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Robust Finite-time Attitude Tracking Control of Rigid Spacecraft Under
Actuator Saturation
Hai-Tao Chen, Shen-Min Song*, and Zhi-Bin Zhu

Abstract: This paper investigates the robust finite-time attitude tracking control problem for rigid spacecraft con-
sidering the modeling uncertainty, external disturbance and actuator saturation. An auxiliary system is proposed
to directly compensate for the saturated control input. First, the basic controller is formulated based on the fast
nonsingular terminal sliding mode surface (FNTSMS), the fast-TSM-type reaching law and the auxiliary system in
the presence of upper bounded external disturbance. Then, when facing system uncertainty which consists of both
modeling uncertainty and external disturbance and has upper bounded first derivative, the extended state observer
(ESO) is associated with the first controller to improve the robustness of control system. Furthermore, to handle
more general system uncertainty which is upper bounded by a polynomial function of the closed-loop system states,
a continuous adaptive controller is designed to compensate for the total system uncertainty on line. The proposed
controllers are able to deal with system uncertainty, input singularity and actuator saturation, while simultaneously
providing fast finite-time convergence speed for the control system. And the problems of complex parameters se-
lection process and repeated differentiations of nonlinear functions can be avoided. Rigorous stability analyses are
given via the Lyapunov stability theory and digital simulations are conducted to illustrate the effectiveness of the
proposed controllers.

Keywords: Actuator saturation, adaptive control, auxiliary system, extended state observer (ESO), fast nonsingular
terminal sliding mode, fast-TSM-type reaching law.

1. INTRODUCTION

The tracking control problem of rigid spacecraft has
attracted much attention due to its importance and wide
applications in different kinds of space missions. Many
scholars have devoted to the related researches and put
forward various methods for the tracking control problem,
including the optimal control [1], the passivity-based con-
trol [2], the adaptive control [3], the backstepping con-
trol [4], the intelligent control [5], the sliding mode con-
trol (SMC) [6] and their combinations [7], among which
the SMC method has been much favored, due to its easy
implementation and active interactions with other control
procedures. Especially for the terminal sliding mode con-
trol (TSMC) method [8], since it can provide a finite-
time convergence rate for the control system, which ob-
tains great advantages in both practical and theoretical
situations. Various TSMC-based works with specially
defined terminal sliding mode functions have been pro-
posed during the past several decades, such as the con-
ventional terminal sliding mode surface (TSMS) [9, 10],
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the nonsingular terminal sliding mode surface (NTSMS)
[11, 12], the fast terminal sliding mode surface (FTSMS)
[13, 14] and the fast nonsingular terminal sliding mode
surface (FNTSMS) [15]. This paper is mainly based on
the TSMS-based methods to deal with the attitude track-
ing control problem.

Given the complexity of the spacecraft systems, many
factors including the modeling uncertainty, external dis-
turbance and actuator saturation must be considered so
that satisfactory control performance can be achieved. The
TSMC method possesses strong robustness with respect to
the system uncertainty of different types. But many previ-
ous works such as [10, 12–15] all require a priori knowl-
edge of the system uncertainty, which may not be available
in the actual applications. And the high gain switch func-
tions used to suppress the system uncertainty can cause
input chattering and serious actuators worn out. [11] only
considers the external disturbance upper bounded by a
constant. To off-set the input chattering and to improve the
control performance, the observers are combined with the
TSMC methods in [16–18] by approximating and com-
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pensating for the system uncertainty on line. But the
utilization of the observers requires the system uncer-
tainty being differentiable which also restricts the applica-
tion of the respective controllers. For system uncertainty
with more general properties, i.e., being upper bounded
by a polynomial function, the adaptive control methods
[19–22] are utilized to estimate the respective unknown
parameters. Furthermore, when the system uncertainty
appears as completely unknown functions, the intelligent
algorithms, including the fuzzy logic system [23] and the
neural networks [24–27], are able to get real-time approx-
imation of the total uncertainty on line. And with the com-
bination of the adaptive control method, the online compu-
tational load of the intelligent methods in [28, 29] can be
much reduced because fewer parameters need adjusting.
However, [22, 23, 26–29] only provide an asymptotical
convergence speed for the closed-loop systems and among
all the mentioned TSMC works, only [17,18] consider the
problems of system uncertainty, actuator saturation and
finite-time stabilizing concurrently. However, mixing the
input errors caused by actuator saturation with modeling
uncertainty and external disturbance in [17, 18] would in-
crease the calculation burden of the designed observers
and the system dynamic characteristics can be highly af-
fected by the additional disturbance resulting from the sat-
uration effect. Therefore, further research about the atti-
tude tracking control problem considering actuator satura-
tion and system uncertainty is still necessary.

In the existing literatures, the actuator saturation prob-
lem has been widely studied. In [30–35], saturation func-
tions are used to formulate the controllers subject to the
control input constraints. However, the works of [30–35]
involve complex parameter selection processes and can
only obtain an asymptotical convergence rate for the
closed-loop systems. Homogeneous methods associated
with the saturation functions in [36, 37] are able to meet
the input saturation constraint and the finite-time stabiliz-
ing property, but only when the system uncertainty is ab-
sent, which is the main disadvantage of the homogeneous-
based control methods. The auxiliary system [38, 39] is
a simple but effective method to handle input saturation
which includes constructing an extended dynamic system
to compensate for the saturated control input in a direct
manner. However, the problems exist that in [38] a prior
knowledge of the system uncertainty is still necessary and
by using neural network to cancel the unknown system
uncertainty, the structure of the controller in [39] becomes
quite complex. Furthermore, utilizing the conventional
backstepping control method in [38, 39] could lead to the
problem of explosion of complexity which involves re-
peated differentiations of nonlinear functions.

As shown above, few existing studies consider the prob-
lems of unknown system uncertainty, actuator saturation
and input singularity while simultaneously providing a
fast finite-time convergence rate for the closed-loop sys-

tem. Therefore, in this paper three robust control methods
are investigated to deal with the above-mentioned prob-
lems which are mainly based on the FNTSMS, the auxil-
iary system, the fast-TSM-type reaching law, the ESO and
the adaptive control method. Compared with the existing
literatures, contributions of this work include:

1) The fast finite-time convergence rate is obtained con-
sidering all the problems of input singularity, input
chattering, actuator saturation and unknown system
uncertainty.

2) The ESO technique, the fast-TSM-type reaching law
and the adaptive control procedure are mainly used to
deal with the modeling uncertainty and external distur-
bance in the proposed controllers, while the auxiliary
system is utilized to compensate the actuator saturation
effect. Compared with [17,18], by dealing with the ac-
tuator saturation problem and system uncertainty sepa-
rately, the burden of the respective observers and adap-
tive laws can be much alleviated and the additional dis-
turbance resulting from the input errors caused by ac-
tuator saturation can be much reduced.

3) A modified auxiliary system is proposed so that it
could be associated with the FNTSMS, fast-TSM-type
reaching law, the ESO and the adaptive control method
to handle the actuator saturation, while providing a
finite-time convergence rate and robustness against un-
known system uncertainty for the control system. In
this manner, the problems of complex parameters ad-
justing process and repeated differentiations of nonlin-
ear functions in the previous works of [30–39] can be
avoided.

This paper is organized as follows. Preliminaries and
system dynamics are established in the next section. In
Section 3, three controllers are proposed and stability
proofs are given as well. In Section 4, numerical simu-
lations are presented. The paper is closed with some con-
cluding remarks in Section 5.

2. PROBLEM FORMULATION

Coordinate systems are set up as follows. The inertial
frame FI is centered on the earth center of mass with its
xI axis pointing to the vernal equinox, the zI axis pointing
to the north and parallel to the rotation axis of the earth
and the yI axis given by the right-hand rule. The body
fixed frame FB is centered on the spacecraft center of mass
with its axis along with the principle axis of the spacecraft.
The reference frame FR is decided by the desired attitude
signal.

According to [40], q = [q0 qT
v ]

T = [q0 q1 q2 q3]
T is em-

ployed to describe the quaternion of the body fixed frame
FB with respect to the inertial frame FI . The scalar part
q0 and the vector part qv are subject to the constraint
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q2
0 + qT

v qv = 1. The attitude dynamics of the spacecraft
are defined as (1) and (2).

q̇ = E(q)ω, (1)

Jω̇ =−ω×Jω +u+d, (2)

E(q) =
[

− 1
2 qT

v
1
2 (q0I3×3 +q×v )

]
, (3)

x× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

, (4)

where ω ∈ R3×1 is the angular velocity of the spacecraft
in the body frame, J ∈ R3×3 is the inertia matrix of the
spacecraft, u ∈ R3×1 and d ∈ R3×1 are the control torque
and external disturbance torque acting on the spacecraft,
respectively. I3×3 is the 3× 3 identity matrix. x× denotes
the skew-symmetric matrix generated by any vector x =
[x1 x2 x3]

T ∈ R3×1.
Denote qd = [qd0 qT

dv]
T as the desired attitude of the

spacecraft, q∗
d as the conjugate quaternion of qd and ωd ∈

R3×1 as the desired angular velocity resolved in the refer-
ence frame FR. Define q̃ and ω̃ as the error quaternion and
error angular velocity of FB with repect to FR calculated as

q̃ = q∗
d ◦q = [q̃0 q̃T

v ]
T = [q̃0 q̃1 q̃2 q̃3]

T , (5)

ω̃ = ω −C(q̃)ωd , (6)

where “◦” denotes the multiplication operator between the
quaternion. The rotation matrix from FR to FB is defined
as

C =C(q̃) = (q̃2
0 − q̃T

v q̃v)I3 +2q̃vq̃T
v −2q̃0q×v . (7)

Then, it obtains the error dynamics equations:

˙̃q = E(q̃)ω̃ =
1
2

[
−q̃T

v
q̃0I3 + q̃×

v

]
ω̃, (8)

J ˙̃ω =−(ω̃ +Cωd)
×J(ω̃ +Cωd)+ J(ω̃×Cωd

−Cω̇d)+ sat(u)+d, (9)

sat(u) = [sat(u1),sat(u2),sat(u3)]
T , (10)

sat(ui) =



(Umax −a)+
a tanh( ui−Umax+a

a )
ui ⩾Umax −a,

ui
a−Umax < ui

<Umax −a,
(a−Umax)+
a tanh( ui+Umax−a

a )
ui ⩽ a−Umax,

(11)

where u ∈ R3×1 is the command control input, sat(u) ∈
R3×1 is the actual saturated control input, Umax is the max-
imum control torque of the spacecraft on-board actuators,
tanh(·) represents the hyperbolic tangent function, a is a
small positive constant chosen by the designer. Given the
definition of (11) and using some algebraic operations, it
can be proved that, sat(u) is a piecewise differentiable

function with |ui| < Umax satisfied for i = 1,2,3, respec-
tively.

The inertia matrix J can be further described in the form
of J = J0 +∆J, where J0 and ∆J denote a known positive
difinite matrix and the unknown modeling uncertainty, re-
spectively. Given the above, (9) becomes

J0 ˙̃ω = − (ω̃ +Cωd)
×J0(ω̃ +Cωd)

+ J0(ω̃×Cωd −Cω̇d)

− (ω̃ +Cωd)
×∆J(ω̃ +Cωd)

+∆J(ω̃×Cωd −Cω̇d)−∆J ˙̃ω + sat(u)+d

= F +u+∆u+∆F +d

= F +u+∆u+δ ,

(12)

F = − (ω̃ +Cωd)
×J0(ω̃ +Cωd)

+ J0(ω̃×Cωd −Cω̇d),
(13)

∆F = − (ω̃ +Cωd)
×∆J(ω̃ +Cωd)

+∆J(ω̃×Cωd −Cω̇d)−∆J ˙̃ω,
(14)

∆u = sat(u)−u, (15)

δ = ∆F +d, (16)

where δ = [δ1 δ2 δ3]
T denotes the total system uncer-

tainty.

Property 1: The positive definite matrix J0 satisfies the
following relationship:

λmin(J0)∥x∥2
2 ⩽ xT J0x ⩽ λmax(J0)∥x∥2

2, ∀x ∈ R3×1 (17)

where ∥·∥2 represents the 2-norm of the respective vector
or matrix, and λmin(J0) and λmax(J0) are the minimum and
maximum eigenvalues of J0, respectively.

Assumption 1 [10, 11, 30]: The inertia matrix J, the
desired angular velocity ωd and its derivative ω̇d are all
assumed to be upper bounded. The external disturbance d
is assumed to satisfy ∥d∥2 < l1, where l1 is an unknown
positive constant.

This paper aims at solving the finite-time attitude track-
ing control problem for rigid spacecraft considering the
modeling uncertainty, external disturbance and actuator
saturation. The objective is equivalent to designing a com-
mand control input u for the attitude tracking control sys-
tem (8) and (9), so that the finite-time stabilization of the
attitude tracking error q̃ (5) and the angular velocity track-
ing error ω̃ (6) can be obtained even in the presence of
unknown system uncertainty δ (16) and actuator satura-
tion (10).

3. CONTROLLER DESIGN

In this section, the rigid spacecraft attitude tracking
control problem is investigated considering system uncer-
tainty and input saturation, with three robust finite-time
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saturated control methods proposed. The FNTSMS, the
modified auxiliary system and some useful Lemmas are
first introduced, which will be useful in the controller for-
mulation and stability analyses sections.

To provide a fast system dynamic and to avoid the input
singularity, the FNTSMS is constructed as

S = [S1 S2 S3]
T = ω̃ +α1q̃v +α2β (q̃v), (18)

β (q̃v) = [β (q̃1)β (q̃2)β (q̃3)]
T , (19)

β (q̃i) =

{
sigγ(q̃i) |q̃i|> η ,

r1q̃i + r2 sgn(q̃i)q̃2
i |q̃i|⩽ η ,

(20)

sigγ(q̃i) = sgn(q̃i)|q̃i|γ , (21)

sgn(q̃i) =


1 q̃i > 0,
0 q̃i = 0,
−1 q̃i < 0,

(22)

where r1 = (2− γ)ηγ−1, r2 = (γ − 1)ηγ−2, 0 < γ, η < 1
and i = 1,2,3.

The auxiliary system to compensate for the actuator sat-
uration is designed as follows:

ζ̇ =


0, ∥ζ∥2 ⩽ ζ0,

−k1ζ − k2sigγ1(ζ )−
∥ST ∆u∥1

+0.5∆uT ∆u

∥ζ∥2
2

ζ +∆u
, ∥ζ∥2 > ζ0,

(23)

where ∆u is as defined in (15), ζ ∈ R3×1 is the state
vector, S ∈ R3×1 is as defined in (18), k1, k2 and ζ0

are positive constants chosen by the designer, sigγ1(ζ ) =
[sigγ1(ζ1),sigγ1(ζ2),sigγ1(ζ3)]

T and 0 < γ1 < 1.

Lemma 1 [11]: Suppose a1 > 0, a2 > 0 and 0 < c < 1.
Then, it obtains

(a1 +a2)
c ⩽ ac

1 +ac
2. (24)

Lemma 2 [11]: Suppose a1 > 0, . . . ,an > 0 and 0< c<
2. Then, it obtains

(a2
1 +a2

2 + · · ·+a2
n)

c ⩽ (ac
1 +ac

2 + · · ·+ac
n)

2. (25)

Lemma 3 [10]: For y = f (x), x ∈ Rn×1 and f (0) = 0.
Suppose that V (x) is a C1 smooth positive definite function
(defined on U ⊂ Rn×1) and V̇ (x) + aV (x)c is a negative
semi-definite function defined on U ⊂ Rn×1 where a > 0
and 0 < c < 1. Then, there exist U0 ⊂ Rn×1 so that any
V (x) that starts from U0 ⊂ Rn×1 can reach V (x) ≡ 0 in
finite time. If T is the time for V (x)≡ 0 to be reached,

T ⩽ V (x(t0))
1−c

a(1− c)
, (26)

where V (x(t0)) is the initial value of V (x). Then, y = f (x)
is finite-time stable.

Lemma 4 [10]: For y = f (x), x ∈ Rn×1 and f (0) = 0.
If V (x) which is defined in Lemma 3 satisfies V̇ (x) ⩽
−aV (x)−bV (x)c, where a> 0, b> 0 and 0< c< 1. Then,
V (x)≡ 0 can be reached after

T ⩽ 1
a(1− c)

ln
aV (x(t0))

1−c +b
b

. (27)

Lemma 5 [14, 21]: Consider the systems (8) and (9)
and S (18). If S = 0 is achieved, q̃ and ω̃ can first con-
verge into small regions around the expected equilibrium
of {q̃ = [1,03×1]

T , ω̃ = 0} in finite time and then to the
expected equilibrium as time tends to infinity.

Proof: The equilibriums of the systems (8) and (9) are
{q̃ = [±1,03×1]

T , ω̃ = 0}.Using S = 0 yields

ω̃ +α1q̃v +α2β (q̃v) = 0. (28)

For {q̃ = [−1,03×1]
T , ω̃ = 0}, the Lyapunov candidate

function is designed as

V1 = q̃T
v q̃v +(1+ q̃0)

2. (29)

Taking the derivative of (29),

V̇1 = α1q̃T
v q̃v +α2q̃T

v β (q̃v)> 0. (30)

Hence, {q̃ = [−1,03×1]
T , ω̃ = 0} is unstable and any

small disturbance can make the system leave {q̃ =
[−1,03×1]

T , ω̃ = 0}.
For {q̃ = [1,03×1]

T , ω̃ = 0}, define

V2 = q̃T
v q̃v +(1− q̃0)

2. (31)

Taking the derivative of (31),

V̇2 =−α1q̃T
v q̃v −α2q̃T

v β (q̃v). (32)

When |q̃i|> η , the system is obtained that

V̇2 ⩽−α1q̃T
v q̃v −α2(q̃T

v q̃v)
γ+1

2

⩽−1
2

α1 · (2q̃T
v q̃v)− (

1
2
)

γ+1
2 α2 · (2q̃T

v q̃v)
γ+1

2 < 0.
(33)

Hence, {q̃ = [1,03×1]
T , ω̃ = 0} is a stable equilibrium

and q̃0 ⩾ 0 can be reached after finite time. Then,

(1− q̃0)
2 −qT

v qv = 2q̃0(q̃0 −1)⩽ 0. (34)

Using (31) and (34),

V2 ⩽ 2q̃T
v q̃v, (35)

V̇2 ⩽−1
2

α1 ·V2 − (
1
2
)

γ+1
2 α2 ·V2

γ+1
2 . (36)

Based on Lemma 4, |q̃i| ⩽ η can be reached in finite
time, which is the same with ω̃ and the ultimate upper
bound of ω̃ is decided by:

|ω̃i|⩽ α1 |q̃i|+α2|q̃i|γ ⩽ α1η +α2ηγ , i = 1,2,3. (37)
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And the time consumption T for the reach of |q̃i| ⩽ η
can be estimated as:

T ⩽ 4
α1(1− γ)

ln
2

γ−1
2 V2(t0)

1−γ
2 +α2

α2
, (38)

where t0 is the time when q̃0 ⩾ 0 is reached.
When |q̃i|⩽ η ,

V̇2 =−1
2
(α1 +α2r) · (2q̃T

v q̃v)−α2r2

3

∑
i=1

(|q̃i| · q̃2
i )

⩽−1
2
(α1 +α2r) ·V2.

(39)

Therefore, q̃v = 0 can be reached as time tends to infin-
ity, which also applies to ω̃ because of S = 0.

The completes the proof of Lemma 5. □

3.1. The basic finite-time saturated attitude tracking
controller design

In this subsection, the external disturbance and actuator
saturation are considered and the modeling uncertainty of
∆J is neglected, i.e., ∆J = 0, ∆F = 0 and δ = d. To handle
the external disturbance as stated in Assumption 1 and the
actuator saturation effect as defined in (10), and to pro-
vide finite-time convergence rate for the closed-loop sys-
tem, the fast-TSM-type reaching law is associated with the
FNTSMS (18) and the auxiliary system (23) to formulate
the controller.

The command control signal u is designed as

u =−F −α1J0 ˙̃qv −α2J0β̇ (q̃v)− k3ζ − 1
2

S

+ur +un,
(40)

ur =−τ1S− τ2sigρ(S), (41)

un =−k4sigγ1(S), (42)

k1 −
1
2

k2
3 −

1
2
> 0, (43)

where 0 < ρ,γ1 < 1, α1 and α2 are as defined in (18), τ1,
τ2, k3 and k4 are positive constants, and k1 is as defined in
(23).

Then, it obtains the following theorem.

Theorem 1: Consider the systems in (8) and (9). If As-
sumption 1 holds, the modeling uncertainty is neglected,
the auxiliary system is designed as (23) and the controller
(40) is applied. Then, the following conclusions are ob-
tained:

(i) The sliding mode surface S = [S1 S2 S3]
T can con-

verge into the following regions in finite time:

|Si|⩽ ϕi = min{ |di|
τ1

,

∣∣∣∣ di

τ2

∣∣∣∣ 1
ρ

}, i = 1,2,3, (44)

where |di| is the absolute value of the ith element of the
external disturbance d, and τ1, τ2 and ρ are as defined in
(41).

(ii) The tracking errors of q̃v and ω̃ can converge into
the following regions in finite time:

|q̃i|⩽ Qi = max{η ,min{ |ϕi|
α1

,

∣∣∣∣ ϕi

α2

∣∣∣∣ 1
γ

}}, (45)

|ω̃i|⩽ ϕi +α1Qi +α2Qγ
i , i = 1,2,3, (46)

where ϕi is as defined in (44), and η , α1, α2 and γ are as
defined in (18) and (20).

Proof: Consider the Lyapunov candidate function as

V =
1
2

ST J0S+
1
2

ζ T ζ . (47)

Taking the derivative of (47) and substituting in the con-
troller (40) and the auxiliary system (23) yields

V̇ = ST [F +u+∆u+d +α1J0 ˙̃qv +α2J0β̇ (q̃v)]

+ζ T ζ̇

= ST (d +ur − k4 · sigγ1(S)− k3ζ − 1
2

S+∆u)

+ζ T ζ̇

= ST (d +ur)− k4 ·ST sigγ1(S)− k3ST ζ − 1
2

ST S

+ST ∆u− k1ζ T ζ − k2ζ T sigγ1(ζ )−
∥∥ST ∆u

∥∥
1

− 1
2

∆uT ∆u+ζ T ∆u.

(48)

Using the inequalities of −k3ST ζ ⩽ 1
2 ST S + 1

2 k2
3ζ T ζ

and ζ T ∆u ⩽ 1
2 ζ T ζ + 1

2 ∆uT ∆u,

V̇ ⩽−k4ST sigγ1(S)− k2ζ T sigγ1(ζ )

−ζ T (k1 −
1
2

k2
3 −

1
2
)ζ +ST (d +ur)

⩽−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2

−ζ T (k1 −
1
2

k2
3 −

1
2
)ζ +ST (d +ur).

(49)

Using (43),

V̇ ⩽−(
2

λmax(J0)
)

γ1+1
2 k4(

1
2

ST J0S)
γ1+1

2

−2
γ1+1

2 k2(
1
2

ζ T ζ )
γ1+1

2 +ST (d +ur)

⩽−µ ·V
γ1+1

2 +ST (d − τ1S− τ2sigρ(S)),

(50)

where µ = min((2/λmax(J0)))
(γ1+1)/2 · k4,2(γ1+1)/2 · k2).

Equation (50) can be rewritten as:

V̇ ⩽−µ ·V
γ1+1

2 −

ST [diag(τ1 −
di

Si
)S+ τ2sigρ(S)],

(51)

V̇ ⩽−µ ·V
γ1+1

2 −

ST [τ1S+diag(τ2 −
di

sgn(Si)|Si|ρ
)sigρ(S)],

(52)



6 Hai-Tao Chen, Shen-Min Song, and Zhi-Bin Zhu

where diag(xi) represents a diagonal matrix with the diag-
onal elements of xi (i = 1,2,3).

If τ1 > |di|/|Si| or τ2 > |di|/|Si|ρ are satisfied for
i = 1,2,3, respectively, diag(τ1 − di/Si) or diag(τ2 −
di/sgn(Si)|Si|ρ) can be kept positive definite.

Then, the system becomes

V̇ ⩽−µV
γ1+1

2 . (53)

Using Lemma 2, the convergence of the attitude track-
ing control system can be assured until τ1 ⩽ |di|/|Si| and
τ2 ⩽ |di|/|Si|ρ have all been reached. Therefore, S can
converge into the following regions in finite time:

|Si|⩽ ϕi = min{ |di|
τ1

,

∣∣∣∣ di

τ2

∣∣∣∣ 1
ρ

}, i = 1,2,3, (54)

where τ1, τ2 and ρ are as defined in (41).
Now (i) has been proven.
(ii) The stability analysis of q̃i and ω̃i (i= 1,2,3) should

be divided into the following two cases:
When |q̃i|⩽ η , it yields

ω̃i +α1q̃i +α2(r1q̃i + r2 sgn(q̃i)q̃2
i ) = Si. (55)

which can be rewritten as

ω̃i +(α1 −
Si

q̃i
)q̃i +α2(r1q̃i + r2 sgn(q̃i)q̃2

i ) = 0, (56)

ω̃i +α1q̃i +(α2 −
Si

r1q̃i + r2 sgn(q̃i)q̃2
i
)

× (r1q̃i + r2 sgn(q̃i)q̃2
i ) = 0.

(57)

If α1 > |Si|/|q̃i| or α2 > |Si|/
∣∣r1q̃i + r2 sgn(q̃i)q̃2

i

∣∣ can be
assured, (56) or (57) become a linear SMS and the conver-
gence of q̃v and ω̃ is assured. Furthermore,∣∣r1q̃i + r2 sgn(q̃i)q̃2

i

∣∣
⩽
∣∣(2− γ)ηγ−1q̃i

∣∣+ ∣∣(γ −1)ηγ−2 sgn(q̃i)q̃2
i

∣∣
⩽ (

2
η1−γ +

1
η2−γ ) |q̃i| .

(58)

α1 > |Si|/|q̃i| and α2 > |Si|/
∣∣r1q̃i + r2 sgn(q̃i)q̃2

i

∣∣ yield
|q̃i| > |Si|/α1 and |q̃i| > ( 2

η1−γ +
1

η2−γ )
−1 · |Si|/α2. Based

on |Si| ⩽ ϕi, |q̃i| ⩽ η and Lemma 5, q̃v and ω̃ can con-
verge into the following regions in finite time:

|q̃i|⩽ Q1i = min{η ,
|ϕi|
α1

,(
2

η1−γ +
1

η2−γ )
−1 · |ϕi|

α2
}, (59)

|ω̃i|⩽ |Si|+α1 |q̃i|+α2(
2

η1−γ +
1

η2−γ ) |q̃i|

⩽ ϕi +α1Q1i +α2(
2

η1−γ +
1

η2−γ )Q1i,

(60)

where ϕi is as defined in (54), and α1, α2, γ and η are as
defined in (18) and (20).

When |q̃i|> η , it yields

ω̃i +α1q̃i +α2 sgn(q̃i)|q̃i|γ = Si. (61)

Equation (61) can be rewritten as

ω̃i +(α1 −
Si

q̃i
)q̃i +α2 sgn(q̃i)|q̃i|γ = 0, (62)

ω̃i +α1q̃i +(α2 −
Si

sgn(q̃i)|q̃i|γ
)sgn(q̃i)|q̃i|γ = 0. (63)

If α1 > |Si|/|q̃i| or α2 > |Si|/|q̃i|γ is satisfied, (62) or
(63) become a classical FTSMS. Then, the convergence
of q̃v and ω̃ can be assured until |q̃i|⩽ |Si|/α1 and |q̃i|γ ⩽
|Si|/α2 are all reached. Using |Si| ⩽ ϕi, |q̃i| > η and
Lemma 5, the following regions can be reached in finite
time:

|q̃i|⩽ Q2i = max{η ,min{ |ϕi|
α1

,

∣∣∣∣ ϕi

α2

∣∣∣∣ 1
γ

}}, (64)

|ω̃i|⩽ |Si|+α1 |q̃i|+α2|q̃i|γ ⩽ ϕi +α1Q2i +α2Qγ
2i, (65)

where ϕi is as defined in (54), and α1, α2, γ and η are as
defined in (18) and (20).

Therefore, the ultimate upper bounds of q̃v and ω̃
should be given as (64) and (65).

Now (ii) has been proven.
The proof of Theorem 1 is complete. □

Remark 1: With the addition of −k2sigγ1(ζ ), it be-
comes possible to directly associate the auxiliary system
with FNTSMS to handle the actuator saturation problem
and to provide a finite-time convergence rate for the con-
trol system. In this manner, the complex parameters ad-
justing process in [30–35] are no longer necessary and the
problem of “complexity explosion” in [38,39] can also be
avoided.

Remark 2: The ultimate upper bounds of the tracking
errors as stated in (64) and (65) are able to cover both the
cases of |q̃i|⩽ η and |q̃i|> η (i = 1,2,3). However, when
|q̃i| ⩽ η has been reached, a less conservative and more
useful result about the steady states precisions should be
decided by (59) and (60). Similar results can be derived
for Theorems 2 and 3.

Remark 3: From (54), (64) and (65), it can be seen
that, the steady states accuracy is highly affected by the
amplitude of the system uncertainty. If the system un-
certainty acting on the spacecraft can be counteracted to
a large extent, the control precision would get much in-
creased. The ESO technique has been an active method
to improve the robustness of the control system. Besides,
by using ESO to estimate and compensate for the system
uncertainty on line, not only the control precision can get
improved, but also the input chattering problem in the tra-
ditional TSMC-based control works [10, 14] can be much
attenuated, especially when the system uncertainty is dif-
ferentiable and has upper bounded first derivative.
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3.2. The ESO-based finite-time saturated attitude
tracking controller design

In this subsection, to further improve the control precision
of the controller (40) in Theorem 1, the ESO is designed
to associate with the FNTSMS (18), the auxiliary system
(23) and the fast-TSM-type reaching law to formulate the
attitude tracking controller. To facilitate the utilization of
the ESO, the following assumption is first introduced.

Assumption 2 [18,41]: The total system uncertainty δ
as defined in (16) is differentiable and has upper bounded
first derivative.

Remark 4: δ contains both the external disturbance
and the modeling uncertainty. Assumption 2 implies that
the external disturbance, the modeling uncertainty and
their combinations are all differentiable and have upper
bounded first derivative. It is based on the consideration
that when the spacecraft systems are under control, the
control torques may vary with time, but the change rate of
the control torques, together with the modeling parameters
can not be infinite in reality. Though conservative, it can
still cover many practical situations, as stated in [18, 41].
Therefore, it is reasonable to have Assumption 2 in this
subsection.

The ESO system is designed on the basis of (12) which
is rewritten as:

˙̃ω = J−1
0 F + J−1

0 sat(u)+ x2, (66)

ẋ2 = f (t), (67)

where x2 = J−1
0 δ and f (t) is the derivative of x2. Accord-

ing to Assumption 2, f (t) is upper bounded. J−1
0 δ is the

extended state to be estimated.
The second-order ESO [18] is constructed as follows:

e1 = [e11e12e13]
T = Z1 − ω̃, (68)

Ż1 = Z2 + J−1
0 F + J−1

0 sat(u)− z1e1, (69)

Ż2 =−z2 f (e1,α0,ε0) (70)

where

f (e1,α0,ε0) = [ f1(e1,α0,ε0) f2(e1,α0,ε0)

f3(e1,α0,ε0)]
T ,

(71)

f (ei,α0,ε0) =

{
sigα0(e1i) |e1i|> ε0

e1i/ε1−α0
0 |e1i|⩽ ε0

, (72)

0 < α0,ε0 < 1, (73)

sigα0(e1i) = sgn(e1i)|e1i|α0 , i = 1,2,3, (74)

and e1 is the estimation error of ω̃ .
According to [18], with appropriate selection of z1, z2,

α0 and ε0, the observer states Z1 and Z2 can converge to
small regions around the true values of angular velocity
error ω̃ and the total uncertainty J−1

0 δ in finite time. De-
note σ = δ − J0Z2 as the estimation error of δ from the
ESO (69) and (70).

Then, the command control signal u is designed as

u =−J0Z2 −F −α1J0 ˙̃qv −α2J0β̇ (q̃v)− k3ζ − 1
2

S

+ur +un

(75)

where ur and un are as defined in (41) and (42), α1 and α2

are as defined in (18), and Z2 is the real-time estimate of
x2 = J−1

0 δ obtained from the ESO (69) and (70).
Then, the following theorem is obtained.

Theorem 2: Consider the attitude tracking control sys-
tem in (8) and (9). If Assumption 2 holds, the auxiliary
system is designed as (23), the ESO is designed as (69)
and (70), and the controller (75) is applied. Then, the fol-
lowing conclusions are obtained:

(i) The sliding mode surface S can converge into the
following regions in finite time

Si ⩽ ψi = min{ |σi|
τ1

,

∣∣∣∣σi

τ2

∣∣∣∣ 1
ρ

}, i = 1,2,3, (76)

where σi is the ith element of σ = δ −J0Z2, and τ1, τ2 and
ρ are as defined in (41).

(ii) The tracking errors of q̃v and ω̃ can converge into
the following regions in finite time:

|q̃i|⩽ ϑi = max{η ,min{ |ψi|
α1

,

∣∣∣∣ψi

α2

∣∣∣∣ 1
γ

}}, (77)

|ω̃i|⩽ ψi +α1ϑi +α2ϑ γ
i , i = 1,2,3, (78)

where ψi is as defined in (76), and η , α1, α2 and γ are as
defined in (18).

Proof: Consider the Lyapunov function candidate as

V =
1
2

ST J0S+
1
2

ζ T ζ . (79)

Taking the derivative of (79) and substituting in the con-
troller (75) and the auxiliary system (23) yields

V̇ = ST [F +u+∆u+δ +α1J0 ˙̃qv +α2J0β̇ (q̃v)]

+ζ T ζ̇
= ST (δ − J0Z2 +ur − k4 · sigγ1(S)

− k3ζ − 1
2

S+∆u)+ζ T ζ̇

= ST (δ − J0Z2 +ur)− k4 ·ST sigγ1(S)− k3ST ζ

− 1
2

ST S+ST ∆u− k1ζ T ζ − k2ζ T sigγ1(ζ )

−
∥∥ST ∆u

∥∥
1 −

1
2

∆uT ∆u+ζ T ∆u

⩽ ST (σ +ur)− k4ST sigγ1(S)− k2ζ T sigγ1(ζ )

⩽−µV
γ1+1

2 +ST (σ − τ1S− τ2sigρ(S)),

(80)

where µ is as defined in (50).
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Equation (80) can be rewritten as:

V̇ ⩽−µV
γ1+1

2 −ST [diag(τ1−
σi

Si
)S+τ2sigρ(S)], (81)

V̇ ⩽−µV
γ1+1

2 −ST [τ1S+diag(τ2−
σi

sgn(Si)|Si|ρ
)sigρ(S)].

(82)

If diag(τ1−σi/Si) or diag(τ2−σi/sgn(Si)|Si|γ) are pos-
itive,

V̇ ⩽−µV
γ1+1

2 . (83)

Similar to the analysis process from (50) to (54) within
Theorem 1, a finite-time convergence rate for the con-
trol system can be assured until τ1 ⩽ |σi|/|Si| and τ2 ⩽
|σi|/|Si|ρ are all reached. Therefore, S can converge into
the following regions in finite time:

Si ⩽ ψi = min{ |σi|
τ1

,

∣∣∣∣σi

τ2

∣∣∣∣ 1
ρ

}, i = 1,2,3, (84)

where σ = δ − J0Z2, and τ1, τ2 and ρ are as defined in
(41).

Given the proof of (ii) within Theorem 1, q̃v and ω̃ can
converge into the following regions in finite time:

|q̃i|⩽ ϑi = max{η ,min{ |ψi|
α1

,

∣∣∣∣ψi

α2

∣∣∣∣ 1
γ

}}, (85)

|ω̃i|⩽ ψi +α1ϑi +α2ϑ γ
i , i = 1,2,3. (86)

Now (i) and (ii) have been proven.
The proof of Theorem 2 is complete. □

Remark 5: As long as the ESO parameters are prop-
erly adjusted, σ = δ − J0Z2 can converge into small re-
gions around the origin in finite time with much smaller
amplitudes than the total uncertainty δ and even the exter-
nal disturbance d. As a result, the controller (75) achieves
much higher control precision than controller (40), which
can be verified with the simulation results.

3.3. The adaptive finite-time saturated attitude track-
ing controller design

The controller (40) only considers the external disturbance
d and the controller (75) requires the system uncertainty
being differentiable and with upper bounded first deriva-
tive which restrict the applications of the respective con-
trollers. Hence, in order to handle more general system
uncertainty which is upper bounded by a polynomial func-
tion with unknown parameters, as stated in [21,42], a con-
tinuous adaptive control procedure is introduced in this
subsection. The following assumption is first introduced.

Assumption 3 [21,42]: The total system uncertainty δ
as defined in (16) is assumed to satisfy

∥δ∥2 ⩽ c0 + c1∥ω̃∥2 + c2 ∥ω̃∥2
2 , (87)

where c0, c1 and c2 are unknown parameters and ω̃ is the
error angular velocity.

Remark 6: The control laws proposed in this paper
are mainly based on the error angular velocity and error
quaternion. Since the error quaternion satisfies the con-
straints of q̃T

v q̃v + q̃2
0 = 1, and ωd and ω̇d are also assumed

to be bounded, it is reasonable to obtain [42]

∥u∥2 ⩽ ς0 + ς1∥ω̃∥2 + ς2 ∥ω̃∥2
2 , (88)

where ς0, ς1 and ς2 are unknown positive constants. Given
the definition of ∆F in (14),

∥∆F∥2 ⩽ ∥∆J∥2(∥ω̃ +Cωd∥2
2

+
∥∥ω̃×Cωd −Cω̇d

∥∥
2 +

∥∥ ˙̃ω
∥∥

2)

⩽ ξ0 +ξ1∥ω̃∥2 +ξ2 ∥ω̃∥2
2 ,

(89)

where ξ0, ξ1 and ξ2 are unknown positive constants.
Therefore, it is reasonable to have Assumption 3.
The command control signal u is designed as:

u =−F −α1J0 ˙̃qv −α2J0β̇ (q̃v)− k3ζ − 1
2

S

+ur +un +ua,
(90)

ua =−û · S
∥S∥2 + ε

,ε =
k0

1+ û
, (91)

û = ĉ0 + ĉ1∥ω̃∥2 + ĉ2 ∥ω̃∥2
2 , (92)

˙̂cn = pn(∥S∥2 ∥ω̃∥n
2 −χnĉn), n = 0,1,2, (93)

k1 −
1
2

k2
3 −

1
2
> 0, (94)

where ur and un are as defined in (41) and (42), α1 and α2

are as defined in (18), k1 is as defined in (23), k3, p0, p1,
p2, χ0, χ1 and χ2 are positive constants, and ĉ0, ĉ1 and ĉ2

are the real-time estimates of c0, c1 and c2, respectively.
Then, the following theorem is obtained.

Theorem 3: Consider the systems in (8) and (9). If
Assumption 3 holds, the auxiliary system is designed as
(23) and the controller (90) is applied. Then, the following
conclusions can be obtained:

(i) The sliding surface variable S can converge into the
following regions in finite time:

|Si|⩽ ϕ̄i = min{( χ
τ1
)

1
2 ,(

χ
τ2
)

1
1+ρ }, i = 1,2,3, (95)

where τ1, τ2 and ρ are as defined in (41), χ =
2
∑

n=0
(χnc2

n

/
2+χn|cn|γ1+1) + k0,γ1, cn, χn and pn are as

defined in (23), (87) and (93), and k0 is as defined in (91).
(ii) The tracking errors of q̃v and ω̃ can converge into

the following regions in finite time:

|q̃i|⩽ Q̄i = max{η ,min{
∣∣ϕ̄i

∣∣
α1

,

∣∣∣∣ ϕ̄i

α2

∣∣∣∣ 1
γ

}}, (96)

|ω̃i|⩽ ϕ̄i +α1Q̄i +α2Q̄γ
i , (97)

where ϕ̄i is as defined in (95), and α1, α2, η and γ are as
defined in (18) and (20).
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Proof: (i) Select the Lyapunov candidate function as

V =
1
2

ST J0S+
1
2

ζ T ζ +
1
2

2

∑
n=0

1
pn

c̃2
n, (98)

where c̃n = cn − ĉn (n = 0,1,2) are the estimation errors.
Taking the derivative of (98) and substituting in the con-

troller (90) and the auxiliary system (23) yields

V̇ = ST (δ +ua +ur − k4sigγ1(S)− k3ζ − 1
2

S+∆u)

+ζ T ζ̇ −
2

∑
n=0

1
pn

c̃n ˙̂cn

= ST (δ +ua +ur)− k4ST sigγ1(S)− k3ST ζ

− 1
2

ST S+ST ∆u− k1ζ T ζ − k2ζ T sigγ1(ζ )

−
∥∥ST ∆u

∥∥
1 −0.5∆uT ∆u+ζ T ∆u−

2

∑
n=0

1
pn

c̃n ˙̂cn.

(99)

Then, the system becomes

V̇ ⩽ ST (δ +ua +ur)− k4ST sigγ1(S)

−ζ T (k1 −
1
2

k2
3 −

1
2
)ζ

− k2ζ T sigγ1(ζ )−
2

∑
n=0

1
pn

c̃n ˙̂cn

⩽ ST (δ +ua +ur)− k4(ST S)
γ1+1

2

− k2(ζ T ζ )
γ1+1

2 −
2

∑
n=0

1
pn

c̃n ˙̂cn

= ST (δ +ur)− û · ST S
∥S∥2 + ε

− k4(ST S)
γ1+1

2

− k2(ζ T ζ )
γ1+1

2 −
2

∑
n=0

1
pn

c̃n ˙̂cn.

(100)

The following relationship is obtained that

−û · ST S
∥S∥2 + ε

=−û∥S∥2 +(ûε) · ∥S∥2

∥S∥2 + ε

⩽−û∥S∥2 + k0 ·
û

1+ û
· ∥S∥2

∥S∥2 + ε
⩽−û∥S∥2 + k0

, (101)

where û/(1+ û)< 1 and ∥S∥2/(∥S∥2 + ε)< 1 are used.
Substituting in (92) and using (101),

V̇ ⩽ (c̃0 + c̃1∥ω̃∥2 + c̃2 ∥ω̃∥2
2)∥S∥2 − k4(ST S)

γ1+1
2

− k2(ζ T ζ )
γ1+1

2 −
2

∑
n=0

1
pn

c̃n ˙̂cn +ST ur + k0.
(102)

Substituting in (93), the system becomes

V̇ ⩽−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2

+
2

∑
n=0

χnc̃nĉn +ST ur

=−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2

−
2

∑
n=0

χn(ĉn − cn)ĉn +ST ur + k0.

(103)

Using −(ĉn − cn)ĉn ⩽−(ĉn − cn
2 )

2 + c2
n

2 , it yields

V̇ ⩽−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2 +ST ur

−
2

∑
n=0

χn(ĉn −
cn

2
)

2
+

2

∑
n=0

χn ·
c2

n

2
+ k0

⩽−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2 +ST ur

−
2

∑
n=0

χn|ĉn − cn|γ1+1

+
2

∑
n=0

(
χnc2

n

2
+χn|ĉn − cn|γ1+1)+ k0

⩽−k4(ST S)
γ1+1

2 − k2(ζ T ζ )
γ1+1

2 +ST ur

−
2

∑
n=0

χn(c̃2
n)

γ1+1
2

+
2

∑
n=0

(
χnc2

n

2
+χn|cn|γ1+1)+ k0

⩽−(
2

λmax(J0)
)

γ1+1
2 · k4 · (

1
2

ST J0S)
γ1+1

2

−2
γ1+1

2 · k2 · (
1
2

ζ T ζ )
γ1+1

2 +ST ur

−
2

∑
n=0

χn(2pn)
γ1+1

2 (
c̃2

n

2pn
)

γ1+1
2

+
2

∑
n=0

(
χnc2

n

2
+χn|cn|γ1+1)+ k0,

(104)

where ĉn ⩾ 0 and |ĉn − cn| ⩽ cn have been utilized
based on the low pass filter characteristic of (93) and
∥S∥2 ∥ω̃∥n

2 ⩾ 0 (n = 0,1,2).
Using Lemma 2,

V̇ ⩽−α[
1
2

ST J0S+
1
2

ζ T ζ +
2

∑
n=0

1
2pn

c̃2
n]

γ1+1
2

− τ1ST S− τ2ST sigρ(S)+χ

⩽−αV
γ1+1

2 − τ1ST S− τ2(ST S)
1+ρ

2 +χ,

(105)

where α = min{(2/λmax(J0))
(γ1+1)/2k4, 2(γ1+1)/2k2,

χ0(2p0)
(γ1+1)/2, χ1(2p1)

(γ1+1)/2, χ2(2p2)
(γ1+1)/2} and

χ = ∑2
n=0 (χnc2

n/2+χn|cn|γ1+1)+ k0 are positive.
(105) can be rearranged as

V̇ ⩽−αV
γ1+1

2 − (τ1 −
χ

ST S
)ST S− τ2(ST S)

1+ρ
2 , (106)
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V̇ ⩽−αV
γ1+1

2 − τ1ST S− (τ2 −
χ

(ST S)
1+ρ

2

)(ST S)
1+ρ

2 .

(107)

If τ1 > χ/ST S or τ2 > χ/(ST S)(1+ρ)/2 are satisfied, the
convergence of S can be assured. And the convergence
process will last until τ1 ⩽ χ/ST S and τ2 ⩽ χ/(ST S)(1+ρ)/2

have all been reached. Using τ1 ⩽ χ/ST S and τ2 ⩽
χ/(ST S)(1+ρ)/2, it can be obtained that |Si| ⩽ (χ/τ1)

1/2

and |Si| ≤ (χ
/

τ2)
1/(1+ρ) for i= 1,2,3, respectively. There-

fore, S can converge into the following regions in finite
time:

|Si|⩽ ϕ̄i = min{( χ
τ1
)

1
2 ,(

χ
τ2
)

1
1+ρ }, i = 1,2,3, (108)

where τ1, τ2 and ρ are as defined in (41), and χ is as de-
fined in (105).

Similar to the respective parts within Theorem 1 and
Theorem 2, the ultimate upper bounds of the tracking er-
rors of q̃v and ω̃ are given by

|q̃i|⩽ Q̄i = max{η ,min{
∣∣ϕ̄i

∣∣
α1

,

∣∣∣∣ ϕ̄i

α2

∣∣∣∣ 1
γ

}}, (109)

|ω̃i|⩽ ϕ̄i +α1Q̄i +α2Q̄γ
i , (110)

where ϕ̄i is as defined in (108), and α1, α2, η and γ are as
defined in (18) and (20).

Now (i) and (ii) have been proven.
The proof of Theorem 3 is complete. □

Remark 7: Compared with [17] and [18], ∆u and δ
are handled separately in this paper that the input error ∆u
caused by actuator saturation is compensated by the auxil-
iary system (23) and δ by the fast-TSM-type reaching law,
ESO and the adaptive control method. In this manner, the
burden of the observer can be much alleviated and the ad-
ditional disturbance which comes from ∆u and acts on the
spacecraft can also be reduced.

Remark 8: The proposed controllers can provide
finite-time convergence rate for the control systems. How-
ever, since the attracting regions are related to the system
uncertainty, the precise settling time will be hard to cal-
culate, which is the disadvantage of many TSMS-based
control works, such as [11, 16–18].

Remark 9: The controller (91) is enlightened by [42],
but with simplified structure, which is designed to avoid
the control discontinuousness and to attenuate the input
chattering within the adaptive control laws in [18–20] with
only an additional k0 introduced to the system uncertainty.

4. SIMULATIONS

Numerical simulations are conducted to verify the ef-
fectiveness of the proposed controllers. Based on the
works of [15, 16, 18], the initial values of the spacecraft

system are decided, including the nominal inertia J0, the
initial quaternion q(0) and the initial velocity ω(0) which
are as follows:

J0 = [20,1.2,0.9;1.2,17,1.4;0.9,1.4,15]kg ·m2,

q(0) = [0.4031,−0.2584,0.7386,0.4745]T ,

ω(0) = [0,0,0]T rad/s.

The inertia uncertainty is designed as:

∆J = diag{sin(0.1t),2sin(0.2t),3sin(0.3t)}kg ·m2 .

The external disturbance is designed as:

d = 0.1× [sin(0.1t),2cos(0.2t),3sin(0.3t)]T N ·m .

The desired angular velocity is designed as:

ωd = [0.1sin(t/40),−0.1sin(t/50),−0.1sin(t/60)]T

rad/s .

The positive parameter a in (11) is set as a = 0.1.
For the purpose of comparison, three groups of simu-

lations are undertaken under the proposed controllers in
Theorem 1, Theorem 2 and Theorem 3, respectively. To
make the comparison results fair and convincing, all the
simulations are conducted with the same initial values de-
fined above. The control parameters in details are shown
in Table 1.

The simulation results of the controller (40) are pre-
sented in Figs. 1–4. As shown in Figs. 1–2 and 4, q̃v,
ω̃ and S can be stabilized into small regions around the
origin in finite time, with the steady states accuracy of
4 × 10−4, 2 × 10−4 and 5 × 10−3, respectively. Fig. 3
shows that the actual control torques can be finally lim-
ited within ±0.4N ·m.

The simulation results of controller (75) are displayed
in Figs. 5–8. Figs. 5–6 and 8 show the curves of q̃v, ω̃ and
S, which can be stabilized within small regions around the
origin in finite time and are finally bounded by 1× 10−5,
8×10−5 and 3×10−4. Fig. 7 gives the curves of the actual
control torques, which can be limited within ±0.4N ·m at
last.

The simulation results of the controller (90) are shown
in Figs. 9–13. Figs. 9–10 and 12 show that, q̃v, ω̃ and S
can be stabilized in finite time which are upper bounded
by 1.5 × 10−5, 1.5 × 10−5 and 4 × 10−4 at last, respec-
tively. In Fig. 11, the control torques can be constrained
to ±0.4N ·m at last. Fig. 13 gives the curves of ĉ0, ĉ1 and
ĉ2, which are upper bounded.

Some key comparison results are listed in Table 2.
From the simulation results, it can be observed that:

1) From Figs. 3, 7 and 11, the actual control torques are
all chattering-free and bounded within a certain range,
which shows the saturation property of the proposed
controllers.
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Table 1. Controller parameters setting.

Parameters Setting

Controller (40)

α1 = 1, α2 = 0.5, η = 0.0001,
γ = 0.6, γ1 = 0.7, ρ = 0.7, k1 = 2,

k2 = 1, k3 = 0.3, k4 = 1,
τ1 = τ2 = 10,

Umax = 2N ·m, ζ0 = 0.0001.

Controller (75)

α1 = 1, α2 = 0.5, η = 0.0001,
γ = 0.6, γ1 = 0.7, ρ = 0.7, k1 = 2,

k2 = 1, k3 = 0.3, k4 = 1,
τ1 = τ2 = 10,

Umax = 2N ·m, ζ0 = 0.0001, z1 = 8,
z2 = 0.5, ε0 = 0.01, α0 = 0.5.

Controller (90)

α1 = 1, α2 = 0.5, η = 0.0001,
γ = 0.6, γ1 = 0.7, ρ = 0.7, k1 = 2,

k2 = 1, k3 = 0.3, k4 = 1,
τ1 = τ2 = 10,

k0 = 0.0005, p0 = p1 = p2 = 0.1,
ζ0 = 0.0001, χ0 = χ1 = χ2 = 0.001,

Umax = 2N ·m.
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Fig. 1. The curves of q̃v under (40).

Table 2. Comparison results of the steady states accuracy.

S q̃v ω̃
Controller (40) 5×10−3 4×10−4 2×10−4

Controller (75) 3×10−4 1×10−5 8×10−5

Controller (90) 4×10−4 1.5×10−5 1.5×10−5

2) As shown by the steady states behavior in Figs. 1–2,
5–6 and 9–10, and the comparison results in Table 2,
the ultimate attitude pointing accuracy and the angular
velocity tracking accuracy are all stabilized within sat-
isfactory ranges even with the system uncertainty and
control input constraint, which shows that the attitude
tracking control missions have been successfully ac-
complished by the proposed control methods.
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Fig. 2. The curves of ω̃ under (40).
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Fig. 3. The actual control torques sat(u) under (40).
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Fig. 4. The curves of S under (40).

3) The last two group simulations achieve much higher
control precision. With the help of the ESO as defined
in (69) and (70), and the adaptive law as defined in
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Fig. 5. The curves of q̃v under (75).
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Fig. 6. The curves of ω̃ under (75).
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Fig. 7. The actual control torques under (75).

(91), the total system uncertainty under the respective
controllers can be compensated to have a much smaller
amplitude, as a result higher control precisions are ob-
tained.
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Fig. 8. The curves of S under (75).
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Fig. 9. The curves of q̃v under (90).
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Fig. 10. The curves of ω̃ under (90).

5. CONCLUSION

In this paper, we research the finite-time attitude track-
ing control problem of rigid spacecraft under inertia un-
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Fig. 11. The actual control torques under (90).
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Fig. 12. The curves of S under (90).
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Fig. 13. The curves of the adaptive parameters.

certainty, external disturbance and actuator saturation with
three different controllers designed. Benefits of the pro-
posed controllers include finite-time convergence, attenu-

ated input chattering and robustness with respect to model
uncertainty, external disturbance and actuator saturation.
The stability of the resultant closed-loop systems has been
proved through the Lyapunov stability theory. Simulations
are undertaken to show the effectiveness of the proposed
controllers.
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