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Least Squares based Iterative Parameter Estimation Algorithm for
Stochastic Dynamical Systems with ARMA Noise Using the Model Equiv-
alence
Feng Ding*, Dandan Meng, Jiyang Dai, Qishen Li, Ahmed Alsaedi, and Tasawar Hayat

Abstract: By means of the model equivalence theory, this paper proposes a model equivalence based least squares
iterative algorithm for estimating the parameters of stochastic dynamical systems with ARMA noise. The proposed
algorithm reduces the number of the unknown noise terms in the information vector and can give more accurate
parameter estimates compared with the generalized extended least squares algorithm. The validity of the proposed
method is evaluated through a numerical example.
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1. INTRODUCTION

The mathematical models are the basis of controller de-
sign [1, 2] and model reduction [3]. The parameter es-
timation of the models from observation data is the cen-
ter of system identification [4, 5], filter design [6, 7] and
signal processing [8]. Modeling a practical system is im-
portant by using mathematical equations. The mathemat-
ical equations that describe the behaviors and characteris-
tics of a natural system or a man-made system are called
the mathematical models, e.g., transfer function models
[9, 10]. The mathematical models are the important tools
of studying the motion laws of systems in theory [11, 12].
System identification is the theory and methods of estab-
lishing the mathematical models of systems.

Typical mathematical models include time series mod-
els such as autoregressive (AR) models, moving aver-
age (MA) models and autoregressive moving average
(ARMA) models. When a system is disturbed by a
stochastic noise, it is called a stochastic system and the
disturbances include the AR process, the MA process and
the ARMA process.

Stochastic systems can be divided simply into three cat-
egories: time series models, output-error type models and
equation-error type models. These models closely reflect
the characteristics of systems with relatively simple struc-
tures. The identification methods can be roughly classi-
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fied into the iterative methods [13–17], the maximum like-
lihood methods [18–20], the recursive methods [21, 22]
and so on. Among various types of equation-error mod-
els, the equation-error ARMA model is quite popular. Re-
cently, Li proposed the parameter estimation algorithm for
Hammerstein equation-error ARMA systems based on the
Newton iteration [23].

On the basis of the previous work in [24], this paper de-
rives new least squares based iterative identification algo-
rithms for an equation-error ARMA system in terms of the
model equivalence [25,26]. It is assumed that the structure
of the system is known in advance, while the parameters of
the system are unknown. First, we multiply both sides of
the system model by a polynomial to obtain an equation-
error moving average model, which can be identified by
the least squares iterative method. Next, using the com-
parative coefficient way in [27], the parameter estimates
of the original system can be computed. Then, according
to the acquired parameter estimates, the remaining param-
eter estimates can be computed.

The remainder of this paper is organized as fol-
lows. Section 2 formulates the identification problem
for equation-error ARMA systems. Section 3 gives the
generalized extended least squares algorithm. Sections 4
and 5 propose the model equivalence based least squares
iterative algorithm and the proposed algorithm is tested
through a numerical example in Section 6. Finally, some
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concluding remarks are given in Section 7.

2. THE SYSTEM DESCRIPTION AND THE
IDENTIFICATION MODEL

Consider the stochastic system described by the
equation-error ARMA model,

A(z)y(t) = B(z)u(t)+
D(z)
C(z)

v(t), (1)

where {u(t)} and {y(t)} are the input and output se-
quences of the system, {v(t)} is a white noise sequence
with zero mean and variance σ 2, and the polynomials
A(z), B(z), C(z) and D(z) in the unit backward shift op-
erator z−1 are defined as

A(z) := 1+a1z−1 +a2z−2 + · · ·+ana z−na ,

B(z) := b1z−1 +b2z−2 + · · ·+bnb z−nb ,

C(z) := 1+ c1z−1 + c2z−2 + · · ·+ cnc z
−nc ,

D(z) := 1+d1z−1 +d2z−2 + · · ·+dnd z−nd .

It is assumed that the initial values are set to be y(t) =
0, u(t) = 0, v(t) = 0 for t ⩽ 0. Let n := na + nb + nc +
nd . The involved parameter vectors and the information
vectors are defined as

θ :=
[

θ s

θ n

]
∈ Rn,

θ s := [a1,a2, · · · ,ana ,b1,b2, · · · ,bnb ]
T ∈ Rna+nb ,

θ n := [c1,c2, · · · ,cnc ,d1,d2, · · · ,dnd ]
T ∈ Rnc+nd ,

φ(t) :=
[

φ s(t)
φn(t)

]
∈ Rn,

φ s(t) := [−y(t −1),−y(t −2), · · · ,−y(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T ∈ Rna+nb ,

φn(t) := [−w(t −1),−w(t −2), · · · ,−w(t −nc),

v(t −1),v(t −2), · · · ,v(t −nd)]
T ∈ Rnc+nd .

Define the intermediate variable

w(t) :=
D(z)
C(z)

v(t), (2)

or

w(t) =[1−C(z)]w(t)+D(z)v(t)

=(−c1z−1 − c2z−2 −·· ·− cnc z
−nc)w(t)

+(1+d1z−1 +d2z−2 + · · ·+dnd z−nd )v(t)

=φT
n(t)θ n + v(t). (3)

Using (2) and (3), equation (1) can be written as

y(t) =[1−A(z)]y(t)+B(z)u(t)+w(t)

=(−a1z−1 −a2z−2 −·· ·−ana z−na)y(t)

+(b1z−1 +b2z−2 + · · ·+bnb z−nb)u(t)+w(t)

=φT
s(t)θ s +w(t) (4)

=φT
s(t)θ s +φT

n(t)θ n + v(t)

=φT(t)θ + v(t). (5)

This is the identification model for the equation-error
ARMA system in (1). The objective of this paper is pre-
senting new identification algorithms to identify the pa-
rameters ai, bi, ci and di in the parameter vector θ from
measured input-output data.

3. THE GENERALIZED EXTENDED LEAST
SQUARES ALGORITHM

In order to derive the generalized extended least squares
algorithm, it is necessary to define the stacked vector Y t

and the stacked matrix Ht as

Y t :=


y(1)
y(2)

...
y(t)

 ∈ Rt , Ht :=


φT(1)
φT(2)

...
φT(t)

 ∈ Rt×n.

Introduce a quadratic cost function:

J(θ) :=
t

∑
j=1

[y( j)−φT( j)θ ]2 = (Y t −Htθ)T(Y t −Htθ).

Letting the partial derivative of J(θ) with regard to θ be
zero, we obtain the least squares estimate of θ :

θ̂(t) = (HT
t Ht)

−1HT
t Y t . (6)

Define the covariance matrix P(t) and the vector ξ (t) as

P−1(t) := HT
t Ht = P−1(t −1)+φT(t)φ(t), (7)

ξ (t) := HT
t Y t = ξ (t −1)+φ(t)y(t). (8)

Then, equation (6) can be expressed as

θ̂(t) = P(t)ξ (t). (9)

To compute the matrix inversion of P(t), applying the ma-
trix inversion lemma

(A+BC)−1 = A−1 −A−1B(I +CA−1B)−1CA−1

to (7) gives

P(t) =P(t −1)− P(t −1)φ(t)φT(t)P(t −1)
1+φT(t)P(t −1)φ(t)

. (10)

The algorithm in (8)–(10) is impossible to realize because
the information vector φ(t) on the right-hand sides of
(8) and (10) contains the unknown intermediate variables
w(t − i) and the unmeasurable noise terms v(t − i). Here,
replacing the unknown w(t − i) and v(t − i) in φn(t) with
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Table 1. The computation of the GELS algorithm.

Expressions Number of multiplication Number of addition
θ̂(t) = P(t)ξ (t) n2 n(n−1)

ξ (t) = ξ (t −1)+ φ̂(t)y(t) n n

P(t) = P(t −1)− P(t−1)φ̂ (t)φ̂T
(t)P(t−1)

1+φ̂T
(t)P(t−1)φ̂ (t)

4n2 +2n n2 +(n−1)(n+1)

Sum 5n2 +3n 3n2 −1
The sum of flops N1 := 8n2 +3n−1

their corresponding estimates ŵ(t− i) and v̂(t− i), the sub-
stituted information vector is denoted by

φ̂n(t) :=[−ŵ(t −1),−ŵ(t −2), · · · ,−ŵ(t −nc),

v̂(t −1), v̂(t −2), · · · , v̂(t −nd)]
T ∈ Rnc+nd .

Define

φ̂(t) :=
[

φ s(t)
φ̂n(t)

]
∈ Rn.

Let θ̂(t) =
[

θ̂ s(t)
θ̂ n(t)

]
be the estimate of θ =

[
θ s

θ n

]
.

From (4), we have w(t) = y(t)− φT
s(t)θ s. Substituting

θ̂ s(t) for θ s obtains the estimate of w(t): ŵ(t) = y(t)−
φT

s(t)θ̂ s(t). From (5), we have v(t) = y(t)− φT(t)θ(t).
Replacing φ(t) and θ with φ̂(t) and θ̂(t), we acquire the
estimate of v(t): v̂(t) = y(t)− φ̂T(t)θ̂(t).

Notice that φ̂(t) is known at time t, with all above
preparations, replacing φ(t) in (8)–(10) with φ̂(t), the
related unknown variables are replaced with the corre-
sponding estimates, we have the generalized extended
least squares (GELS) algorithm of estimating the parame-
ter vector θ in (5) as following:

θ̂(t) = P(t)ξ (t), ξ (0) = 0, (11)

ξ (t) = ξ (t −1)+ φ̂(t)y(t), P(0) = p0In, (12)

P(t) = P(t −1)− P(t −1)φ̂(t)φ̂T(t)P(t −1)
1+ φ̂T(t)P(t −1)φ̂(t)

, (13)

φ̂(t) =
[

φ s(t)
φ̂n(t)

]
, θ̂(t) =

[
θ̂ s(t)
θ̂ n(t)

]
, (14)

φ s(t) = [−y(t −1),−y(t −2), · · · ,−y(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T, (15)

φ̂n(t) = [−ŵ(t −1),−ŵ(t −2), · · · ,−ŵ(t −nc),

v̂(t −1), v̂(t −2), · · · , v̂(t −nd)]
T, (16)

ŵ(t) = y(t)−φT
s(t)θ̂ s(t), (17)

v̂(t) = y(t)− φ̂T(t)θ̂(t), (18)

θ̂ s = [â1(t), · · · , âna(t), b̂1(t), · · · , b̂nb(t)]
T, (19)

θ̂ n = [ĉ1(t), · · · , ĉnc(t), d̂1(t), · · · , d̂nd (t)]
T. (20)

The computation load of the GELS algorithm is shown in
Table 1 (n = na +nb +nc +nd).

4. THE MODEL EQUIVALENCE BASED LEAST
SQUARES ITERATIVE ALGORITHM

The model equivalence based recursive least squares
algorithms have been proposed for equation-error au-
toregressive systems [25] and for Box-Jenkins systems
[26]. This paper derives a model equivalence based least
squares iterative algorithm for equation-error ARMA sys-
tems in (1).

The basic idea is multiplying both sides of (1) by C(z) to
get a controlled autoregressive moving average (CARMA)
model, and then we can identify the obtained CARMA
model by using the least squares based iterative algorithm.

Multiplying both sides of (1) by C(z) makes

A(z)C(z)y(t) = B(z)C(z)u(t)+D(z)v(t). (21)

Let np := na +nc and nq := nb +nc. Define

P(z) :=C(z)A(z)

= 1+ p1z−1 + p2z−2 + · · ·+ pnp z−np , (22)

Q(z) :=C(z)B(z)

= q1z−1 +q2z−2 + · · ·+qnq z−nq . (23)

Inserting (22) and (23) into (21) yields

P(z)y(t) = Q(z)u(t)+D(z)v(t). (24)

Equation (24) is a controlled autoregressive moving aver-
age model, which can be identified by the least squares
based iterative algorithm. Define the parameter vector ϑ
and the information vector ϕ(t) as

ϑ := [p1, · · · , pnp ,q1, · · · ,qnq ,d1, · · · ,dnd ]
T,

ϕ(t) := [−y(t −1),−y(t −2), · · · ,−y(t −np),

u(t −1),u(t −2), · · · ,u(t −nq),

v(t −1),v(t −2), · · · ,v(t −nd)]
T.

Equation (24) can be equivalently written as

y(t) = ϕ T(t)ϑ + v(t). (25)

Consider a group of data with length L from t = 1 to t =
L, define the stacked output vector Y (L) and the stacked
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information vector Φ(L) as

Y (L) :=


y(1)
y(2)

...
y(L)

 ∈ RL, Φ(L) :=


ϕ T(1)
ϕ T(2)

...
ϕ T(L)

 ∈ RL×n.

Define the quadratic cost function:

J(ϑ) := ∥Y (L)−Φ(L)ϑ∥2.

Suppose that the information vector φ(t) is persistently
exciting, which means that ΦT(L)Φ(L) is invertible. Min-
imizing J(ϑ) gives the least squares estimate of ϑ :

ϑ̂(L) = [ΦT(L)Φ(L)]−1ΦT(L)Y (L). (26)

It is impossible to compute the least squares estimate ϑ̂(L)
by the above equation, since Φ(L) contains the unmeasur-
able noise terms v(t − i). An effective solution is adopting
the hierarchical identification principle: Let k = 1,2,3, · · ·
be an iterative variable, and ϑ̂ k be the iterative estimate of
ϑ . Replacing the unknown v(t − i) in ϕ(t) with its esti-
mate v̂k−1(t − i). Define the estimate of ϕ(t):

ϕ̂ k(t) :=[−y(t −1),−y(t −2), · · · ,−y(t −np),

u(t −1),u(t −2), · · · ,u(t −nq),

v̂k−1(t −1), v̂k−1(t −2), · · · , v̂k−1(t −nd)]
T.

From (25), we have v(t) = y(t)− ϕ T(t)ϑ . Replacing
the ϕ(t) and ϑ with ϕ̂ k(t) and ϑ̂ k, the iterative estimate
v̂k(t) of v(t) can be computed by using v̂k(t) = y(t)−
ϕ̂ T

k(t)ϑ̂ k(t). Use ϕ̂ k(t) to define

Φ̂k(L) :=


ϕ̂ T

k(1)
ϕ̂ T

k(2)
...

ϕ̂ T

k(L)

 ∈ Rp×n.

Replacing Φ(L) in (26) with Φ̂k(L), we can obtain the
least squares based iterative algorithm for ϑ :

ϑ̂ k = [Φ̂T

k(L)Φ̂k(L)]−1Φ̂T

k(L)Y (L), (27)

Φ̂k(L) = [ϕ̂ k(1), ϕ̂ k(2), · · · , ϕ̂ k(L)]
T, (28)

Y (L) = [y(1),y(2), · · · ,y(L)]T, (29)

ϕ̂ k(t) = [−y(t −1),−y(t −2), · · · ,−y(t −np),

u(t −1),u(t −2), · · · ,u(t −nq),

v̂k−1(t −1), · · · , v̂k−1(t −nd)]
T, (30)

v̂k(t) = y(t)− ϕ̂ T

k(t)ϑ̂ k, t = 1,2, · · · ,L. (31)

From (27)–(31), we can compute the parameter estimate
ϑ̂ k, i.e., the estimates of the parameters pi, qi and di.

Next, we compute the estimates âi(t) and b̂i(t) of the
parameters ai and bi of the original system according to
the obtained estimates p̂i(t) and q̂i(t) of the parameters pi

and qi after model transformation.

5. THE COMPUTATION OF THE PARAMETER
ESTIMATES

Once the estimates p̂i(t) and q̂i(t) of pi and qi are ob-
tained, the parameter estimates âi(t), b̂i(t) and ĉi(t) of the
original system can be computed. Here uses the compara-
tive coefficient approach in [25,27] to compute the param-
eter estimates of the original system.

Define the estimates of A(z), B(z) and C(z) as

Â(t,z) := 1+ â1(t)z−1 + â2(t)z−2 + · · ·+ âna(t)z
−na ,

B̂(t,z) := b̂1(t)z−1 + b̂2(t)z−2 + · · ·+ b̂nb(t)z
−nb ,

Ĉ(t,z) := 1+ ĉ1(t)z−1 + ĉ2(t)z−2 + · · ·+ ĉnc(t)z
−nc .

From (22) and (23), we approximately use the relations:

P̂(t,z) = Ĉ(t,z)Â(t,z)

= 1+ p̂1(t)z−1 + · · ·+ p̂np(t)z
−np , (32)

Q̂(t,z) = Ĉ(t,z)B̂(t,z)

= q̂1(t)z−1 + · · ·+ q̂nq(t)z
−nq . (33)

Using the above assumptions, it follows that B̂(t,z)P̂(t,z)=
Â(t,z)Q̂(t,z). Substituting the polynomials B̂(t,z), P̂(t,z),
Â(t,z) and Q̂(t,z) into it, we have

[b̂1(t)z−1 + · · ·+ b̂nb(t)z
−nb ]

× [1+ p̂1(t)z−1 + · · ·+ p̂np(t)z
−np ]

= [1+ â1(t)z−1 + · · ·+ âna(t)z
−na ]

× [q̂1(t)z−1 + · · ·+ q̂nq(t)z
−nq ].

Expanding the above equation and comparing the coeffi-
cients of the same power of z−1 on both sides, we can set
up (nb +np) equations:

z−1 : b̂1(t) = q̂1(t),

z−2 : b̂1(t)p̂1(t)+ b̂2(t) = q̂1(t)â1(t)+ q̂2(t),

z−3 : b̂1(t)p̂2(t)+ b̂2(t)p̂1(t)+ b̂3(t)

= q̂1(t)â2(t)+ q̂2(t)â1(t)+ q̂3(t),
...

z−(nb+np)+1 : b̂nb−1(t)p̂np(t)+ b̂nb(t)p̂np−1(t)

= q̂nq−1(t)âna(t)+ q̂nq(t)âna−1(t),

z−(nb+np) : b̂nb(t)p̂np(t) = q̂nq(t)âna(t),

which can be written in a matrix form,

S(t)ϑ̂ 1(t) = B(t),

S(t) := [Sp(t),−Sq(t)] ∈ R(nb+np)×(na+nb),

ϑ̂ 1(t) := [b̂1(t), · · · , b̂nb(t), â1(t), · · · , âna(t)]
T,
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Table 2. The computation of the ME-LSI algorithm.

Expressions Number of multiplication Number of addition
ϑ̂ k = [Φ̂T

k(L)Φ̂k(L)]−1Φ̂T

k(L)Y (L) (2L−1)n2
1 −n1 2n2

1L+n1L
ϑ̂ 1(t) = [ST(t)S(t)]−1ST(t)B(t) (2n3 −1)n2

2 −n2 2n2
2n3 +n2n3

ĉ(t) = [ST
1(t)S1(t)]−1ST

1(t)B1(t) (2np −1)n2
c −nc 2n2

cnp +ncnp

Sum
(2L−1)n2

1 +(2n3 −1)n2
2 +(2np −1)n2

c

− (n1 +n2 +nc)

2n2
1L+2n2

2n3 +2n2
cnp

+n1L+n2n3 +ncnp

The sum of flops N2 := (4L−1)n2
1 +(4n3 −1)n2

2 +(4np −1)n2
c +n1(L−1)+n2(n3 −1)+nc(np −1)

Sp(t) :=



1 0 · · · · · · 0

p̂1(t) 1
. . .

...

p̂2(t) p̂1(t) 1
. . .

...
... p̂2(t) p̂1(t)

. . . 0

p̂np−1(t)
. . . . . . 1

p̂np(t) p̂np−1(t)
. . . p̂1(t)

0 p̂np(t)
. . . p̂2(t)

...
. . . . . . p̂np−1(t)

...
...

. . . p̂np(t) p̂np−1(t)
0 · · · · · · 0 p̂np(t)



,

B(t) :=



q̂1(t)
q̂2(t)

...
q̂nq(t)

0
0
...
0


∈ Rnb+np ,

Sq(t) :=



0 0 · · · · · · 0

q̂1(t) 0
. . .

...

q̂2(t) q̂1(t) 0
. . .

...
... q̂2(t) q̂1(t)

. . . 0

q̂nq−1(t)
. . . . . . 0

q̂nq(t) q̂nq−1(t)
. . . q̂1(t)

0 q̂nq(t)
. . . q̂2(t)

...
. . . . . . q̂nq−1(t)

...
...

. . . q̂nq(t) q̂nq−1(t)
0 · · · · · · 0 q̂nq(t)



,

where the dimensions of Sp(t) and Sq(t) are (nb+np)×nb

and (nb +np)×na. It is easy to know that

ϑ̂ 1(t) = [ST(t)S(t)]−1ST(t)B(t). (34)

From (34), we can get the estimates âi(t) and b̂i(t) of ai

and bi. According to the definition of P̂(t,z) in (32), we

have

[1+ ĉ1(t)z−1 + · · ·+ ĉnc(t)z
−nc ]

× [1+ â1(t)z−1 + · · ·+ âna(t)z
−na ]

= [1+ p̂1(t)z−1 + · · ·+ p̂np(t)z
−np ].

Similarly, expanding this equation and comparing the co-
efficients on both sides of it give the matrix equation,

S1(t)ĉ(t) = B1(t), (35)

ĉ(t) := [ĉ1(t), ĉ2(t), · · · , ĉnc(t)]
T ∈ Rnc ,

S1(t) :=



1 0 · · · · · · 0

â1(t) 1
. . .

...

â2(t) â1(t) 1
. . .

...
... â2(t) â1(t)

. . . 0

âna−1(t)
. . . . . . 1

âna(t) âna−1(t)
. . . â1(t)

0 âna(t)
. . . â2(t)

...
. . . . . . âna−1(t)

...
...

. . . âna(t) âna−1(t)
0 · · · · · · 0 âna(t)



,

B1(t) :=



p̂1(t)− â1(t)
p̂2(t)− â2(t)

...
p̂na(t)− âna(t)

p̂na+1(t)
p̂na+2(t)

...
p̂np(t)


∈ Rnp .

where the dimension of S1(t) is np ×nc. Then we obtain

ĉ(t) = [ST
1(t)S1(t)]−1ST

1(t)B1(t). (36)

According to (36), we can compute the estimate ĉi(t) of ci

from the parameter estimates âi(t) and p̂i(t).
The computation load of the model equivalence based

least squares iterative algorithm is shown in Table 2 where
n1 := np +nq +nd , n2 := na +nb and n3 := nb +np.
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Fig. 1. The GELS estimation errors (σ 2 = 0.502).

The model equivalence based least squares iterative
(ME-LSI) algorithm increases computational complexity
compared with the GELS algorithm. But the information
vector of the ME-LSI contains fewer noise terms to be es-
timated, the estimation accuracy becomes higher.

6. EXAMPLE

Consider the following equation-error ARMA system,

A(z)y(t) = B(z)u(t)+
D(z)
C(z)

v(t),

A(z) = 1+a1z−1 +a2z−2 = 1−1.40z−1 +0.68z−2,

B(z) = b1z−1 +b2z−2 = 0.38z−1 +0.42z−2,

C(z) = 1+ c1z−1 + c2z−2 = 1−0.50z−1 +0.34z−2,

D(z) = 1+d1z−1 +d2z−2 = 1+0.48z−1 −0.36z−2,

θ = [a1,a2,b1,b2,c1,c2,d1,d2]
T.

In simulation, the input {u(t)} is taken as a persistent ex-
citation signal sequence with zero mean and unit variance,
{v(t)} as an uncorrelated noise sequence with zero mean.
Apply the GELS algorithm and the ME-LSI algorithm to
identify this equation-error ARMA system, the parame-
ter estimates and errors are shown in Tables 3–4 and Ta-
bles 5–6 with σ 2 = 1.002 and σ 2 = 0.502. The estimation
errors of the GELS algorithm versus t is shown in Fig. 1.
The estimation errors of the ME-LSI algorithm versus the
iteration k is shown in Fig. 2.

From Tables 3–6 and Figs. 1–2, we can see that for the
parameter estimates given by using the GELS algorithm
approach the true values as the data length t increases. The
larger iteration k, the smaller the estimation errors of the
ME-LSI algorithm. The algorithm has the higher estima-
tion accuracy when the noise variance is small. Compared
with the GELS algorithm, the parameter estimates of the
ME-LSI algorithm can converge faster to their true values.

0 5 10 15 20 25 30
0

0.05

0.1
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0.2
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0.35
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Fig. 2. The ME-LSI estimation errors (σ 2 = 0.502).

7. CONCLUSIONS

By means of the model equivalence transformation, this
paper proposes an ME-LSI algorithm for identifying the
parameters of equation-error ARMA systems. The pro-
posed algorithm can enhance the parameter estimation ac-
curacy and the simulation results verify the performance
of the proposed identification algorithms. Although the
method in this paper is presented for single-input single-
output systems, the methods can be extended to study
parameter identification problems of state space systems
[28], multivariable systems and nonlinear systems with
colored noises [29–31] and applied to other fields [32–45].
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