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Static Output Feedback Stabilization of a Class of Switched Linear Sys-
tems with State Constraints
Qingyu Su, Haichao Zhu, and Jian Li*

Abstract: This paper will research the problem of static output feedback (SOF) stabilization of state-constrained
switched linear systems via an improved average dwell time method (ADT). Firstly, an improved ADT method is
adopted to establish sufficient conditions for SOF of the state-constrained switched linear systems in the form of
matrix inequality. It has been shown that this method is less conservative than traditional ADT, which in view of
different decay rates of a Lyapunov function related to an active subsystem on the basis of whether the saturations
occur or not. Then, a new iterative algorithm is designed to solve the matrix inequality and a SOF controller
can be added. In the iterative linear matrix inequality (ILMI) algorithm, it is important not only to overcome the
typical bilinear matrix inequality (BMI) problem of SOF, but also to solve the non-convex problem caused by state
constraints. Finally, the availability and the applicability of the proposed method is shown by the application of a
boost converter.
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1. INTRODUCTION

As it is known, the switched system is one of the im-
portant hybrid systems, which consists of a collection of
subsystems and a switching law [1–4]. Under the action
of a switching rule, subsystems turn to become activated.
Recently, switched systems have been widely applied to
practical fields, such as power station control, auto pilot
control design, vehicle control, etc. As is known, state
constraints are inevitable in practical systems, therefore,
researching the switched systems with state constraints
has significant value [5, 6].

The static output feedback control has a definite phys-
ical meaning, which is easy to be measured. Owing to
these advantages, the static output feedback control has
received plenty of attention in practical engineering [7]-
[8]. However, there are some difficulties in designing
SOF. Firstly, it is possible no SOF matrix exists [9]. It
is well known that the SOF gain design is a non-convex
problem [10]. Secondly, the state constraints increase the
difficulty of designing a SOF controller due to the occur-
rence of saturations.

Recently, some papers have researched on switched
linear systems and switched linear systems with state
constraints. [11–13] researched stability and stabilization
problem of the switched linear systems with unstable sys-
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tems. [14] researched on state feedback stabilization prob-
lem of the switched linear systems. [15] investigated the
state and fault estimation problem for linear continuous-
time switched systems with simultaneous disturbances,
sensor and actuator faults, which adopts two types of ob-
server approaches to solve design issue. [16] researched
the state feedback problem of a class switched system with
state constraints and designed the state feedback controller
via the ADT method. In the study of switched systems,
ADT is one of the most effective method to research on
stabilization, which has been widely used [17, 18]. How-
ever, the traditional ADT can not be suitable for the lin-
ear state constrained switched systems. Owing to the
existence of state constraints, it is necessary to consider
whether or not saturations occur. A saturation depen-
dent ADT is introduced to dispose the state constrained
switched systems. In addition, it is possible to note that
the switching rules in [14–18] all rely on the state infor-
mation of systems. Owing to the fact that it is not pos-
sible to completely obtain the state, the design of con-
troller through the state feedback is difficult to implement
in practice. Thus, the design of the switching rules and
output feedback controllers that do not depend on state in-
formation is significant. In addition, it is known that there
are no research papers about the SOF problem of the state
constrained switched systems, which inspired our present
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research.
It is known that output-feedback control has been

widely researched now [19, 20]. [21] proposes a fuzzy
adaptive output-feedback stabilization control method for
non-strict feedback uncertain switched nonlinear systems.
[22] and [23] have researched on adaptive fuzzy output-
feedback control for nonlinear systems with constraints.
The design of the SOF controller is a typical bilinear ma-
trix inequality (BMI) problem [24,25]. To design the ADT
controllers, the original BMI problem is transformed into
a LMI problem, and then analysing and dealing with the
LMI problem, which is called the ILMI method. [26] in-
troduces an additional constraint, which transforms the
BMI constraint into a LMI constraint. This paper has
adopted the ILMI method, which is introduced by [26],
to transform a BMI problem into a LMI problem, which
overcome the typical BMI problem of SOF. In addition,
the occurrence of state constraints causes a non-convex
problem [27]. So it is necessary to introduce a method to
solve this puzzle. This idea was adopted to propose an
iterative LMI algorithm for the purpose of verifying the
sufficient conditions of proposed theorem. Moreover, the
saturation dependent ADT method is adopted with which
to study the stabilization problem of SOF and design SOF
controller, which have not been reported.

The main contributions of this paper are shown in the
following aspects. Firstly, sufficient conditions for the
SOF stabilization for state constrained switched linear
systems are derived first. We design two steps iterative
LMI algorithm not only to overcome the typical bilinear
matrix inequality (BMI) problem of SOF, but also to solve
the non-convex problem caused by state constraints. By
transforming a BMI problem to a LMI problem, the SOF
controller design problem can be converted to a certain
constrained problem expressed by LMIs, guaranteeing the
asymptotical stability of the closed-loop switched system.
Secondly, a saturation dependent ADT is introduced to
dispose SOF problem of the state constrained switched
systems. Compared to the traditional ADT method, this
approach proved to have fewer negatives.

Our note is organized as follows. In the next section, we
present the problem formulation and preliminaries. Main
results are addressed in section 3, including sufficient con-
ditions concerning SOF controller designing and an itera-
tive LMI algorithm. In section 4, the application of a boost
converter is given to demonstrate the applicability of our
result. Finally, concluding the paper in the last section.

Notations: In this note, the notations are used as fol-
lows: Rn represents the n-dimensional Euclidean space,
and Z+ denotes the set of nonnegative integers. The no-
tation ∥ · ∥ refers to the Euclidean vector norm. K∞ func-
tions denote the space of continuously differentiable func-
tions which is greater than zero and continuous increasing.
C1 denotes the space of continuously differentiable func-
tions.

2. FORMULATION AND PRELIMINARIES

Consider a continuous-time switched linear systems
with state constraints as follows:

ẋ(t) = h(Aσ(t)x(t)+Bσ(t)uσ(t)(t)),

y(t) =Cσ(t)x(t), (1)

where x(t) ∈ Rn is the state vector, uσ(t)(t) ∈ Rp de-
notes the control input, and y(t) ∈ Rm denotes the mea-
sured output. Ap,Bp,Cp are constant matrices with appro-
priate dimensions, σ(t) denotes the pth subsystem with
σ(t) = p ∈ M = {1,2, . . . ,N}. Moreover, for a switch-
ing sequence 0 < t1 < .. . < ti < .. ., symbol ti denotes the
moment of the ith switching.When t ∈ (ti−1, ti), we say the
σ(ti−1)

th subsystem is active.
In this paper, we focus on designing SOF:

uσ(t)(t) = Kσ(t)y(t) (2)

to ensure stability of the closed loop switched system:

ẋ(t) = h((Aσ(t)+Bσ(t)Kσ(t)Cσ(t))x(t)). (3)

The saturation function h(·) is introduced as follows:

h(A(t)) = [h1(A1(t)), . . . , hn(An(t))]
T (4)

with, for each i ∈N ,

hi(Ai(t)) =
{

0, if |Ai(t)|= 1 , Ai(t)xi(t)> 0,
Ai(t), otherwise,

(5)

where matrix A = [AT
1 , . . . ,A

T
n ]

T ∈ Rn×n ∈ Dn.
There are serval methods to solve the saturation func-

tion h(·), we handle the saturations by transform it into
the vertex of a convex hull.

Symbol Ln indicates the set of n × n diagonal matri-
ces. The diagonal elements of Ln are 0 or 1. Suppose
that every element of Ln is marked as Ls, L−

s = I − Ls,
s ∈ {1,2, . . . ,2n−1,2n}.Thus, we get

h(Ax) ∈ co{Ls(Ax)+L−
s G}. (6)

Note that, the diagonal elements of row diagonally domi-
nant matrix G is negative.

The following lemmas and definitions are essential to
derive the main results in this paper

Definition 1 [28]: For each 0 ≤ t1 ≤ t2 and a switching
law σ(t) , let Nσ(t)(t2, t1) indicate the numbers of σ(t) in
the interval (t1, t2). Then σ(t) owns an ADT τa, if there
exists two positive numbers N0 and τa, such that

Nσ(t)(t2, t1)≤ N0 +
t2 − t1

τa
, ∀t2 ≥ t1 ≥ 0. (7)

Remark 1: Definition 1 means that if there is a positive
number τa meets the condition of which the ADT between
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any two consecutive switching is no smaller than the con-
stant τa , we say τa has the ADT performance.

Lemma 1 [29]: Consider the continuous-time switched
linear system with state constraint

ẋ(t) = fσ(t)(x(t)), x(t) ∈ Ω ⊂ Rn, σ(t) = p ∈ P, (8)

with fp(0) = 0, ∀p ∈ P . Suppose that Ω contains all. β ,
α and µ are given constants which meet the conditions
α > β > 0, µ ≥ 1. Suppose that there exist some positive
definite functions Vp(x(t)) : Ω → R, for all p ∈ P , such
that

φ1(∥x(t)∥)≤Vp(x(t))≤ φ2(∥x(t)∥), ∀x(t) ∈ Ω, (9)

V̇p(x(t))≤
{

−αVp(x(t)), ∀t ∈ T f [ti, ti+1),
−βVp(x(t), ∀t ∈ Ts[ti, ti+1),

(10)

and ∀(σ(ti) = p, σ(t−i ) = q) ∈ P ×P , p ̸= q

Vp(x(ti))≤ µVq(x(ti)), ∀x(t) ∈ Ω, (11)

where φ1, φ2 are some class K functions, then the
switched system with state constraint (8) is GUAS for any
switching signal with ADT

τa ≥ τ∗
a =

ln µ
ζ

,
T f (t0, t)
Ts(t0, t)

≥ ζ −β
α −ζ

> 0. (12)

Lemma 2 (Schur complements): Given the symmetric

matrix A =

[
A11 A12

A21 A22

]
, the following statements are

equivalent:
1) A < 0;
2) A11 < 0, A22 −AT

12A−1
11 A12 < 0;

3) A22 < 0, A11 −A12A−1
22 AT

12 < 0.

3. MAIN RESULTS

In this section, our main work is to give sufficient condi-
tions for existence of SOF gains for switched linear system
with state constraints. Next, we will give the main theo-
rem which establish the stability condition of closed-loop
system (3) via SOF control rule.

Theorem 1: Consider the linear switched system with
state constraints:

ẋ(t) = h((Aσ(t)+Bσ(t)Kσ(t)Cσ(t))x(t)), (13)

where σ(t) = p ∈M which is given constant, and let µ ≥
1, α > β > 0. ∀(p, q) ∈M×M, p ̸= q, Ls ̸= I. Suppose
that there exist positive definite matrices Pp > 0 and row

diagonally dominant matrices Gp, where |gii|>
n

∑
j=1, j ̸=i

|gi j|

and gii < 0, ∀i ∈N , satisfying the following inequality:[
AT

p Pp +PpAp +αPp −X (BT
p Pp +KpCp)

T

∗ −I

]
< 0,

(14)[
Y +βPp +XT

p LsBpBT
p LT

s Xp Z
∗ −I

]
< 0, (15)

Pp −µpPq, (16)

where

X = XT
p BpBT

p Pp +PpBpBT
p XT

p −XT
p BpBT

p Xp,

Y = He(PpLsAp +PpLs
−Gp −XT

p LsBpBT
p LT

s Pp),

Z = (BT
p Ls

T Pp +KpCp)
T ,

therefore, the linear state constrained switched system
(13) is GUAS with ADT satisfying

τa ≥ τ∗
a =

ln µ
ζ

,
T f (t0, t)
Ts(t0, t)

≥ ζ −β
α −ζ

> 0. (17)

In addition, we can obtain the SOF gain Kp.
Proof: First, consider the following Lyapunov func-

tion:

Vp(x(t)) = xT (t)Ppx(t), p ∈ P. (18)

When t belongs to the non-saturated zone, t ∈
Ep(ti, ti+1), i ∈ Z+. According to (10), we obtain,

V̇p(x(t))+αpVp(x(t))

= x(t)T [(Ap +BpKpCp)
T Pp +Pp(Ap +BpKpCp)

+αPp]x(t)

≤ 0,

which is equivalent to

(Ap +BpKpCp)
T Pp +Pp(Ap +BpKpCp)+αPp < 0.

Accordingly, we have,

AT
p Pp +PpAp +αPp −PpBpBT

p Pp

+(BT
p Pp +KpCp)

T (BT
p Pp +KpCp)< 0.

Owing to PpBpBT
p Pp exists, the above inequality can not

solved by LMI. To overcome this difficulty, we introduce
an additional variable Xp, which has the same dimension
to Pp. Because (Xp −Pp)

T BpBpT (Xp −Pp) ≥ 0 is always
established, we get

XT
p BpBT

p Pp +PpBpBT
p XT

p −XT
p BpBT

p Xp ≤ PpBpBT
p Pp.

Then we obtain,

AT
p Pp +PpAp +αPp −XT

p BpBT
p Pp −PpBpBT

p XT
p

+XT
p BpBT

p Xp +(BT
p Pp +KpCp)

T (BT
p Pp +KpCp)

< 0.
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Applying Schur complements, we get,[
AT

p Pp +PpAp +αPp −X (BT
p Pp +KpCp)

T

∗ −I

]
< 0.

(19)

Thus, (14) is proved.
When t belongs to the saturated zone, we can prove

the saturated case which is similar to the non-saturated
condition. we handle the saturations through replace
Ap +BpKpCp by LsAp +LsBpKpCp +L−

s Gp, we obtain,

(LsAp +LsBpKpCp +L−
s Gp)

T Pp

+Pp(LsAp +LsBpKpCp +L−
s Gp)+βPp

< 0.

Accordingly, we can get,

He(PpLsAp +PpL−
s Gp)+βPp −PpLsBpBT

p LT
s Pp

+(BT
p LT

s Pp +KpCp)
T (BT

p LT
s Pp +KpCp)< 0,

We introduce an additional variable Xp, which
has the same dimension to Pp. Because (Xp −
Pp)

T LT
s BpBpT Ls(Xp −Pp) ≥ 0, is always established, we

have,

XT
p LsBpBT

p LT
s Pp +PpLsBpBT

p LT
s XT

p −XT
p LsBpBT

p LT
s Xp

≤ PpLsBpBT
p LT

s Pp,

Then we get,

He(PpLsAp +PpL−
s Gp −XT

p LsBpBT
p LT

s Pp)

+βPp +XT
p LsBpBT

p L−
s Xp

+(BT
p LT

s Pp +KpCp)
T (BT

p LT
s Pp +KpCp)

< 0.

Applying Schur complements, we obtain:[
Y +βPp +XT

p LsBpBT
p LT

s Xp Z
∗ −I

]
< 0. (20)

Thus, (15) is proved.
Next, according to (11), we can achieve

Pp −µpPq < 0 . (21)

Hence, if (14), (15), and (16) are solvable, we can get the
SOF gains Kp , which completes the proof. □

Remark 2: Theorem 1 gives the sufficient conditions
for static output feedback stabilization of the switched sys-
tems with state constraints. We employ proposed method,
which in view of different decay rates of a Lyapunov func-
tion related to an active subsystem on the basis of whether
the saturations occur or not. It can result in a smaller
ADT, which has less conservative, than the traditional
ADT method.

Remark 3: GUAS refers to the stability operating on
the unit hypercube Dn, rather than the usual Rn. In other
words, by GUAS of the origin we mean that the origin
is locally uniformly asymptotically stable (LUAS) within
Dn, instead of the usual Rn, being the domain of attraction.

Theorem 1 is established under the condition that the
inequality is solvable. Next, we will an iterative LMI al-
gorithm which we design to achieve the SOF gain Kp.

We note that Kp and Pp in (14), (15) can be solved by
an iterative approach, if Xp is fixed in (14) and (15). Next,
we will address how to find suitable Xp and introduce this
iterative LMI algorithm.

Step 1: We choose suitable Qp > 0, and solve Pp from
the following equation:

Ap
T Pp +PpAp −PpBpBT

p Pp +Qp = 0.

Set k = 1, Xkp = Pp.
Step 2: Using Xkp which are solved in step 1,to solve

the following LMI optimization problem for Pp, Kp and
ηk:

OP1: Minimize ηk be limited by the following con-
straints:[

AT
p Pkp +PkpAp +αPkp −V −ηkPkp H

∗ −I

]
< 0,

(22)

Pkp < µpPkq, (23)

where

V = Xk pT BpBT
p Pkp +PkpBpBT

p Xk pT −Xk pT BpBT
p Xk p,

H = (BT
p Pkp +KpCp)

T .

We define ηk
∗ as the minimized value of ηk.

Step 3: If ηk
∗ ≤ 0 , set r = 0 and let Xp = Xkp, go to

Step 7. Otherwise, go to next step.
Step 4: Using ηk

∗ which are solved in Step 3, to solve
the following optimization problem for Pp and Kp:

OP2: Minimize trace(Pkp) be limited by (??) and (23).
We define P∗

kp as the minimized value of trace(Pkp).
Step 5: If ∥Xk p−P∗

kp∥ < δ , a prescribed tolerance, go
to the next step. Otherwise, set k = k+1, go to Step 2.

Step 6: The system may have no stable SOF gain. Stop.
Step 7: Using Pp and Kp which are solved in Step 3, to

solve the following LMI optimization problem for Gp and
ζ :

inf
Gp

ζ

s.t.
[

U +βPp +XT
p LsBpBT

p LT
s Xp −ζ Pp W

∗ −I

]
< 0,

TiGpUi j < 0, s ∈ S, p ∈ P, i ∈ N, j ∈M, (24)

where

U = He(PpLsAp +PpLs
−Gp −XT

p LsBpBT
p LT

s Pp),

W = (BT
p Ls

T Pp +KpCp)
T .
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If r = 0 and ζ ≤ 0, go to Step 9. If r > 0, ζ ≤ 0 or ζ ̸= ζr,
go to Step 9. Otherwise, set r = r+ 1, ζr = ζ , go to the
Step 8.

Step 8: Using Gp which is solved in Step 2, to solve the
following LMI optimization problem for Kp, Pp, and ζ :

inf
Pp>0

ζ

s.t.
[

AT
p Pkp +PkpAp +αPkp −V −ζ Pp H

∗ −I

]
< 0,[

U +βPp +XT
p LsBpBT

p LT
s Xp −ζ Pp W

∗ −I

]
< 0,

s ∈ S, p ∈ P.

If ζ ≤ 0 or ζ ̸= ζr, and go to Step 9. Otherwise, set r =
r+1, ζr = ζ , go to Step 7.

Step 9: If ζ ≤ 0, we can get stable SOF gain Kp. Oth-
erwise, we can not achieve the conclusion. The algorithm
may be repeated from Step 1.

Remark 4: In our propose iterative LMI algorithm, we
not merely need to overcome the typical bilinear matrix in-
equality (BMI) problem of SOF, but also to solve the non-
convex problem caused by state constraints. The problem
which we need to work out is complex. Thus, we put for-
ward two steps iterative LMI algorithm to simplify this
problem. First, we find suitable Pp through iterative algo-
rithm. The Pp we have solved is the initial value which we
use to achieve the suitable Kp in the second step. Just as
the iterative algorithm we design, we can find the inequal-
ity is solvable and show Theorem 1 is established.

4. EXAMPLE

In this section, a Pulse-Width-Modulation (PWM)
driven boost converter is given to illustrate the practicabil-
ity of the proposed method for the switched linear system
with state constraints. As can be seen from Fig. 1, es(t)
denotes the source voltage, C represents the capacitance,
load resistance is denoted by R, L denotes the inductance,
and the switch s(t), which is controlled by a PWM device,
can switch at most once in each period.

The differential equations for the boost converter are as
follows:

ėC(τ) =− 1
RC

eC(τ)+(1− s(τ))
1

C1
iL(τ), (25)

i̇L(τ) =−(1− s(τ))
1
L1

eC(τ)+ s(τ)
1
L1

es(τ), (26)

where τ = t
T , L1 =

L
T and C1 =

C
T .

Then, let x = [eC, iL]T , so (25)-(26) can be formulated
by:

ẋ = Aσ x+Bσ uσ , σ ∈ {1,2}. (27)

Fig. 1. Boost converter.

where

A1 =

[
0 1

C1

− 1
L1

0

]
, B1 =

[
− 1

RC1

0

]
,

A2 =

[
0 1

C2

− 1
L2

0

]
, B2 =

[
− 1

RC2

0

]
.

So, we can give the matrices in (27) as follows:

A1 =

[
0 1
1 0

]
, B1 =

[
1
0

]
,

A2 =

[
0 1.2

1.2 0

]
, B2 =

[
1.1
0

]
.

Correspondingly, other system matrices are shown as
follows:

C1 =
[

1 1
]
, C2 =

[
1.1 1.2

]
.

We set the parameters α = 0.1, β = 0.05, µ = 1.1,
and chose suitable parameter ζ = 0.08. Then, we obtain
T f (t0,t)
Ts(t0,t)

≥ 1.5. When the ADT switching signal satisfy-
ing τa ≥ 1.1914, the switched system (25) is SOF stable.
Hence, we set τa = 1.5. By solving the inequalities in The-
orem 1, Pp and stable SOF gain Kp are obtained, which is
presented as follows:

P1 =

[
3.3015 2.8887
2.8887 5.3953

]
, K1 =

[
−3.1356

]
,

P2 =

[
3.1869 2.8352
2.8352 5.4030

]
, K2 =

[
−2.7414

]
,

In addition, in order to illustrate the effectiveness of
the proposed ADT method, we present the results of both
switching signal and state response for system (25). Fig. 2
shows the switching signal with τa ≥ 1.1914. Fig. 3 shows
the state trajectory over 0−30 under a ADT switching sig-
nal with τa = 1.5 for the system (25) with state constraints.
From Fig. 4, it is easy to see the state trajectory of the non-
saturated system (25). It can be concluded from Fig. 3
and Fig. 4 wether saturation existing or not, the system
(25) stabilized by the designed SOF controllers under the
proposed ADT switching signal. In addition, compared to
Fig. 4, we can find the state trajectory in Fig. 3 is confined
to a specific zone owing to saturation existing.
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Fig. 2. τa = 1.5.
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Fig. 3. Saturated trajectory of system (25).
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Fig. 4. Non-saturated trajectory of system (25).

5. CONCLUSION

The SOF stability and the stabilization problems for the
switched linear system with state constraints is discussed
in this paper. Using the proposed ADT method, we estab-
lish sufficient conditions for SOF stabilization. It has been

demonstrated that this method is less conservative than
traditional ADT, which in view of different decay rates
of a Lyapunov function related to an active subsystem on
the basis of whether the saturations occur or not. Then,
we put forward two steps iterative LMI algorithm to sim-
plify non-convex problem, which is efficient. Using pro-
posed iterative LMI algorithm, we obtain SOF controller
Kp. Finally, the application of a boost converter is given
to demonstrate the effectiveness of the proposed method.
Our future work is to extend the results in this paper to
switched linear systems and time-delay systems with state
constraints.
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