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Stochastic Stability for a Class of Discrete-time Switched Neural Networks
with Stochastic Noise and Time-varying Mixed Delays
Ying Cui, Yurong Liu*, Wenbing Zhang, and Fuad E. Alsaadi

Abstract: In this paper, stochastic stability is analyzed for a class of discrete-time switched neural networks, in
which time-varying mixed delays and stochastic noise are considered. Specifically, benefitting from the triple sum-
mation term included in a new Lyapunov functional, time-varying distributed delays are tackled and a criterion of
decay estimation for a non-switched neural network is firstly obtained. Subsequently, in view of average dwell time
methodology and stochastic analysis, several sufficient conditions are obtained to ensure that the stochastic stability
problem is solvable. Furthermore, the derived sufficient conditions reflect that the decay rate of the considered
neural networks has a close relationship with average dwell time, upper and lower bounds of delays and intensity
of stochastic noise. Finally, validity of the inferred conclusions is given by a simulated example.

Keywords: Discrete-time switched neural networks (DSNNs), stochastic stability, stochastic noise, time-varying
mixed delays.

1. INTRODUCTION

During the past decades, neural networks have been
promisingly applied in a wide range of fields, including
sequence recognition [1], signal processing [2] and the
high-capacity associative memories [3], etc.. To a great
extent, various designs and applications of neural net-
works depend on their dynamical behaviours. Thereby,
much attention has been paid to investigate dynamical
problems for neural networks, and numerous research re-
sults concerning such subject have been acquired. For in-
stance, literatures [4–7] have investigated intensively syn-
chronization and stability issues for a variety of neural net-
works. To be more specify, [4] has applied time-varying
Lyapunov functional technique and convex combination
approach to investigate how to achieve synchronization
and stabilization by means of impulsive controller. In [5],
the authors have applied nonsmooth analysis to fulfill fi-
nite time synchronization for two types of switched cou-
pled neural networks.

In the actual neural networks, time delays usually take
place in the storage and transmission of information.
Meanwhile, multifarious axon sizes and lengths comprise
a mass of parallel pathways such that neural networks
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have the spatial property. Such a property of neural net-
works generates that dynamical temporal behaviors have
been affected by some period of time as well as a cer-
tain past instant. Generally, on account of the occurring
ways of time delays, one can classify time delays as two
types: discrete and distributed. By reviewing past re-
searches, some mathematical methods have been used to
investigate dynamical properties of time-delayed systems,
including matrix measure [8], Lyapunov functional [9],
and so on. Meanwhile, there are some results devoting
to reducing conservatism, see, e.g., [10–12]. Especially
in recent years, mixed time-delays have been garnering an
increasing interest, and there have been some research re-
sults reported in relevant literatures, e.g., [13–17].

On the other side, synaptic propagation of the real neu-
ral networks is a noise process. Such a noise process is
formed by random fluctuation due to the release of neu-
rotransmitter or others probable factors [18]. The noise
disturbance might give rise to instability and other poor
performances of neural networks. Subsequently, it is nat-
ural to consider that time delays and stochastic noise may
have the simultaneous impact on performances of neural
networks. Up to present, for neural networks limited to
these two phenomena, there have been many studies on
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all sorts of dynamical properties, such as stochastic stabil-
ity [19], finite-time stabilization [20], exponential input-
to-state stability [6], and so forth.

As is widely recognized, neural networks may bring
about sudden changes in structures or parameters due to
various realistic phenomena, such as abrupt failures, sud-
den environmental changes, mutation of interconnections
[21]. Such an abrupt phenomenon can be suitably mod-
eled by the switched neural networks. As such, signif-
icance of studies on switched neural networks has been
highlighted. Recently, several analyses and designs of the
switched neural networks have been extensively explored,
see, e.g., [22–25]. When investigating switched systems,
average dwell time approach that was firstly introduced
by [26] is a very popular method. Owing to its simplic-
ity and efficiency, there have been lots of research results
by utilizing such approach to explore dynamical behav-
iors of switched systems, see, e.g., [17, 27–29]. For in-
stance, in view of average dwell time and delay partition-
ing methods, exponential stability and synchronization of
DSNNs have been investigated in [29]. [17] has derived
delay-dependent conditions such that DSNNs with various
activation functions can reach passivity. Unfortunately, by
the observation of a multitude of literatures, little research
has dealt with DSNNs influenced by stochastic noise and
time-varying mixed delays. Actually, the real neural net-
works could be closely approximated by nonlinear sys-
tems subjected to time-varying mixed delays, stochastic
noise, and a finite number of modes. Therefore, from the-
oretical and practical viewpoints, it is desirable for such
a neural network to make the investigation of stochastic
stability issue.

Inspired by the aforementioned above, this paper will
apply some techniques to tackle stability issue of DSNNs
restricted to stochastic noise and time-varying mixed de-
lays. Specifically, to deal with time-varying distributed
delays, which has been overlooked by recent publications,
e.g. [11, 12, 17, 19, 30], we construct the triple summation
term included in a new Lyapunov functional. Moreover,
stochastic analysis is applied to deal with stochastic noise
presented in the considered DSNNs. Main contributions
are listed in three aspects: (1) the considered neural net-
work model is simultaneously subjected to switching sig-
nal, time-varying mixed delays and stochastic noise; (2)
to handle time-varying mixed delays and a finite number
of modes, a novel mode-dependent Lyapunov functional
is set up; (3) the established sufficient conditions illustrate
the relationships among the decay rate, dwell time on the
average, upper and lower bounds of time-varying mixed
delays, and intensity of stochastic noise.

The following arranges the remainder of this paper.
Section 2 presents stochastic stability issue for the ad-
dressed DSNNs model influenced by switching signal,
time-varying mixed delays and stochastic noise. In Sec-
tion 3, delay-dependent conditions of stability for DSNNs

are derived. Section 4 demonstrates usefulness of the in-
ferred theoretical results by a numerical example. At last,
Section 5 gives some conclusions.

Notations: Symbol Rn denotes n-dimensional Eu-
clidean space with Euclidean norm ∥ ·∥, and matrix trans-
position is designated by superscript “T ". For any sym-
metric matrix A, A ≤ (<)0 indicates A is negative semi-
definite (definite). Notations λM(·) and λm(·), respec-
tively, stand for greatest and least eigenvalue of symmetric
matrix. Notation Z≥s represents {k ∈ Z+|k ≥ s}.

2. PROBLEM FORMULATION

Consider DSNNs model subjected to time-varying
mixed delays and stochastic noise as follows:

x(k+1) = Aπ(k)x(k)+Bπ(k) f (x(k))

+C(1)
π(k)g(x(k− τ1(k)))

+ C(2)
π(k)

τ2(k)

∑
i=1

h(x(k− i))

+ ς(k,x(k))B(k),
x(ℓ) = ϕ(ℓ), k0 − r ≤ ℓ≤ k0,

(1)

where the state vector of n neurons is expressed by
x(k) = (x1(k),x2(k), . . . ,xn(k))T ∈ Rn, and its initial con-
dition is ϕ(ℓ); Aπ(k) = diag

{
a1,π(k),a2,π(k), . . . ,an,π(k)

}
de-

notes self-feedback matrix, where |a j,π(k)|< 1; Bπ(k),C
(1)
π(k)

and C(2)
π(k) are connection weighted matrices; nonlinear

neuron activation functions are f , g and h : Rn → Rn;
the noise intensity function ς : Z≥k0 ×Rn −→ Rn is a
Borel measurable n-dimension vector function; {B(k)| k ∈
Z≥k0} represents one-dimension Wiener process, in which
E[B(k)] = 0 and E[B2(k)] = 1; τ1(k) and τ2(k), respec-
tively, describe discrete and distributed delays. Denote
r = max{τ1,M,τ2,M} with τ1,m ≤ τ1(k) ≤ τ1,M and τ2,m ≤
τ2(k)≤ τ2,M .

The switching signal is denoted by π : Z≥k0 →
M = {1,2, . . . ,m0}, where m0 is a positive inte-
ger. Given integer k, let k0 < k1 < .. . < kt , (t ∈
Z≥1) denote switching instants of π(s) for k0 ≤
s < k, and switching sequence is designated by
{(π(k0),k0), (π(k1),k1), . . . ,(π(kt), tt), . . .}, which means
that π(s) = π(k j) ∈M when k j ≤ s < k j+1.

Remark 1: Lately, dynamical performances of the
switched time-delayed systems have been discussed in re-
cent literatures, for example [12,19,29,30]. To the best our
knowledge, the existing results only consider discrete de-
lays or constant distributed delays. However, the real neu-
ral networks can be more closely approximated by non-
linear switched systems with time-varying mixed delays.
Due to mathematical difficulty, time-varying mixed delays
have been neglected in some recent works, in this paper,
we shall construct a new Lyapunov functional including
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a triple summation to tackle the time-varying distributed
delays of the addressed DSNNs (1).

Now, some assumptions are made on activation func-
tions f (·), g(·), h(·) and noise intensity function ς(·).

Assumption 1: Functions f (·), g(·) and h(·) vanish at
the origin and are bounded.

Remark 2: Under Assumption 1, it is obvious that
zero is the equilibrium point of system (1). In the paper,
we shall investigate stability problem of zero equilibrium
point for system (1).

Assumption 2 [13]: The neuron activation functions
meet with the following conditions

γ−j ≤
f j(u1)− f j(u2)

u1 −u2
≤ γ+j ,

ω−
j ≤

g j(u1)−g j(u2)

u1 −u2
≤ ω+

j ,

ξ−
j ≤

h j(u1)−h j(u2)

u1 −u2
≤ ξ+

j .

for any 1 ≤ j ≤ n and u1 ̸= u2, where γ−j ,γ
+
j , ω−

j ,ω
+
j ,ξ

−
j

and ξ+
j are constant scalars.

Hereafter, we designate bounds about activation func-
tions by the following matrices:

Γ1 = diag{γ−1 γ+1 ,γ−2 γ+2 , . . . ,γ−n γ+n },

Γ2 = diag
{

γ−1 + γ+1
2

,
γ−2 + γ+2

2
, . . . ,

γ−n + γ+n
2

}
,

Ω1 = diag{ω−
1 ω+

1 ,ω−
2 ω+

2 , . . . ,ω−
n ω+

n },

Ω2 = diag
{

ω−
1 +ω+

1

2
,

ω−
2 +ω+

2

2
, . . . ,

ω−
n +ω+

n

2

}
,

Ξ1 = diag{ξ−
1 ξ+

1 ,ξ−
2 ξ+

2 , . . . ,ξ−
n ξ+

n },

Ξ2 = diag
{

ξ−
1 +ξ+

1

2
,

ξ−
2 +ξ+

2

2
, . . . ,

ξ−
n +ξ+

n

2

}
.

Remark 3: Assumption 2 was firstly introduced in
[13]. It gives the upper and lower bounds of activation
functions that could be negative, zero and positive. Hence,
the usual Lipschitz-type and sigmoid-type can be general-
ized by this assumption. Meanwhile, with the help of this
assumption, the conservatism of the theoretical results can
be reduced, and one can refer to [13] for more details.

Assumption 3: The vector-valued function ς(·) satis-
fies ∥ς(k,x)∥ ≤ ρ∥x∥, for all k ∈ Z≥k0 , where constant
ρ > 0.

Definition 1: For any solution x of (1) with initial con-
dition ϕ , we call neural networks (1) exponentially stable
in mean square, if there are constants λ ∈ (0, 1) and K > 0
such that

E
[
∥x(k)∥2]≤ Kλ k−k0 sup

k0−r≤ℓ≤k0

E
[
∥ϕ(ℓ)∥2] (2)

holds for any k ∈ Z≥k0 .

Remark 4: For any nonzero initial condition ϕ , if the
solution of system (1) is x(k) = 0 for k ∈ Z≥k0 , then (2)
is obviously valid. In the sequel, we shall investigate sta-
bility problem for system (1) when x(k) ̸= 0 for k ∈ Z≥k0 .
In this case, Assumption 2 is true for u1 ̸= u2, and will be
used to reduce the conservatism of the theoretical results.

Definition 2 [31]: On the interval [k0,k), the switching
number of switching signal π is denoted by Nπ(k,k0). If
Nπ(k,k0)≤ k−k0

T0
+N0 is valid for N0 ≥ 0 and T0 > 0, then

we say T0 the average dwell time and N0 the chatter bound,
respectively. For simplicity, we shall take N0 = 0 in this
paper.

In what follows, stochastic stability for DSNNs (1) will
be explored. By considering a novel Lyapunov functional
and employing average dwell time methodology, we shall
present sufficient conditions, warranting exponential sta-
bility for DSNNs (1). The derived sufficient conditions
will interpret the correlation among decay rate of DSNNs
(1), dwell time on the average, upper and lower bounds
of time-varying mixed delays, and intensity of stochastic
noise.

3. MAIN RESULTS AND PROOFS

We are ready to begin with some lemmas to prepare the
main results.

Lemma 1 [22]: If constant matrices L1,L2 and L3 sat-
isfy L1 = LT

1 and L2 > 0, then

L1 +LT
3 L−1

2 L3 < 0

if and only if[
L1 LT

3
L3 −L2

]
< 0.

Lemma 2 (Discrete Jensen Inequality) [32]: Suppose
matrix W is positive semi-definite, then the inequality(

s2

∑
j=s1

α j

)T

W

(
s2

∑
j=s1

α j

)
≤ (s2 − s1 +1)

s2

∑
j=s1

αT
j Wα j

holds, where s1,s2 ∈ Z≥1 and s2 ≥ s1.

Lemma 3 [22]: Let C = diag{c1,c2, . . . ,cn} ≥ 0. If
nonlinear function F(ℓ) = ( f̄1(ℓ1), f̄2(ℓ2), . . . , f̄n(ℓn))

T is
continuous satisfying

u−k ≤ f̄k(s)
s

≤ u+k , s ∈ R\{0}, 1 ≤ k ≤ n,

with constants u−
k and u+k , then[

ℓ
F(ℓ)

]T [ CU1 −CU2

−CU2 C

][
ℓ

F(ℓ)

]
≤ 0,

or

FT (ℓ)CF(ℓ)+ ℓTCU1ℓ−2ℓTCU2F(ℓ)≤ 0,
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where

U1 = diag{u−1 u+1 ,u
−
2 u+

2 , . . . ,u
−
n u+n },

and

U2 = diag
{

u−1 +u+1
2

,
u−2 +u+2

2
, . . . ,

u−
n +u+n

2

}
.

Firstly, consider the following non-switched case sub-
jected to stochastic noise and time-varying mixed delays:

x(k+1) = Ax(k)+B f (x(k))+C(1)g(x(k− τ1(k)))

+C(2)
τ2(k)

∑
i=1

h(x(k− i))+ ς(k,x(k))B(k),

x(ℓ) = ϕ(ℓ), k0 − r ≤ ℓ≤ k0.

(3)

Right now, we intend to state and prove the next lemma,
which plays an important part in stability analysis.

Lemma 4: Suppose non-switched neural networks (3)
satisfies Assumptions 1-3, for the given scalar 0 < α < 1,
if there are number δ ∗ > 0, matrices Q > 0, R > 0, S > 0
and diagnal matrices Σ > 0,ϒ > 0,Λ > 0 satisfying the
following inequalities:

Q < δ ∗I, (4)

Φ =



Φ11 ∗ ∗ ∗ ∗ ∗ ∗
Γ2Σ −Σ ∗ ∗ ∗ ∗ ∗
Ω2ϒ 0 Φ33 ∗ ∗ ∗ ∗

0 0 0 Φ44 ∗ ∗ ∗
Ξ2Λ 0 0 0 Φ55 ∗ ∗

0 0 0 0 0 Φ66 ∗
QA QB 0 QC(1) 0 QC(2) −Q


< 0, (5)

where

Φ11 = ρ2δ ∗I −αQ−ΣΓ1 −ϒΩ1 −ΛΞ1, (6)

Φ33 = (1+ τ1,M − τ1,m)R−ϒ, (7)

Φ44 =−ατ1,M Q, (8)

Φ55 =
[
τ2,m +

1
2
(τ2,M − τ2,m)(τ2,M + τ2,m −1)

]
S−Λ,

(9)

Φ66 =− 1
τ2,M

S, (10)

then the inequality

E[V (Xk,k)]≤ αk−k0 E[V (Xk0 ,k0)], k ∈ Z≥k0 , (11)

is true for any trajectory of (3), where

Xk =
[
xT (k) xT (k−1) . . . xT (k− r)

]T
.

Proof: Introduce Lyapunov functional defined by:

V (Xk,k) =
5

∑
j=1

Vj(Xk,k), (12)

where

V1(Xk,k) = xT (k)Qx(k), (13)

V2(Xk,k) =
k−1

∑
i=k−τ1(k)

αk−1−igT (x(i))Rg(x(i)), (14)

V3(Xk,k) =
τ1,M−1

∑
d=τ1,m

k−1

∑
i=k−d

αk−1−igT (x(i))Rg(x(i)), (15)

V4(Xk,k) =
τ2(k)

∑
d=1

k−1

∑
i=k−d

αk−1−ihT (x(i))Sh(x(i)), (16)

V5(Xk,k) =
τ2,M

∑
θ=τ2,m+1

θ−1

∑
d=1

k−1

∑
i=k−d

αk−1−ihT (x(i))Sh(x(i)).

(17)

For presentation convenience, denote

A=
[
A B 0 C(1) 0 C(2)

]
,

ϑ(k) =
[
xT (k) f T (x(k)) gT (x(k)) gT (x(k− τ1(k)))

hT (x(k))
τ2(k)

∑
i=1

hT (x(k− i))

]T

,

△Vj(k) =Vj(Xk+1,k)−αVj(Xk,k), for 1 ≤ j ≤ 5,

and then we conduct the following computation of Lya-
punov functional (12) for system (3):

E[△V1(k)]

= E
[
ϑ T (k)AT QAϑ(k)−αxT (k)Qx(k)

+ς T (k,x(k))Qς(k,x(k))
]

≤ E
[
ϑ T (k)AT QAϑ(k)−αxT (k)Qx(k)

+ρ2δ ∗xT (k)x(k)
]
, (18)

E [△V2(k)]

= E

[
gT (x(k))Rg(x(k))

−ατ1(k)gT (x(k− τ1(k)))Rg(x(k− τ1(k)))

+
k−1

∑
i=k+1−τ1(k+1)

αk−igT (x(i))Rg(x(i))

−
k−1

∑
i=k+1−τ1(k)

αk−igT (x(i))Rg(x(i))

]

≤ E

[
gT (x(k))Rg(x(k))

−ατ1,M gT (x(k− τ1(k)))Rg(x(k− τ1(k)))
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+
k−1

∑
i=k+1−τ1,M

αk−igT (x(i))Rg(x(i))

−
k−1

∑
i=k+1−τ1,m

αk−igT (x(i))Rg(x(i))

]

= E

[
gT (x(k))Rg(x(k))

−ατ1,M gT (x(k− τ1(k)))Rg(x(k− τ1(k)))

+
k−τ1,m

∑
i=k+1−τ1,M

αk−igT (x(i))Rg(x(i))

]
, (19)

E [△V3(k)]

= E

[
τ1,M−1

∑
d=τ1,m

[
gT (x(i))Rg(x(i))−αdgT (x(k−d))

×Rg(x(k−d))]

= E
[
(τ1,M − τ1,m)gT (x(k))Rg(x(k))

−
τ1,M−1

∑
d=τ1,m

αdgT (x(k−d))Rg(x(k−d))

]
, (20)

E[△V4(k)]

= E

[
τ(k+1)

∑
d=1

k

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−
τ2(k)

∑
d=1

k−1

∑
i=k−d

αk−ihT (x(i))Sh(x(i))

]

≤ E

[
τ2,M

∑
d=1

k

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−
τ2,m

∑
d=1

k−1

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−
τ2(k)

∑
d=1

αdhT (x(k−d))Sh(x(k−d))

]

= E

[
τ2,M

∑
d=1

[
hT (x(k))Qh(x(k))

+
k−1

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))
]

−
τ2,m

∑
d=1

k−1

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−
τ2(k)

∑
d=1

αdhT (x(k−d))Sh(x(k−d))

]

≤ E

[
τ2,MhT (x(k))Sh(x(k))

+
τ2,M

∑
d=τ2,m+1

k−1

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−ατ2,M

τ2(k)

∑
d=1

hT (x(k−d))Sh(x(k−d))

]
, (21)

E[△V5(k)]

= E

[
τ2,M

∑
θ=τ2,m+1

θ−1

∑
d=1

k

∑
i=k+1−d

αk−ihT (x(i))Sh(x(i))

−
τ2,M

∑
θ=τ2,m+1

θ−1

∑
d=1

k−1

∑
i=k−d

αk−ihT (x(i))Sh(x(i))

]

= E

[
1
2
(τ2,M − τ2,m)(τ2,M + τ2,m −1)hT (x(k))Sh(x(k))

−
τ2,M

∑
θ=τ2,m+1

θ−1

∑
d=1

αdhT (x(k−d))Sh(x(k−d))

]
. (22)

Hence, we deduce from (18)-(22) that

E[V (Xk+1,k+1)−αV (Xk,k)]

=
5

∑
j=1

E[△Vj(k)]

≤ E

[
ϑ T (k)AT QAϑ(k)−αxT (k)Qx(k)

+δ ∗ρ2xT (k)Qx(k)+gT (x(k))Rg(x(k))

−ατ1,M gT (x(k− τ1(k)))Rg(x(k− τ1(k)))

+(τ1,M − τ1,m)gT (x(k))Rg(x(k))

+ τ2,MhT (x(k))Sh(x(k))

−ατ2,M

τ2(k)

∑
d=1

hT (x(k−d))Sh(x(k−d))

+
1
2
(τ2,M − τ2,m)(τ2,M + τ2,m −1)

×hT (x(k))Sh(x(k))

]
. (23)

Assumption 2 and Lemma 3 indicate that

f T (x(k))Σ f (x(k))+xT (k)ΣΓ1x(k)

−2xT (k)ΣΓ2 f (x(k))≤ 0, (24)

gT (x(k))ϒg(x(k))+xT (k)ϒΩ1x(k)

−2xT (k)ϒΩ2g(x(k))≤ 0, (25)

hT (x(k))Λh(x(k))+xT (k)ΛΞ1x(k)

−2xT (k)ΛΞ2h(x(k))≤ 0. (26)

Meanwhile, one can derive from Lemma 2 that

−
τ2(k)

∑
d=1

hT (x(k−d))Sh(x(k−d))

≤− 1
τ2(k)

(
τ2(k)

∑
d=1

h(x(k−d))

)T

S

(
τ2(k)

∑
d=1

h(x(k−d))

)
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By applying (24)-(27) into (23), we obtain

E[V (Xk+1,k+1)−αV (Xk,k)]

≤ E
[
ϑ T (k)AT QAϑ(k)+ϑ T (k)Φ1ϑ(k)

]
, (27)

where

Φ1 =



Φ11 ∗ ∗ ∗ ∗ ∗
Γ2Σ −Σ ∗ ∗ ∗ ∗
Ω2ϒ 0 Φ33 ∗ ∗ ∗

0 0 0 −ατ1,M Q ∗ ∗
Ξ2Λ 0 0 0 Φ55 ∗

0 0 0 0 0 − 1
τ2,M

S


< 0,

with Φ11, Φ33 and Φ55 defined in (6) and (7), respectively.
According to Lemma 1, it is easy to see that Φ1 +

AT QA< 0 is equivalent to Φ < 0, and then due to condi-
tion (5) we have

E[V (Xk+1,k+1)−αV (Xk,k)]≤ 0,

which implies

E[V (Xk+1,k+1)]≤ αE[V (Xk,k)].

Based on the above inequality, it is obtained that

E[V (Xk,k)]≤ αk−k0 E[V (Xk0 ,k0)],

for all k ∈ Z≥k0 . □

Remark 5: On account of the novel Lyapunov func-
tional (12), we obtain a criterion of decay estimation for
the mentioned non-switched neural networks (3). It is
clear that exponential stability in mean square of system
(3) is reached provided that the LMIs (4) and (5) are fea-
sible. Besides, the LMIs (4) and (5) show the effect of
time-varying delays and stochastic noise intensity on the
decay rate of system (3). For instance, if α is given, then
the smaller intension of stochastic noise, upper bound of
τ1(k) and τ2(k) are, the more feasible the solutions are.
Meanwhile, small difference of upper and lower bounds
of time-delays makes the feasible solutions easier to find.

Remark 6: Lemma 4 presents exponential stability in
mean square of system (3) without switching signal. How-
ever, as illustrated in literature [33], for some switching
rules, the switched systems would exhibit unstable perfor-
mance even if every subsystem is asymptotically stable.
Hence, we should also consider the change of switching
rule apart from dynamical temporal behavior of each sub-
system. The following theorem will explore stability of
the addressed DSNNs (1).

Next, with the aid of Lemma 4 and average dwell time
methodology, a novel mode-dependent Lyapunov func-
tional is constructed in order to investigate stability prob-
lem for system (1).

Theorem 1: Given 0 < α < 1. Under Assumptions
1-3, if there are constants µ ≥ 1, δ ∗

i > 0, matrices Qi >
0,Ri > 0,Si > 0, for i ∈ M, diagnal matrices Σ > 0,ϒ >
0,Λ > 0 satisfying the following inequalities:

T0 ≥ T ∗
0 =− ln µ

lnα
, (28)

Qi ≤ µQ j, Ri ≤ µR j, Si ≤ µS j, (29)

Qi < δ ∗
i I, (30)

Φi =



Φi
11 ∗ ∗ ∗ ∗ ∗ ∗

Γ2Σ −Σ ∗ ∗ ∗ ∗ ∗
Ω2ϒ 0 Φi

33 ∗ ∗ ∗ ∗
0 0 0 Φi

44 ∗ ∗ ∗
Ξ2Λ 0 0 0 Φi

55 ∗ ∗
0 0 0 0 0 Φi

66 ∗
QiAi QiBi 0 QiC

(1)
i 0 Φi

76 −Qi


< 0, (31)

for all i, j ∈M, where

Φi
11 = ρ2δ ∗

i I −αQi −ΣΓ1 −ϒΩ1 −ΛΞ1, (32)

Φi
33 = (1+ τ1,M − τ1,m)Ri −ϒ, (33)

Φi
44 =−ατ1,M Qi, (34)

Φi
55 =

[
τ2,m +

1
2
(τ2,M − τ2,m)(τ2,M + τ2,m −1)

]
S−Λ,

(35)

Φi
66 =− 1

τ2,M
Si, Φi

76 = QiC
(2)
i , (36)

then system (1) is mean square exponential stability with
a decay rate λ = µ

1
T0 α .

Proof: To analyze the stability, we can utilize the
mode-dependent Lyapunov functional:

Vπ(k)(k) :=Vπ(k)(Xk,k) =
5

∑
s=1

Vs,π(k)(Xk,k), (37)

where

V1,π(k)(Xk,k) = xT (k)Qπ(k)x(k), (38)

V2,π(k)(Xk,k) =
k−1

∑
i=k−τ1(k)

αk−1−igT (x(i))Rπ(k)g(x(i)),

(39)

V3,π(k)(Xk,k) =
τ1,M−1

∑
d=τ1,m

k−1

∑
i=k−d

αk−1−igT (x(i))Rπ(k)g(x(i)),

(40)

V4,π(k)(Xk,k) =
τ2(k)

∑
d=1

k−1

∑
i=k−d

αk−1−ihT (x(i))Sπ(k)h(x(i)),

(41)

V5,π(k)(Xk,k) =
τ2,M

∑
θ=τ2,m+1

θ−1

∑
d=1

k−1

∑
i=k−d

αk−1−ihT (x(i))
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×Sπ(k)h(x(i)). (42)

When k ∈ [kt ,kt+1), employing Lemma 4 together with
(29), we have

E[Vπ(k)(k)]≤αk−kt E[Vπ(kt )(kt)]

≤µαk−kt E[Vπ(kt−1)(kt)]

≤µαk−kt−1 E[Vπ(kt−1)(kt−1)]

≤µNπ (k,k0)αk−k0 E[Vπ(k0)(k0)]

≤
(

µ
1

T0 α
)k−k0

E[Vπ(k0)(k0)]. (43)

Additionally, let

ω = max
1≤i≤n

[|ω−
i |, |ω+

i |], ξ = max
1≤i≤n

[|ξ−
i |, |ξ+

i |].

Then, owing to (37), it is implied that

E[Vπ(k)(k)]≥ β1E[∥x(k)∥2],

E[Vπ(k0)(k0)]≤ β2 sup
k0−r≤ℓ≤k0

E[∥ϕ(ℓ)∥2],

Thus, (43) implies

E[∥x(k)∥2]≤ β2

β1

(
µ

1
T0 α
)k−k0

sup
k0−r≤ℓ≤k0

E[∥ϕ(ℓ)∥2], (44)

where

β1 =min
i∈M

λm(Qi),

β2 =max
i∈M

λM(Qi)+ [τ1,M +
1
2
(τ1,M − τ1,m)

× (τ1,M + τ1,m −1)]ω2 max
i∈M

λM(Ri)+
1
2

τ2,M

× (τ2,M +1)(τ2,M − τ2,m +1)ξ 2 max
i∈M

λM(Si).

Hence, according to Definition 1, system (1) achieves
the exponential stability in mean square with K = β2

β1
and

λ = µ
1

T0 α , where K > 0 and 0 < λ < 1. □

Remark 7: Recently, dynamical behaviors of switched
time-delayed neural networks have been explored, e.g.
[17, 29]. However, time-varying distributed delays have
been overlooked in [17, 29]. In Theorem 1, time-varying
distributed delays in system (1) are tackled by the triple
summation term (42) of the novel Lyapunov functional.

Remark 8: Theorem 1 indicates that stochastic stabil-
ity of system (1) can be achieved under the conditions
of mean square stable subsystems together with slowly
switching signal. The condition T0 ≥ T ∗

0 = − ln µ
lnα gives

the minimal dwell time on the average, ensuring DSNNs
(1) is stochastically stable. Additionally, it is found that
the better stochastic performance of every subsystem is,
the larger minimal average dwell time is. We shall show
this point in the numerical example.

Remark 9: The decay rate of the addressed neural net-
works (1) satisfies λ = µ

1
T0 α > α , which means that sta-

bility performance of every subsystem is better than that
of the total switched systems. Particularly, when T0 → ∞,
we have λ → α , which is equal to the decay rate of every
subsystem.

Remark 10: It can be seen from (28) that the lower
bound T ∗

0 of average dwell time is monotonic increasing
in α and µ . Accordingly, to obtain some small value T ∗

0 ,
we should choose α and µ as small as possible under the
feasibility of the LMIs (29)-(31). On the other hand, large
α and µ is beneficial to the feasibility of the LMIs (29)-
(31). Thus, to obtain the minimal value of T ∗

0 , it is neces-
sary to find the minimal values of α and µ such that the
LMIs (29)-(31) are feasible. Specifically, large initial val-
ues α and µ are firstly chosen to ensure that (29)-(31) are
solvable, and then, according to some step length, α and
µ are gradually tuned under the feasibility of the LMIs
(29)-(31).

Remark 11: Based on mode-dependent Lyapunov
functional technique, this paper has investigated the
stochastic stability problem for a class of general neural
networks. In Theorem 1, sufficient conditions of exponen-
tial stability in mean square for the considered DSNNs are
presented in terms of the feasibility of a set of LMIs and
the lower bound of average dwell time. When increasing
the number of neurons, it is obvious that the size of LMIs
(29)-(31) also grows. Therefore, a huge computation
burden is inevitable. Currently, workstations need spend
an hour on tackling the problems for a thousand design
variables [15], but the LMI optimization has become the
ever-increasing research topic. So, we expect that the cor-
responding computational process will be accelerated in
the future.

4. A NUMERICAL EXAMPLE

The effectiveness of the inferred theoretical results can
be verified by a numerical simulation example of this sec-
tion.

We consider the DSNNs (1) with two subsystems de-
noted by S1 and S2. The corresponding system parameters
are listed as follows:

A1 =

[
0.1 0
0 0.1

]
, B1 =

[
0.2 −0.5
0.2 −0.1

]
,

C(1)
1 =

[
0.1 −0.1
0.2 −0.2

]
, C(2)

1 =

[
0.2 −0.2
0 0.2

]
,

A2 =

[
0.3 0
0 0.2

]
, B2 =

[
0.1 −0.2
0.1 −0.1

]
,

C(1)
2 =

[
0.2 0.1
0.2 −0.2

]
, C(2)

2 =

[
0.2 −0.1
0.1 0.2

]
,

6 ≤ τ1(k)≤ 8,1 ≤ τ2(k)≤ 2,ρ = 0.2,µ = 1.2.
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Table 1. Decay Rate of Subsystem α and ADT T ∗
0

α 0.98 0.95 0.92 0.89
T ∗

0 9.6246 3.5545 2.1886 1.5645

Consider activation functions satisfying Assumption 2:

f1(u) = g1(u) = h1(u) = tanh(−0.6u),

f2(u) = g2(u) = h2(u) = tanh(0.4u),

then one can see that

Γ1 = Ω1 = Ξ1 = 0,Γ2 = Ω2 = Ξ2 =

[
−0.3 0

0 0.2

]
.

Based on the above parameters, we can solve LMIs
(29)-(31) by means of Matlab LMI toolbox. The follow-
ing Table II describes that the calculated values of ADT
T ∗

0 for different values of decay rate α . It means that the
better stochastic performance of every subsystem is, the
larger minimal average dwell time is.

Particularly, when α = 0.89, from Theorem 1, we can
get T ∗

0 = 1.5645 and feasible solutions which are listed:

λ ∗
1 = 49.0170, Q1 =

[
38.0266 −5.8645
−5.8645 24.2283

]
,

R1 =

[
12.3823 3.0318
3.0318 13.0191

]
,

S1 =

[
13.2423 −0.0140
−0.0140 15.4770

]
,

λ ∗
2 = 44.7605, Q2 =

[
42.0794 −6.3184
−6.3184 22.4979

]
,

R2 =

[
12.2330 3.6678
3.6678 13.0650

]
,

S2 =

[
12.7416 0.2330
0.2330 15.1172

]
,

Σ =

[
13.6881 0

0 72.0085

]
,

ϒ =

[
73.6985 0

0 70.4054

]
,

Λ =

[
50.5695 0

0 56.1754

]
.

Suppose k0 = 0, and the subsystem S1 is firstly acti-
vated. For any initial condition ϕ , Fig. 2 depicts the phase
portrait of system (1) with α = 0.89, T0 = 2 > T ∗

0 , while
Fig. 3 depicts with α = 0.95, T0 = 5 > T ∗

0 . These two
figures all show that system (1) with given parameters is
stochastically stable.

5. CONCLUSIONS

In this paper,exploration on stochastic stability has
been made for a class of generally switched neural net-

Fig. 1. System state evolution with α = 0.89, T0 = 2.

Fig. 2. System state evolution with α = 0.95, T0 = 5.

works. The considered model simultaneously incorpo-
rates stochastic noise, switching signal, and time-varying
mixed delays. The establishment of sufficient conditions
for stochastic stability has been dependent on the new Lya-
punov functional in combination with average dwell time
methodology. The obtained sufficient conditions can re-
flect the relationship among the decay rate, dwell time on
the average, performance of subsystems, upper and lower
bounds of time-delays and intensity of noise. Some inter-
esting research topics in future, including the stabilization
problem of switched systems not only for more general
nonlinear subsystem [34, 35] but also for some network-
induced phenomena [14, 36].
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