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Adaptive Neural Network Second-order Sliding Mode Control of Dual
Arm Robots
Le Anh Tuan, Young Hoon Joo*, Le Quoc Tien, and Pham Xuan Duong

Abstract: An adaptive robust control system is considered for dual-arm manipulators (DAM) using the combination
of second-order sliding mode control (SOSMC) and neural networks. The SOSMC deals with the system robustness
when faced with external disturbances and parametric uncertainties. Meanwhile, the radial basis function network
(RBFN) is to constitute an adaptation mechanism for approximating the unknown dynamic model of DAM. The
stability of model estimator-integrated controller is analyzed using Lyapuov theory. To show the effectiveness of
proposed controller, a four DOFs-DAM is applied as an illustrating example. The results reveal that the controller
works well, excellently adapt to no information of robot modeling.
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1. INTRODUCTION

Dual-arm manipulators (Fig. 1) are trending to widely
application in not only industry but also habitual human
life. As robotic co-workers, dual-arm robots can work the
same tasks as humans while still guaranteeing the work-
ing environment safety. Instead of human role, dual-arm
robots are completely able to work in hazardous environ-
ments such as pick the radioactive materials up in nuclear
factory. As humanoid robots, dual-arm robots with human
size are increasingly used in health care and domestic ap-
plications such as household chores. The mimic human
behaviors, good communication and good interaction with
humans are highly required for such the robots.

The researchers have made the significant attention to
DAM in which many control strategies have been pro-
posed [1–22]. The traditional methods, such as nonlin-
ear feedback control [1], input-output linearization [2, 3],
were applied for controlling DAM. We frequently meet
hybrid force/position mode in dual-arm control studies
[4–6]. Considering the elasticity of robot arms, paper [6]
designed control laws for not only the hybrid force/motion
but also vibrating suppression of DAM. Several other pa-
pers have a tendency to impedance control on improving
the dynamic interaction between robot and environment
while assuring the desired motion [7, 8]. Such the con-
trol methods [1–8] are not effective in case of modelling
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Fig. 1. An ABB YuMi® dual-arm robot. (Photo courtesy
of ABB corporation).

imprecision and unknown robot parameters. Furthermore,
the stability of robots subjected to parameter uncertainties
and external disturbances is not assured.

The robust control techniques such as sliding mode con-
trol (SMC) [9], combining with modern control methods
such as fuzzy logic [10], neural networks [11–17] applied
for manipulators treat well the problems of parametric un-
certainties and unmodeled systems. The papers related to
these topics are classified into two groups: one [11–13]
for single-arm manipulators (SAM) and the other [15–17]
for DAM.

In the first group, Ge et al. [11] developed an RBFN
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controller for singe-arm robotic systems in which neural
network modeling approach was used to estimate a part of
dynamic model composed of mass matrix M(q) and grav-
ity vector G(q). Using RBFN as well, Lee and Choi [12]
enhanced paper [11]] by adding the experiment results.
In addition, their controller approximates the nonlinear
dynamics of SAM by adjusting centers and variances of
Gaussian function instead of directly estimating the non-
linear components of robot dynamics. Both studies [11]
and [12] developed the controllers using the foundation of
passivity based control, a control method was proposed by
Slotine and Li [14]. Wang and Chai [13] introduced a ter-
minal SMC for SAM in which a RBFN was integrated to
approximate the nonlinear dynamics.

The second group concentrates on adaptive control
problems of DAM. Hacioglu et al. [15]] combined fuzzy
logic with SMC for controlling the cooperative motion of
a four DOFs-DAM. The fuzzy logic component was ap-
plied for regulating the gains of SMC law in which tri-
angular membership functions were used for fuzzificating
the inputs composed of tracking error and its derivative.
Based on the core of Slotine and Li adaptive control [14]
together with RBFN, Liu et al. [16] constructed an adap-
tive control system for DAM with hysteresis outputs. The
RBFN was utilized for designing the adaptation laws to es-
timate the unknown robot dynamics. Jiang et al. [17] pro-
posed a fuzzy adaptive control system for the DAM taking
dead-zone nonlinearity of the actuators into account. The
fuzzy logic technique was used for approximating the dy-
namic model of robot.

Machine learning field is applied in several recent arti-
cles [18,19,25,26] to constitute online learning algorithms
for SAM. However, the learning speed of robot systems
mentioned in [18, 19] is rather slow since the structures
of controllers are very complicate with many perceptron
layers.

Concentrating on high level control in practice, a small
number of authors successfully developed and applied the
complicated control schemes for industrial DAM since
most of control systems of commercial robots are closed
to researchers [13]. The modern robots nowadays still
widely remain the standard PID controllers because of
their indispensable advantages [20]. Several recent studies
[20–22] have focused on developing the industrial appli-
cation of high-level robot control rather than improving
the theoretically complex control schemes. Caccavale et
al. [20] experimentally investigated the impedance con-
trol of 6DOFs DAM in which the mechanical impedance
behavior was defined in terms of geometrically consistent
stiffness. The control structure composed of two loops:
the inner loop with PID mechanism was responsible for
inner motion of each arm while the outer loop with force
and moment sensors imposed the desired impedance be-
haviors. With the foundation of industrial PID controller,
Kruse [21] introduced hybrid motion/force control for a

dual-arm industrial robot. The primary components of
this system composed of vision-guided motion control,
squeeze force control, redundancy resolution, load com-
pensation, and collision avoidance. The desired position
was generated from joystick by operator for the object
via Microsoft Kinect and the autonomous force controller
kept a stable grasp. Gestures detected by the Kinect were
applied for dictating the various operation modes. To-
gether with trajectory generation, Nicolis et al. [22] ex-
perimentally applied the force and velocity control task
for an ABB dual-arm prototype manipulator without any
force sensor.

From the review mentioned above, we propose a study
on low-level control of DAM which has the improvement
points and contributions as follows

1) Articles [11–13] developed RBFN based adaptive
controls for SAM using either passive control [11, 12]
or SMC [13]. Dissimilar to these papers, we design the
RBFN based SOSMC for DAM. Control of DAM is much
more difficult than that of SAM. Dynamic model of DAM
is more complicate than that of SAM. While SAM shows
open kinematic modeling, DAM remains complex dy-
namic coupling and kinematic redundancy. Together with
constituting the nonlinear differential equations describ-
ing the physical behavior of DAM, the kinematic and dy-
namic constraints of closed geometrical chain inherently
exist. Furthermore, the complex reaction forces between
1st arm- object -2nd arm easily leads to the conflicting
motions.

2) Also focusing on DAM, but article [16] dealt with
RBFN control with foundation of Slotine and Li method.
Meanwhile, our paper treats RBFN control based on core
of SOSMC technique. More importantly, Liu et al. [16]
only concentrate on adaptive control while our study
solves both adaptive and robust control problems.

3) As will be seen later, while adaptive law of paper
[11] only estimates two components including M(q) and
G(q) of robot dynamics, we design an adaptive RBFN
controller that approximates more dynamic components
than the controller of article [11], consisting of M(q),
C(q, q̇), J(q), F(q, q̇, q̈), and G(q).

In this paper, an adaptive robust control system con-
structed comprises of two main components: a robust
SOSMC controller and an adaptive RBFN mechanism.
The control system is designed with the support of neu-
ral networks and SOSMC techniques. SOSMC is utilized
to create the frame of controller while RBFN is applied
for designing an adaptation mechanism. This mechanism
is integrated into the control loop for estimating the un-
known dynamics of DAM. The adaptation law approxi-
mates entirely dynamic model. Classified as a robust con-
trol technique, SOSMC is able to work well in spite of
modeling inaccuracy. SOSMC trends to robust stability
of robot where the system responses are keep consistently
in the case of large variation of system parameters. In
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fact, many robot parameters are uncertainties. For exam-
ple, a robot picks objects up with various weights and vol-
umes. The load mass is changeable in a large range de-
pending on each operating case, then mass matrix vary-
ing in terms of object mass is a parametric uncertainty.
Additionally, SOSMC considerably reduces the chatter-
ing of state trajectories without support of any supplemen-
tal technique. Describing the fully physical behavior of
robot by a dynamic model is not possible. In practice,
many parts of a dynamic system cannot be modeled. To
estimate these components, we use the feedforward mul-
tilayer neural networks to construct an adaptation mech-
anism lying in the feedback loop. This mechanism iden-
tifies the un-modeled part of robot dynamics then sends
this information to controller. In estimator design, the
radius basis function (Gaussian functions) is selected as
the activation function of networks. Thus, SOSMC inte-
grating RBFN creates a robust adaptive control system of
DAM in which the system achieves two important proper-
ties: (i) Together with asymptotically stabilizing the robot
system, the controller guarantees the system robustness in
case of large variation of parameters and disturbances (ii)
The controller still works well in the case of no informa-
tion of many components of dynamic model. The control
system itself adjusts the system responses in terms of the
adaptive trends.

Notaion: A ∈ Rn×m indicates a matrix with n rows and
m columns whose elements are real values, n, m ∈ Z. B ∈
Rnindicates a column vector with n real elements, n∈ Z. A
symmetric matrix C ∈ Rn×n is positive definite if ∃q ∈ Rn

so that qT Cq > 0.

2. DYNAMIC MODEL

2.1. Motion equation
Dynamic model of DAM is more complex than that of

SAM due to the existence of closed kinematic loop and
constraints. A physical model of a DAM is illustrated in
Fig. 2. The robot has two arms in which each arm has r
links and n degrees of freedom. Correspondingly, a set of
rotating angles of 2r robot links q =

[
q1 · · · q2n

]T ∈
R2n is defined as an output vector. The physical charac-
teristics of each link is described by mass mi, rotational
inertia Ii, and length li (i = 1, ..., 2r).

Using the method of Lagrange multipliers, the mathe-
matical model of DAM described in paper [17] composes
of 2n fully nonlinear differential equations which is rewrit-
ten in matrix form as

M(q) q̈+C(q, q̇) q̇+G(q) =JT (q)F(q, q̇, q̈)
+U+W, (1)

where M(q) ∈ R2n×2n indicates an inertial matrix,
C(q, q̇) ∈ R2n×2n denotes a Coriolis-centripetal ma-
trix, G(q) ∈ R2n is a gravitational vector, U ∈ R2n is

Fig. 2. Physical model of a dual-arm robot [16].

torques at robot joints, W ∈ R2n denotes external distur-
bances, J(q) ∈ R2n×2n denotes a Jacobian matrix, and
F(q, q̇, q̈) ∈ R2n indicates reaction forces between object
and robot arms.

2.2. Inverse kinematics
The desired trajectory of load is calculated from posi-

tion equation

rm =
[

xm ym zm
]T

= h(li,d1,d2,q) , (2)

where h∈R3 is a vector of real-valued functions and i= 1,
..., 2r. Using inverse kinematics, we can obtain the desired
rotating angles as

qd = g(rm,d1,d2, li,q) , (3)

where g ∈ R2n indicates a vector of trigonometric func-
tions. Differentiating equation (3) with respect to time,
we obtain the velocity and acceleration components, q̇d

and q̈d , correspondingly.

3. CONTROL SYSTEM DESIGN

A robust adaptive control system designed for 2n DOFs
dual-arm robots comprises of three main blocks: a plant
with dynamic model (1), a robust SOSMC controller sit-
uated on feedfoward loop, and a neural network based
estimator lying on feedback loop. First, a conventional
SOSMC law is constituted in case of obviously known
dynamic model. Then, this control law is transferred to
adaptive form where many modules of dynamic model
(or components of controller, equivalently) are consid-
ered as unknowns and should be estimated. Based on
RBFN, an adaptation mechanism is constituted for ap-
proximating many modelling components consisting of
M(q), C(q, q̇), J(q), F(q, q̇, q̈), and G(q). For conve-
nience in approoximating the dynamic model, the robot
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model (1) is rewritten as

q̈ = f(q, q̇, q̈)+M−1 (q)(U+W) , (4)

where

f(q, q̇, q̈) =M−1 (q) [JT (q)F(q, q̇, q̈)
−C(q, q̇) q̇−G(q)]

is complex nonlinear dynamics of system.
As will be seen later, f(q, q̇, q̈) = f{M(q),C(q, q̇),J(q),

F(q, q̇, q̈),G(q)} willbe indetified by RBFN tenchnique
in the case that the robot dynamics (1) can not be fully
modeled. The detailed contents of control design process
are presented below.

3.1. SOSMC
A robust controller is designed for DAM using SOSMC

to track the motion of end-effectors according to generated
path rd (t) =

[
xm (t) ym (t) zm (t)

]T . Using inverse
kinematics presented in Section 2.2, one obtains desired
rotating angles qd (t) of robot links from desired trajectory
rd (t) of load. In other words, the controller will drive
the angles q(t) of robot links rotate towards references
qd (t) asymptotically. Consider the exponential dynamics
of sliding manifold

ṡ+λλλ s = 0 (5)

with sliding surface defined by

s = (ė+λλλe) ∈ R2n, (6)

where

e = (q−qd) ∈ R2n (7)

is tracking error, λλλ = diag(λ1, · · · ,λ2n) ∈ R2n×2n denotes
a diagonal matrix of positive gains characterized for con-
vergence rate of s and e. Submitting (4) into (5), one takes
the control input

U = M(q)

[
q̈d −2λλλ (q̇− q̇d)

−λλλ Tλλλ (q−qd)− f(q, q̇, q̈)

]
−W (8)

that makes the outputs q approach to references qd ex-
ponentially. As seen at equations (5)-(7), the stability of
system states q spends two times of exponential conver-
gence: the first time corresponds to sliding surface and the
second time corresponds to tracking error. To remain the
infinity consistency of the states (q, q̇) on sliding surface,
the switching action should be supplemented into control
input (8). The SOSMC law now becomes

U =M(q)
[
q̈d −2λλλ (q̇− q̇d)−λλλ Tλλλ (q−qd)

−f(q, q̇, q̈)
]
−W−Ksgn(s) (9)

with K= diag(K1, · · · ,K2n)∈R2n×2n being a diagonal ma-
trix of positive gains.

3.2. Neural network based SOSMC
In practice, the controller does not know the behavior

of many un-modeled parts of dynamical system. In this
case, these parts should be identified. We use RBFN tech-
nique to estimate the components M(q), C(q, q̇), J(q),
F(q, q̇, q̈), and G(q) of un-modeled dynamics f(q, q̇, q̈)
by creating an adaptation law. The sliding mode control
structure in the case of lack of a part of system modelling,
as follows:

U =M(q)
[
q̈d −2λλλ (q̇− q̇d)−λλλ Tλλλ (q−qd)− f̂(z)

]
−W−Ksgn(s) , (10)

where f̂(z) is an estimation of f(q, q̇, q̈).
The algorithm of neural network to estimate f(z) is cho-

sen as follows:

f(z) = WT h(z)+εεε, (11)

where z is a matrix of neuron inputs, W is a matrix of
weights, εεε is approximation error of network, and h(z) is
a matrix of activation functions. The existence of error εεε
is due to the numerous of hidden nodes in RBF network.
W is chosen so that |εεε| is minimum. We are able to find
a RBF network so that ∥εεε∥ ≤ εN with εN being a posi-
tive constant. For RBF network, the nonlinear filtering is
defined as Gaussian function

h(z) = exp

(
−∥z− c∥2

2b2

)
, (12)

where c = [ci j] is a matrix of means, b = [b j] is a vector of
variances.

We need to construct an adjustment mechanism for
identifying un-modeled factor f(q, q̇, q̈) ∈ R2n. Define the
state inputs of RBF network as

z =
[

e ė qd q̇d q̈d
]T

. (13)

The output of RBF network is approximation f̂(z) de-
termined by

f̂(z) = ŴT h(z) . (14)

Since the modeling error εεε is tiny, it can be eliminated
as seen in formula (14).

3.3. RBFN adaptation mechanism and system stabil-
ity

We constitute an adjustment mechanism to estimate the
un-modeled component f̂(z) of system based on Lya-
punov stability. We define a Lyapunov candidate

V =
1
2

sT s+
1
2

trace
(
W̃TΓΓΓ−1W̃

)
, (15)

where ΓΓΓ= diag(Γ1,Γ2 . . . ,Γm) is a positive definite diago-
nal matrix of adaptation gains, W̃= Ŵ−W is error matrix
of weights, Ŵ is estimation of weight matrix W.
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Differentiating Lyapunov function (15) with respect to
time yields

V̇ = sT ṡ+ trace
(

W̃TΓΓΓ−1 ˙̂W
)
. (16)

Furthermore, inserting (4) into derivative of sliding sur-
face (6), one obtains

ṡ = f (q, q̇, q̈)+M−1 (q)U− q̈d +λλλ (q̇− q̇d) . (17)

Substituting control law (10) into (17) leads to

ṡ =−f̃−λλλ s−M−1Ksgn(s) (18)

with

f̃ = f̂(z)− f(q, q̇, q̈) = W̃T h(z) (19)

being estimation error of un-modeled component
f(q, q̇, q̈). Submitting (18) into (16) with the notation,
sT
[
Ṁ(q, q̇)−2C(q, q̇)

]
s = 0, we receive

V̇ =− sTλλλ s− sT M(q)−1 Ksgn(s)

+ trace
{

W̃T
[
ΓΓΓ−1 ˙̂W− sT h(z)

]}
. (20)

The following adaptation mechanism

˙̂W = bΓh(z)sT (21)

leads the derivative of Lyapunov function to

V̇ =−sTλλλ s− sT M−1Ksgn(s) . (22)

Since both M(q) and K are positive definite matrices,
then M(q)−1 K is positive definite. Therefore, V̇ ≤ 0 or
s is bounded, equivalently. The asymptotical stability of
sliding surface, lim

t→∞
s = 0, which yields exponential stabil-

ity of tracking error e. Hence, q → qd asymptotically as
t → ∞.

4. REMARKS AND COMPARISONS

Many adaptive control techniques [24] are discussed in
control literature such as model reference adaptive con-
trol (MRAC), online parameter identifiers, and adaptive
observers. However, the dynamic model of system must
be linearly parameterized when using these methods while
neural network based approach does not need this modi-
fication. In principle, RBFN-SOSMC shows more advan-
tages than other adaptive control techniques [24] in fol-
lowing statements:

(i) RBFN-SOSMC based modelling estimator
(16)&(23) can identify almost all unknown dynamics of
robot without the requirement of linear parameterization.
In other words, since adaptation mechanisms, parameter
estimators of other adaptive control methods [24] indi-
rectly identify the unknown dynamics by approximating

robot uncertain parameters, the robot dynamics (or control
structure, equivalently) must be linearly parameterized.

(ii) RBFN-SOSMC can approximates both structure
and parameters of robot dynamics because the learning
behaviors of neural networks. Meanwhile, the other meth-
ods [24] require knowing the structure of dynamic model
even though the many robot parameters are unknowns. In
other words, the conventional adaptive methods [24] only
work effectively in case of robot parameter variations with
fixed frame of dynamic system, it cannot estimate the sys-
tem structure as RBFN based methods go on.

(iii) Since RBFN based controls can approximate whole
model of robot, the RBFN based controller adapts well in
the existence of both structured and unstructured (para-
metric) uncertainties while traditional adaptive techniques
[24] only treats with parametric uncertainties.

5. A SIMULATION EXAMPLE

The controllers (9) and (10) together with RBFN iden-
tifier (14)&(21) are designed for the generalized case of
2n DOFs dual-arm robots. For simulation, proposed con-
trollers (9)&(10) are applied to 4DOFs-DAM [15] where
its physical model is represented in Fig. 3. Dynamic
model (1) specialized for this case reduces to four non-
linear differential equations. The components

q = [qi]
T ∈ R4, M(q) = [mi j] ∈ R4×4,

C(q, q̇) = [ci j] ∈ R4×4, G(q) = [gi]
T ∈ R4,

JT (q) = [Ji j] ∈ R4×4, F(q, q̇, q̈) =
[

F1 F2 Fs1y Fs2y
]T
,

U = [ui]
T ∈ R4, and W = [wi]

T ∈ R4

of dynamic model are determined according to paper [15].
The elements of above-metioned matrices and vectors are
described in appendix section.

The desired motions of end-effectors are depicted in
Fig. 10(a). In 2 seconds of the first phase, the proposed
controllers track the end-effectors to rectangular load from

Fig. 3. Model of a 4 DOFs dual-arm robot [15].



2888 Le Anh Tuan, Young Hoon Joo, Le Quoc Tien, and Pham Xuan Duong

Table 1. Characteristics of DAM and its controllers.

Dynamic model [15]
m1 = m2 = m3 = m4 = 1.5 (kg);
I1 = I2 = I3 = I4 = 0.18 (kgm2);

l1 = l2 = l3 = l4 = 1.2 (m); k1 = k2 = k3 = k4 = 0.48 (m);
µ = 0.35; m = 2 (kg); d1 = 0.25 (m); d2 = 1.2 (m);

b1 = b2 = b3 = b4 = 110 (Nm/s).
Generated path - Initial condition [15]

(xi1,yi1,xi2,yi2) = (0.76,0.6,−0.76,0.6);
(x f 1,y f 1,x f 2,y f 2) = (−0.275,1.4,−0.525,1.4);
(xo,yo) = (0,1.4); rm = 0.4; (ψi,ψ f ) = (−π,0);

q1 (0) = 0; q2 (0) = 5π
6 ; q3 (0) = π; q4 (0) =− 5π

6 ;
q̇1 (0) = q̇2 (0) = q̇3 (0) = q̇4 (0) = 0;

SOSMC
λ = diag(5,5,5,5); K = diag(50,50,50,50);

RBFN-SOSMC
λ = diag(7,7,9,6); K = diag(55,55,55,55);Ŵ(0) = 0;

c = 0.1

 −1.5 −1 −0.5 0.1 0.5 1 1.5
−1.5 −1 −0.5 0.1 0.5 1 1.5
−1.5 −1 −0.5 0.1 0.5 1 1.5

;

b =
[

2.5 2.5 2.5 2.5 2.5 2.5 2.5
]
;

initial positions (xi1,yi1,xi2,yi2) in terms of path

xm (t) = x f +(xi − x f )e−10t2
, (23)

ym (t) = y f +(yi − y f )e−10t2
, (24)

where (x f 1,y f 1,x f 2,y f 2) are the final positions of end-
effectors. In next 2 seconds, the dual-arms pick up and
move the object around a haft of a circle with trajectory

xm (t) = xo + rm cosψ (t) , (25)

ym (t) = yo + rm sinψ (t) (26)

for avoiding an obstacle. Here, (xo,yo) is obstacle posi-
tion, rm is radius of circle having center (xo,yo), ψ is polar
angle.

DAM motions are simulated using parameters in Ta-
ble 1. The initial conditions of weight matrix of RBFN are
chosen to be zeros indicating no the prior knowledge of
robot dynamics. The external random disturbance shown
in Fig. 3 is put into the robot system to check the robust
property with disturbance of control systems.

As shown in Figs. 5-8, four links of robot rotate asymp-
totically to wanted angles. SOSMC receives full informa-
tion of robot model while RBFN-SOSMC must estimate
this information. Certainly, the approximated knowledge
is always inferior to true knowledge. Therefore, SOSMC
responses show better quality in comparison with RBFN-
SOSMC responses. However, RBFN-SOSMC shows the
good ability in industrial application rather than SOSMC
because requirement of full information of system mod-
elling is too difficult in practice.

Fig. 4. External disturbance.

Fig. 5. Motion of link 1.

Fig. 6. Motion of link 2.

Fig. 7. Motion of link 3.

Fig. 8. Motion of link 4.

Fig. 9 represents the approximations f̂(z) ∈ R4 of robot
dynamics. RBFN-SOSMC directly estimates the un-
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Fig. 9. Approximation of robot dynamics, f̂ (z).

known dynamics f (q, q̇, q̈) of robot model while the other
adaptive control techniques [24] indirectly approximate
the system model thru parameter estimation. Note that
f̂(z) is a vector that contains four estimated components.
As seen in Section 3.3, the main objective of RBFN esti-
mator is not to find the true value of system model. The
main task of RBFN estimator is combining with SOSMC
controller to stabilize the robot system. There are many
estimated models making the system stable. Therefore,
the RBFN based control system does not care to find out
the precise model as long as the system is stable. In this
regard, the estimation quality does not indicate much im-
portant signification.

Fig. 10 shows the motion trajectories of end-effectors.
The controllers guarantee good transportation of load
while preventing obstacle. The SOSMC quality is bet-
ter than RBFN-SOSMC one because the duty of RBFN-
SOSMC is heavier, structure of RBFN-SOSMC is more
complex than those of SOSMC.

6. CONCLUSION

A robust adaptive control system has been consti-
tuted for 2n DOFs dual-arm robots. The control system
achieves both robustness and adaptation in which the sys-
tem rejects well external disturbances and no information
of robot model is required. An application example for
4DOFs-DAM shows the superiority of proposed control
system. Combining fuzzy logic with RBFN and SOSMC
will be conducted in future research in which fuzzy logic
will be applied for optimizing SOSMC gains while RBFN
will be used for modelling approximation.

APPENDIX A

For dynamic model of 4 DOFs-DAM [15], the elements
of mass matrix is given by

m11 = m1k2
1 +m2l2

1 +m2k2
2 + I1 + I2 +2m2l1k2 cosq2;

m22 = m2k2
2 + I2; m13 = m23 = m14 = m24 = 0;

Fig. 10. Trajectories of end-effectors.

m33 = m3k2
3 +m3l2

3 + I3 +A5 +2A6 cosq4;

m44 = m4k2
4 + I4;m31 = m32 = m41 = m42 = 0;

m12 = m21 = m2k2
2 + I2 +m2l1k2 cosq2;

m34 = m43 = m4k2
4 + I4 +m4l3k4 cosq4.

The elements of damping matrix are

c12 =−m2l1k2 sinq2 (q̇2 +2q̇1) ;

c21 = m2l1k2q̇1 sinq2;

c34 =−m4l3k4 sinq4 (q̇4 +2q̇3) ;

c43 = m4l3k4q̇3 sinq4;

c11 = b1, c22 = b2, c33 = b3, c44 = b4,

c13 = c14 = c23 = c24 = c31 = c32 = c41 = c42 = 0.

The elements of Jacobian matrix given by

J11 =−l1 sinq1 − l2 sin(q1 +q2) ;

J12 = J14 = J22 = J24 = 0;

J13 =−l1 cosq1 − l2 cos(q1 +q2) ;

J31 = J33 = J41 = J43 = 0;

J21 =−l2 sin(q1 +q2) ; J23 =−l2 cos(q1 +q2) ;

J32 = l3 sinq3 + l4 sin(q3 +q4) ;

J34 =−l3 cosq3 − l4 cos(q3 +q4) ;

J42 = l4 sin(q3 +q4) ; J44 =−l4 cos(q3 +q4) .

The components of gravity vector are

g1 = g2 = g3 = g4 = 0

due to considering the motion of DAM in Oxy plane.
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The components of reaction forces F(q, q̇, q̈) are given
by

Fs1y = Fs1y = 0.5mÿm, (A.1)

F1 =


m

1
µ

√(
g
/

2
)2
+
(
ÿm
/

2
)2 if ẍm ≥ 0,

m
(

1
µ

√(
g
/

2
)2
+
(
ÿm
/

2
)2 − ẍm

)
if ẍm < 0,

(A.2)

F2 =


m
(

1
µ

√(
g
/

2
)2
+
(
ÿm
/

2
)2
+ ẍm

)
if ẍm ≥ 0,

m
1
µ

√(
g
/

2
)2
+
(
ÿm
/

2
)2 if ẍm < 0,

(A.3)

where

xm = d2
/

2+ l1 cosq1 +L2 cos(q1 +q2)−d1
/

2,
(A.4)

ym = l3 sinq3 + l4 sin(q3 +q4) (A.5)

are characterized for motion trajectory of load.
The inverse kinematics of 4 DOFs-DAM is described

by

q1 = tan−1{ym
/
(xm +0.5d1 −0.5d2)

}
−0.5q2 +nπ, (A.6)

q2 =±cos−1
{

1
2l1l2

[
(xm +0.5d1 −0.5d2)

2

+y2
m − l2

1 − l2
2

]}
+n2π, (A.7)

q3 = tan−1{ym
/
(xm +0.5d2 −0.5d1)

}
−0.5q4 +nπ, (A.8)

q4 =±cos−1
{

1
2l3l4

[
(xm +0.5d2 −0.5d1)

2

+y2
m − l2

3 − l2
4

]}
+n2π. (A.9)
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