|.
Case 1: Under fixing hmax = 1, the proposed design

method and the method of [27] are respectively applied
to find their corresponding minimum attenuating value η .
And, the results are stated in Table 1. From Table 1, the
minimum value η = 0.04 can be found by the method of
[27] when hmax = 1. Besides, η = 0.03 can be found by
using the proposed design method for hmax = 1.

In addition, by setting hmax = 2, an attenuating value
η satisfying the sufficient conditions of [27] cannot be
found. However, one can apply the proposed design
method to establish controllers (4) and (5) with the fol-
lowing feedback gains under η = 0.04 and hmax = 2.

F1 =
[

7.0876 11.4640
]
, and

F2 =
[

7.9402 15.6462
]
. (42)

From this case, it is easy to find that the attenuating
value η found by this paper is smaller than one found by
[27] under the same hmax. Besides, a case as finding hmax

under the same η is also an interested issue of discussing
the conservatism of the proposed design method. There-
fore, a comparison with [27] in searching hmax is proposed
in the following case.

Case 2: By fixing a attenuating value as η = 0.1, the
proposed design method and the method of [27] are re-



252 Cheung-Chieh Ku and Guan-Wei Chen

Table 2. Compared results with fixing η = 0.1.

hmax 0.1 . . .1 1.1 . . .2.9 3
[27] Feasible Infeasible Infeasible

This Paper Feasible Feasible Infeasible

spectively applied to find their corresponding allowable
bound hmax. Furthermore, the simulated results are stated
in Table 2. From Table 2, it is easy to find that the max-
imum allowed value hmax = 1.9 can be obtained by the
method of [27]. Besides, the maximum upper bound as
hmax = 2.9 can be found by the proposed design method.
In case as η = 0.1 and hmax = 2.9, the following feedback
gains are determined by this paper.

F1 =
[

3.8900 16.5327
]
, and

F2 =
[

4.5833 21.1669
]
. (43)

From the results of this case, the maximum value hmax

found by the proposed design method is bigger than one
found by [27].

In those cases, the relaxation of the proposed design
method can be demonstrated. And, this paper provides
the less conservative results than [27] for stabilizing (41).
Besides, the following example is provided to show the
importance of considering stochastic behavior and general
time-delay case.

Example 2: In this section, a truck-trailer system is
considered for discussing the practical applicability of the
proposed design method. Moreover, a comparison with
the method of [27] is proposed to emphasize the impor-
tance of considering stochastic behavior and general de-
lay. Referring to [38], the following linearized differen-
tial equation of truck-trailer is obtained. Furthermore, the
backing up speed v is assumed as time-varying parameter
v(k) for a possible uncertainty.

x1 (k+1) =
(

1− v(k)∆t
L2

)
x1 (k)+

(
v(k)∆t

L1

)
u(k) ,

(44a)

x2 (k+1) =
(

v(k)∆t
L2

)
x1 (k)+ x2 (k) , (44b)

x3 (k+1) =

(
(v(k)∆t)2

2L2

)
x1 (k)+(v(k)∆t)x2 (k)

+ x3 (k) . (44c)

where x1 (k) denotes angle difference between truck and
trailer; x2 (k) denotes angle of trailer; x3 (k) denotes ver-
tical position of rear end of trailer; u(k) denotes steering
angle; L1 denotes the length of truck; L2 is the length of
trailer; ∆t is the sampling time; and v(k) is the speed of
backing up. Assuming that v(k) is time varying in an
interval as v(k) ∈ [−1.2, −0.8]. Besides, L1 = 2.58 m,
L2 = 5.5 m and ∆t = 2 s are given from [38]. According

to the time-varying parameter of (45) is one, N = 2 can
be determined with N = 2r and r = 1. Besides, the mul-
tiplicative noise terms and disturbed terms are added to
represent the stochastic behavior and external disturbance
of the system, respectively. Moreover, the state and in-
put delays are added to simulate general delay effects on
the system. Then, the LPV model for (44) is proposed as
follows:

x(k+1) =
2

∑
i=1

ϑi (Aix(k)+Ati x(k−h(k))+Biu(k)

+Bti u(k−g(k))+Eiw(k)+
2

∑
e=1

((
Āiex(k)

+ Ātie x(k−h(k))+ B̄ieu(k)

+ B̄tie u(k−g(k)) +Ēiew(k)
)

βe (k))
)
,
(45)

where A1 =

 1.43 0 0
−0.43 1 0

0.5 −2 1

, A2 =

 1.3 0 0
−0.3 1 0
0.23 −1.8 1

,

B1 =

 −0.86
0
0

, B2 =

 −0.57
0
0

, E1 =

 0
0

0.01

,

E2 =

 0
0

0.02

, At1 =

 0 0 0
0 0 0

0.01 0.1 0

, At2 = 0 0 0
0 0 0

0.02 0.1 0

, Bt1 =

 −0.05
0
0

, Bt2 =

 −0.07
0
0

,

Ā11 = Ā21 =

 0 0 0
0 0 0

0.05 0.01 0

, B̄11 = B̄21 =

 −0.006
0
0

,

Ā12 = Ā22 =

 0 0 0
0 0 0

0.1 0.02 0

, B̄12 = B̄22 =

 −0.01
0
0

,

Āt11 = Āt21 =

 0 0 0
0 0 0
0 0.005 0

, B̄t11 = B̄t21 = −0.005
0
0

, Āt12 = Āt22 =

 0 0 0
0 0 0
0 0.01 0

, B̄t12 = B̄t22 = −0.006
0
0

, Ē11 = Ē21 =

 0
0

0.001

, Ē12 = Ē22 = 0
0

0.002

, ϑ1 = |sin(k)| and ϑ2= 1− |sin(k)|, h(k) =

|2sin(k)|+ 1 and g(k) = |3cos(k)|+ 2, and disturbance
input w(k) is chosen as zero-mean white noise with unit
variance.

According to (45), hmax = 3, hmin = 1, gmax = 5 and
gmin = 2 can be determined. Applying the proposed design
method, the following GS controllers can be designed via
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Fig. 1. Responses for x1(k) of Example 2.

Fig. 2. Responses for x2(k) of Example 2.

setting ρ1 = 0.87, ρ2 = 0.5 and η = 2.

u(k) =−

(
2

∑
i=1

ϑiFi

)
x(k) ,

and

u(k−g(k)) =−

(
2

∑
i=1

ϑiFi

)
x(k−g(k)) , (46)

where F1 =
[
−0.7993 0.0521 −0.0007

]
and F2 =[

−0.7338 0.0576 −0.0006
]
.

Applying (46), the responses of (45) are stated in
Figs. 1-3 with initial condition x(0) =

[ π
6

π
3 −3

]T .
And, the following ratio function is used to check the sat-
isfaction of Definition 1 by using the simulation results.

E
{

∑∞
0 xT (k)Sx(k)

∑∞
0 wT (k)w(k)

}
= 0.2867. (47)

From Figs. 1-3, the responses of system (45) driven by
(46) are respectively stabilized near zero. The asymptoti-
cal stability of the system (45) can be thus guaranteed in

Fig. 3. Responses for x3(k) of Example 2.

the mean square via the designed controllers (46). In ad-
dition, from (47), it is easily found that the ratio value in
(47) is smaller than given η2 = 4 with η = 2. Thus, the
system (45) driven by (46) achieves H∞ performance.

In [27], the state and input delays were considered as
the same case h(k). Moreover, the stochastic behaviors
did not considered in [27]. By applying the method of
[27], the following GS controllers can be designed by set-
ting hmin = 1, hmax = 3, η = 2 and ρ1 = ρ2 = 0.

u(k) =

(
2

∑
i=1

ϑiKi

)
x(k) ,

and

u(k−h(k)) =

(
2

∑
i=1

ϑiKi

)
x(k−h(k)) , (48)

where K1 =
[

1.1741 −0.5252 0.0775
]

and K2 =[
1.295 −0.5431 0.0742

]
.

Applying (48), the responses of (45) are also stated in
Figs. 1-3 with the same initial condition. Form Figs. 1-
3, one can find that the settling time and maximum over-
shoot of (45) driven by (48) are bigger than that driven
by (46) according to the considerations of stochastic be-
haviors and general delay. Obviously, the proposed de-
sign method provides some improvements to the method
of [27] in controlling LPV stochastic systems with time-
delays.

Based on the simulated results in this section, this paper
provides not only less conservative delay-dependent sta-
bility criterion than [27] but also some improvements to
the method of [27] in stabilizing LPV stochastic systems
with time-delays.

5. CONCLUSION

In this paper, a robust H∞ control problem for discrete-
time uncertain stochastic system with time delays is dis-
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cussed via LPV modeling approach and stochastic differ-
ence equation. For proposing a general delay-dependent
stability criterion, state and input delays were consid-
ered as different time-varying interval case. And, a novel
Lyapunov-Krasovskii function and Jensen inequality were
applied to derive the relaxed LMI sufficient conditions.
By solving those conditions, the GS controller can be de-
signed such that the asymptotical stability and H∞ perfor-
mance of closed-loop system are achieved in the mean
square. According to the numerical simulations, the ef-
fectiveness and applicability of the proposed GS controller
design method have been demonstrated.
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