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Generating Homogeneous Map with Targets and Paths for Coordinated
Search
Hyeun Jeong Min

Abstract: This work presents a new solution for coordinated search with a team of heterogeneous robots executing
a time-critical mission. It is challenging to specify and represent search locations (targets) in known but dynamic
environments as well as to find robotic paths to visit the locations. We propose a technique to construct an informa-
tion map that includes locations of uncertain targets, and generate optimal paths. We especially focus on combining
a satellite map that has global coordinates with local images gathered from an aerial robot. Specific targets are
represented on a homogeneous coordinate system, so that different types of robots, capable to gather necessary
information, may cooperatively conduct a mission. Once a homogeneous map is constructed, a centralized path-
finding algorithm can be applied. Our path-finding algorithm is to choose a set of paths, suggesting a proper number
of robots along with their initial locations. In our work, robots can independently travel search locations, which
may have dynamics or changes, but collaboratively cover all target locations. Through the experiments with real
robotic platforms, we validate the generation of a map including targets and a choice of paths, and compare with
existing algorithms.
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1. INTRODUCTION

There exist growing interests in the use of robots
for search and rescue applications. Contaminants in an
area that needs to be detoxified, a bomb installed in a
metropolitan area that needs to be defused, amongst others
are representative examples in time-critical situations. In
these situations, searching for specific objects or sources
is challenging. Essential factors are the choice of some lo-
cations for inspection, the number of robots, their start lo-
cations, and the choice of their paths. Finding an optimal
number of robots is an open problem in search and res-
cue robotics [1]. Selecting locations in which robots need
to search with their respective sensors is also challenging.
We consider the cooperation of heterogeneous robots be-
tween an Unmanned Aerial Vehicle (UAV)/UAVs and an
Unmanned Ground Vehicle (UGV)/UGVs.

UAVs are fast in motion and can easily gather plenty of
information. However, they may not be suitable for thor-
ough inspection due to difficulties in extracting detailed
information. UGVs, on the other hand, are useful for com-
plete search, but target localization is required. Both have
pros and cons: we, therefore, cooperate them together. For
cooperation, we need a homogeneous system. A satellite
map provides global coordinates for specific objects such

Manuscript received November 29, 3016; revised May 23, 2017; accepted July 22, 2017. Recommended by Associate Editor Kyoungchul
Kong under the direction of Editor Fuchun Sun. This material is based upon work supported by the BK21 plus program through the National
Research Foundation (NRF) funded by the Ministry of Education of Korea.

Hyeun Jeong Min is with Computer and Telecommunication Engineering Division, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do,
26493, Korea (e-mail: solusea@yonsei.ac.kr).

as buildings, cars, and so on. However, it may not have
enough high-resolution or is sometimes occluded. It may
not give information about instant changes of movements,
occluded objects, changes in before and after a disaster,
and so on. Small drones (UAVs) can compensate lack
of information acquired from a satellite [2]. This moti-
vates us to combine a sequence of images acquired from
UAV(s) with a satellite map. In our coordinated search,
UAVs build a map that includes specific targets including
instant changes, while UGVs (search robots) use the map
to control and visit required targets.

For a target search problem, UAVs have been consid-
ered with their camera system, in order to maximize a
covered area for cooperative search [3,4]. Multiple robots
are utilized to optimize their controllability by combin-
ing local images [5]. A search strategy for UAVs is at-
tempted to reveal priority of a target area in an unknown
environment [6]. A problem of searching targets with
UAVs requires localization of robots in an environment.
There have been a lot of endeavors in localization and
mapping in robotics. A 3D mapping method using UAVs
provides necessary information for searching targets in an
unknown environment [7]. Visual odometry along with
the RANSAC (RANdom Sample Consensus) algorithm
has been utilized [8–10].
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Fig. 1. Homogeneous map. It is combined with the im-
ages taken from drones and a satellite map.

For exploration by UAVs, a state-of-the-art vision-
based approach is a generation of a 3D map [11]. It, how-
ever, tolerates a lot of computational load. Scaramuzza et
al. used a global coordinate frame for a swarm of small
flying robots [10, 12]. In terms of control laws of aerial
robots, a 3-D image map is merged by local images ac-
quired from the robots. The authors suggested an optimal
control method for coverage; a target area is assigned to
the nearest robot, a greedy method similar to the Nearest
Neighbor (NN) algorithm [13]. Much research has ex-
ploited map construction, but robots that construct a map
have utilized the map, so localization of the same series of
robots is essential. On the other hand, we consider hetero-
geneous robots that need to share information; instead of
providing a map to aerial robots (UAVs), we make search
robots (UGVs) that have different perspective to use tar-
gets’ information on the map.

To construct a homogeneous map, we combine consec-
utive images gathered by an UAV. Using SIFT features has
increased reliability in image processing [14,15]. A GPS-
based localization method using SIFT features has been
applied on Google Maps [16]. In our work, we adopt a
SIFT-based method for our image processing. The use of
GPS (Global Positioning System) has been increasing in
localization [16–18]. In this work, we merge a sequence
of images gathered by an UAV in order to transform tar-
gets’ location from local coordinates to global coordinates
for a coordinated mission.

Fig. 1 shows framework of our work describing a ho-
mogeneous map. It shows stacks of images taken from a
camera system mounted on drones and a combined image
map represented on transformed coordinates. It is repre-
sented on the grid map, which may contain dynamic tar-
gets. Targets can be either manually or autonomously se-
lected, and are used to generate search paths for UGVs. In
this way (i.e., making a map from an UAV), a centralized

method for search becomes realistic in a dynamic environ-
ment. The combined maps (Image Maps) represent targets
on a local coordinate system, while the grid map reflects
the global coordinates. We also present an efficient path-
finding algorithm for multiple robots for coverage. Our
path-finding algorithm is a centralized method in terms of
the use of the constructed map with known targets.

Sensor-based coverage problem has been actively in-
vestigated in sensor network [19–21]. The objective of
the problem is to maximally cover the entire environment
through sensors. It has been conventionally solved to min-
imize the overlapped zones of sensing boundaries. Spe-
cific problems have been how to deploy sensors or which
sensors need to be on/off in terms of optimization pur-
poses [22, 23]. Multi-robot coverage problems, on the
other hand, are interested in covering specific candidate
regions by visiting them with robots. It has several advan-
tages: i) it is robust to hardware limitation such as recharg-
ing exhausted batteries of sensors for long-term surveil-
lance or to pick malfunctioning sensors up, ii) the mobil-
ity of robots assists to expedite search/rescue missions in
hazardous areas, and iii) no pre-deployed sensors are re-
quired in advance. Regarding the mobility of robots, how
to control robots in a coverage problem has been actively
researched [19, 21]. Recent research has exploited in a
robotic coverage problem constrained by batteries or fuels
[24], but the number of charging robots was given.

Our multi-robot search is to minimize the maximum
path cost among all chosen paths. The choice of a start
location for multiple robots and the base number of robots
affects to the optimization of the coverage cost [25]. In
addition, the choice of the minimum search cost affects to
the number of robots. In this work, we assume that robots
may start at certain distinct locations. We present an al-
gorithm that reduces the maximum path cost for the given
conditions. Each travel cost for all chosen robots should
be bounded to the maximum path cost while the union
of targets in all paths is the entire targets. We represent
a heuristic path-finding algorithm, which selects a set of
paths, the number of robots, and their initial locations.

Our contributions are as follows: i) We propose a data
association framework combining instant sensing infor-
mation and satellite data for a coordinated search (UAVs
and UGVs), so that changes of targets in an environment
can be considered. ii) Our method creates a homogeneous
map that is suitable for different types (in control laws or
perspectives) of robots. iii) Our algorithm provides a so-
lution of efficient paths for multiple robots.

2. PROBLEM DESCRIPTION

For coordination of a team of heterogeneous robots, es-
pecially when they have different resources and capabili-
ties in sensing and actuation, localization of targets is nec-
essary. UAVs gather information about changes of the en-
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vironments in order to create a map with locations of tar-
gets. In this way, they act as active sensors, while multiple
UGVs conduct their search mission as actuators. Note that
targets can be created either autonomously or manually on
the map. Our problems to combine images gathered from
an UAV with a satellite map and to find a set of paths are
discussed in Subsections 2.1 and 2.2, respectively.

2.1. Homogeneous map
Fig. 2 shows two reference frames, one from a satel-

lite map and the other one from an UAV. Multiple targets,
landmarks, or UGVs can be identified by using a dynamic
UAV system. Using specified landmarks, we can trans-
form a coordinate system in order to represent required
targets on a homogeneous map. We estimate locations of
targets (ti) by transforming them from local image coordi-
nates to a global homogeneous frame.

Our objective for the construction of a homogeneous
map is to minimize the difference of the real target lo-
cations from the transformed locations acquired by a se-
quence of images from an UAV. It is represented as fol-
lows:

min∥Gξ −G ξ̂∥, (1)

where Gξ = [gx1, · · · ,g xN ]
T and Gξ̂ = [gx̂1, · · · ,g x̂N ]

T are
the vectors representing true locations of targets and the
transformed locations of the targets acquired from the im-
age measurements, respectively. Here, gxi = [gi(a) gi(l)]T

represents the global coordinates of latitude and longitude
of the ith target, and N is the number of targets. Also, gx̂i

is transformed from cxi, where cxi = [ui vi]
T is the local

coordinates on the combined image of the ith target.

2.2. Multi-robot paths
We represent locations of targets in a homogeneous co-

ordinate system, so that search robots control by them-

Fig. 2. Combining coordinate systems of the measure-
ments representing the ith target, the jth UGV, and
the landmark s. A satellite map has the latitude
(g(a)) and longitude (g(l)), while a local image has
the width (u) and height (v).

selves to visit the desired locations (targets) which are
transformed from local images by an UAV. Let xi in R2

be the ith target, and ξ = {x1, · · · ,xN} be a set of all tar-
gets, where N is the number of targets. For simplicity,
we call the connection of two targets as an edge, and the
connection of all elements in the jth subset of ξ j as a path.

In order to find a set of paths for multiple robots, our ob-
jective is to reduce the maximum path cost and to choose
an optimal set of start locations for unknown number of
robots while maintaining all costs smaller than or equal to
the chosen maximum cost as in (2a). Let us note that K
be the chosen maximum cost. The conditions for the ob-
jective are given in (2a) ∼ (2d). For a given set of targets
along with their edges, it is to find subsets of an ordered
targets satisfying that the union of all subsets is ξ . Assum-
ing that no zero cost exists for chosen robots, our objective
also provides the number of robots while the path costs are
bounded to the optimized cost (K).

minimize K = maxcost(πi),∀i = 1, · · · ,R (2a)

subject to ∪R
r=1 πr = ξ , (2b)

x(ri)
s ̸= x

(r j)
d ,∀ri ̸= r j, (2c)

0 < cost(πr)≤ K,∀r = 1, · · · ,R. (2d)

We want to find robotic paths πr such that cost(πr) is
bounded to the maximum cost in (2a) for ∀r = 1, · · · ,R,
where R is the chosen number of robots which is initially
undecided. Here, cost(πr) is the path cost corresponding
to the robot path πr, and xri

s and xri
d are the start and the

destination targets in the rth
i path, respectively.

3. COORDINATED MAP CONSTRUCTION

This section deals with the proposed algorithm, gen-
erating a homogeneous map, by combining local images
with a satellite map. Fig. 3 shows the process for our
robotic cooperation. Once a combined map is constructed
from a sequence of local images taken from an UAV, we
generate targets to be searched. Using this method, we

Fig. 3. Block diagram of our process.
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Fig. 4. Process of our map generation. Each shows (a)
a sequence of images, which is incrementally
merged by using SIFT features, (b) an image mo-
saic, and (c) a homogeneous coordinate system,
combined with a satellite map. In (b), IX and IY
are sizes of the image mosaic.

can identify UGVs from the image as well. UGVs can
distributedly run according to our path-finding algorithm
illustrated in Section 4 More details of a control method
for UGVs are found in [26].

Examples of a satellite map are shown in Figs. 1
and 4. It has a global coordinate system: the latitude
and the longitude of mark S on the map in Fig. 1 is
(32.885222,131.05186). We only need landmarks to
transform targets’ locations. Fig. 4 shows the process of
the generation of the combined map represented in a ge-
ographic coordinate system. Note that we try to match
consecutive images from an UAV which has acceptable
distortion. We call the merged image from local consecu-
tive images as the image mosaic (or the combined image).
The sequence of images taken from a drone is shown in
Fig. 4(a). The image mosaic, matched and merged by the
Scale-Invariant Feature Transform (SIFT) features and the
transformed coordinate system, are shown in Figs. 4(b)
and 4(c), respectively. In Fig. 4, a drone and a satellite
image are shown on the left side.

3.1. Combined image (Mosaic)

To combine a sequence of images acquired from an
UAV, we first decide a Region Of Interest (ROI) from
a satellite map including geodesics as shown in Fig. 4.
The specific region is represented in a rectangular shape
according to the chosen top left-most and bottom right-
most coordinates. Here are two landmarks representing

the boundary of the region (ROI). Let us define that S and
E be the top left-most and the bottom right-most corners,
respectively. We take the latitude and the longitude of
the start (S) and end (E) locations. We denote them as
(gs(a),gs(l)) and (ge(a),ge(l)), respectively. Here, g·(a)
and g·(l) are the latitude and the longitude of the target ·.
Note that i(t) and I be the local image acquired from an
UAV at time t and the combined image mosaic, respec-
tively. For merging a sequence of local images, we utilize
SIFT descriptors and the RANSAC algorithm.

Two consecutive images are initially merged by using
matched SIFT features. It then becomes a reference im-
age (image mosaic) to combine with next images. It can
be represented as I = I ⊕ i(t), where I and i(t) are an im-
age mosaic and the ith image, respectively. The operation
⊕ of two images (of possibly different sizes) constructs a
homography by using matched features. The ith image i(t)
is accepted for our image mosaic according to the similar-
ity of I and i(t) defined as follows:

sim(dI ,di(t))> α, (3)

where di(t) and dI are the SIFT features on the image i(t)
and the image mosaic I. We use a pre-defined threshold
α to select good matches of the similarity. When they are
matched well, the combined image I is used for the next
consecutive image i(t +1).

As mentioned above, the process of constructing an im-
age mosaic starts with two consecutive images. In or-
der to avoid heavy computation load, we limit the pro-
cess of merging images within a certain ROI. For an ef-
fective merge of images, we especially consider to reduce
the length of a video by monitoring only a circumscribed
ROI and scheduling trajectory and height of an UAV for
its flight. One can reduce a sequence of images by taking
an UAV up high enough or making a pre-scheduled path
for a flight. The process of finding SIFT features is ap-
plied on the grayscale intensity images. Two sets of SIFT
features are matched and combined [15]. In order to re-
duce noise and distortion of images, we set a threshold α
as in (3), which decides whether the image is accepted or
not for an image mosaic. If the number of matched fea-
tures are less than the threshold, we discard the image i(t)
and repeat the process starting from reading the following
consecutive image i(t +1).

3.2. Image transformation
For the choice of targets, we manually select them from

the image mosaic. However, note that they can be au-
tonomously selected by using vision-based algorithm. For
instance, parked cars can be candidate targets. Next, we
transform the targets represented in the combined image
with respect to homogeneous coordinates. To transform
the coordinates of the selected targets, we rotate the com-
bined image in order to align with the geodesic from a
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Fig. 5. Rotation angle to align two reference systems.

satellite map as shown in Fig. 5. The rotated coordinates
on the image plane is computed as in (4). To do this, we
set the landmark S as the center of rotation, and compute
the rotation angle ϕ as shown in Fig. 5.

Ii = Is +R(ϕ)Ii, (4)

where Ii = (ui,vi)
T , Is = (us,vs)

T , representing the coordi-
nates on a combined image of the ith target and the land-
mark s, respectively. The rotational angle ϕ is computed
as ϕ = α −θ , where two angles are defined as follows:

α = atan2(ge(a)−gs(a),ge(l)−gs(l)), (5)

θ = atan2(vs − ve,ue −us). (6)

In (4), R(ϕ) is 2× 2 rotational matrix. The estimated
positions of the targets are then transformed by (7).

Gξ̂ = TCξ and T = (T1|T2), (7)

T1 =


. . .
· · · gs(l)−ge(l)

us−ue
0 · · ·

· · · 0 gs(a)−ge(a)
vs−ve

· · ·
. . .

 , (8)

T2 =


...

ge(l)
us−ue

0 − gs(l)
us−ue

0
0 ge(a)

vs−ve
0 − gs(a)

vs−ve
...

 , (9)

where Gξ̂ = [· · · , x̂T
i , · · · ]T , and Cξ = [· · · , IT

i , · · · , IT
s , I

T
e ]

T

represent the estimated targets in the global coordinates
and the image coordinates, respectively. Here, x̂T

i , I
T
i , I

T
s ,

and IT
e are the measured locations on the generated homo-

geneous map, the ith target on the combined image from
an UAV, the start position on the combined image, and the
end position on a combined image. The estimated position
of x̂T

i includes the longitude and latitude for i = 1, · · · ,N,
where N is the number of targets. Note that the combined

map including the targets has the geographical system ac-
cording to our method. We may represent them on a rel-
ative coordinate system transformed from the geodesic of
latitude and longitude for computational simplicity.

4. PATH-FINDING ALGORITHM

This section takes into account our path-finding algo-
rithm which selects a set of paths containing all targets
on a map, addressed in Section 3. Considering to shorten
completion time for covering all targets, we try to mini-
mize the maximum path cost. In other words, it is to find
the one that reduces the maximum path cost while other
paths simultaneously cover all targets and their path costs
are bounded to the maximum one. We propose a heuristic
algorithm based on all-pairs shortest paths and an incre-
mental path construction method. Our idea is to choose
a path from a pool of all-pairs shortest paths as shown in
Fig. 6. In the figure, all-pairs shortest paths starting at
each target are expanded and represented in a tree struc-
ture. Blue squares and straight lines represent each tar-
get and available shortest paths to other targets (except the
start one), respectively. For N targets (x1, · · · ,xN), there
are at most N(N −1) shortest paths.

In our algorithm, we consider two serious of paths
represented as Π = {πr|r = 1, · · · ,R} and ∆ = {δi|i =
1, · · · ,NS}, where πr = {x(r)

s , · · · ,x(r)
d } is the rth robot path

covering all elements (targets) in ξ , and δi is the ith candi-
date shortest paths for given targets in ξ . The set ∆ con-
sists of candidate paths for robots, where NS ≤ N(N −1).
Considering directed edges for a complete graph, NS =
N(N −1). We first generate all-pair shortest paths, which
occupy most of computational time. The computational
complexity for the worst case of a all-pair shortest path
algorithm is O(NElogN) since the Dijkstra algorithm re-
quires O(ElogN) where E and N are the number of edges
and nodes (targets), respectively. For the kNN method, the
time complexity of the worst case is O(RN(1−1/R)), where
R is the number of paths (robots).

Finding a set of multiple paths is challenging due to
undetermined start locations and an undecided number of
robots. A straightforward solution is to choose a path hav-

Fig. 6. A tree structure of available shortest paths.
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ing the minimum path cost among all maximum path costs
from ∆. It is represented as min

i
max

j
cost(δi j), where δi j is

the shortest path from xi to x j. It has proved when robots
start at a single region [25]. However, it is not optimal for
multiple robots starting at distinct locations. We define a
weight function as follows:

wi = f (δi), (10)

where i = 1, · · · ,NS indicates all-pairs candidate shortest
paths. Note that we may include frequency of destined
targets in each path in our weight function f ; however, we
only consider path costs of shortest paths for simplicity
in this work. It is represented as f (δi) = 1 − ci

cmax
, for

i = 1, · · · ,NS, where ci and cmax are the ith path cost and
the longest path cost in ∆, and NS and N (NS ≫ N) are the
number of available shortest paths and the number of the
targets, respectively.

For inputs of a set of targets Π and their edges E, our
algorithm is as follows:

A:1. Find all-pair shortest paths (∆ = ∪i=1,··· ,NS δi,)

A:2. sort ∆ in ascending order w.r.t the weight as shown
in (10).

A:3. Initialize l = 0 and cmax = maxi wi.

A:4. For each δi for i = 1, · · · ,NS, choose δi if targets in
the path are not covered yet, and do the followings:

A:A. Set dest as the last target in δi.
A:B. For each δ j for j = 1, · · · ,NS, choose δ j if it

satisfies that the last target in δ j is dest and
cost(δ j)< cmax. If it is chosen:

A:a. πl = δ j and cmax = cost(δ j).
A:b. Update the path (πl) with available

targets
A:c. Increase l and set the status of tar-

gets to be covered.

A:5. Set R = l.

As a result, the algorithm generates a set of robot paths
Π along with the number of robots R.

We denote that πmax is the maximum path cost, which
is represented as follows: πmax = max

j=1,··· ,R
cost(π j), where

R is the number of robots which will be selected during
the process. Each path, at the same time, is bounded to
πmax, and K = πmax. Here, K is our objective that mini-
mizes the maximum path cost as in (2a). Whenever the
maximum path cost cmax is updated (Step A:a), we exam-
ine each path δ j (Step A:B) whether there are available
targets while each path maintains its cost smaller than the
maximum path cost. The algorithm is repeated until there
are no remaining targets.

Fig. 7. Trajectory of a drone while taking a video for the
ROI ‘A’ shown in Fig. 8(f). Coordinate data rep-
resented as red line is overlapped on Google Earth.
There are two ROIs represented by ‘A’ and ‘B’.

5. EXPERIMENTAL RESULTS

This section validates our proposed solution: the gener-
ation of a coordinated target map and the selection of op-
timal paths in addition to the number of robots and their
locations. In our experiments, we represent targets in a ge-
ographic coordinates system, which acts as a global coor-
dinate system, and display them on Google Earth [27]. To
demonstrate our path-finding algorithm, we compare with
the well-known k-Nearest Neighbor (kNN) algorithm [13]
in both real and simulated environments.

For the experimental environments, we used an aerial
robot of the DJI Phantom 3 Professional. Our scenario for
real robot experiments is that an aerial robot takes a video
while it flies outside, and we manually choose search lo-
cations (targets). To generate targets’ location, we exam-
ine two choices: the locations of parked cars (as shown in
Fig. 8(c)) and randomly distributed locations (as shown
in Fig. 8(f)). A trajectory of a flight is shown in Fig.
7. It is gathered from the GPS sensor mounted on Phan-
tom 3 Professional, and is visualized on Google Earth. To
get videos (a sequence of images) capturing required re-
gions, we piloted the drone and recorded videos during
its trips. Phantom-3 professional has the 1/2.3” CMOS
camera and a gimbal that allows rotation in 3-axis (pitch,
roll, and yaw). For each flight, we tried to set the cam-
era point down (0◦ and 45◦). The resolution of the im-
age is 1280× 720 with 24 fps or 640× 480 with 30 fps.
The lengths of the video clips recorded during its flight are
about 4 and 9 minutes for each case shown in Figs. 8(c)
and 8(f), respectively. We trim the video clips to select
only the segment we need for an ROI.
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(a) The rotated targets on the image mosaic by
(4). Red crosses and blue circles are the targets
representing before and after the rotation.

(b) The targets represented on Google Earth,
showing the ground truth.

(c) Green signs represent the
start and end locations, and
blue stars are the targets.

(d) The rotated targets on the image mosaic by
(4) applied on the map shown in Fig. 8(f).

(e) The targets represented on Google Earth,
showing the ground truth.

(f) Green signs represent the
start and end locations, and
blue stars are the targets.

Fig. 8. Transformed targets from the image mosaic.

For the scenario shown in Figs. 8 and 9 , we set sev-
eral outside parking lots as our ROIs. Fig. 9(a) shows the
ROI denoted as ‘B’ in Fig. 7, and is represented on a
satellite map including the start and end locations. The
map displays the landmarks in geographic coordinates of
the latitudes and the longitudes. Fig. 9(b) shows an image
mosaic including the targets, corresponding to the same
region ‘B’. The targets are represented as red dots charac-
terizing currently parked cars, which are manually chosen
for this experiment. Note that our process of combining
local images as shown in Fig. 9(b) is run off-line. For
SIFT matches, we trimmed the captured video short ac-
cording to a required ROI. The lengths of each video rep-
resenting the regions of ‘A’ and ‘B’ were about 40 and 15
seconds, respectively, for the experiments shown in Figs.
8(c) and 8(f). We set the image resolution 640×480 with
30 fps for the ROI ‘B’. We, on the other hand, attempted
to set the resolution 1280× 720 with 24 fps for the ROI
‘A’. For both cases, we empirically chose about 7 fps in
order to maximize the effect of image merging results.

In Fig. 8(a), the landmarks S and E (represented by
green plus and star, respectively) correspond to the ones

in Fig. 9(a). The geographic coordinates are (37.281704,
127.899701) and (37.2821,127.899953) for S and E rep-
resented on a satellite map as shown in Fig. 9(a), while
the local coordinates of S and E on the image mosaic are
(311,452) and (350,90), as shown in Fig. 8(c). The size
of the image mosaic shown in Fig. 8(c) is 643×521.

We applied a distance-based clustering algorithm with
color detection for the targets (represented as red dots)
generated on the image mosaic in Fig. 9(b). Using the
method, target locations are automatically identified from
the image mosaic. The identified targets are represented
by blue stars as shown in Fig. 8(c). The rotational angles
α,θ , and ϕ are about 29◦,−84◦, and 113◦, respectively.
The result of transformed locations for the targets is shown
in Fig. 8(a): red crosses and blue circles represent the lo-
cations of targets on the image mosaic before and after
the transformation, respectively. Fig. 8(b) shows the com-
pared result of the transformed coordinates for the targets
by representing them on Google Earth. The targets are
marked with yellow pins, and we placed numbers around
each target. For the representation, we imported our trans-
formed longitude and latitude coordinates in Google Earth
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(a) Google map showing the
start and end locations including
their latitudes and longitudes.

(b) Image mosaic including
the targets manually selected
and represented by the red
dots.

Fig. 9. Results showing (a) a satellite map representing
landmarks for a ROI, and (b) an image mosaic gen-
erated by local images from an UAV. Here, targets
are parked cars.

(shown as placemarks).
Figs. 8(a) ∼ 8(c) and Figs. 8(d) ∼ 8(f) show the results

for the ROIs corresponding to ‘B’ and ‘A’, respectively.
Fig. 8(f) is the result of a combined image representing the
ROI marked as ‘A’ on the map in Fig. 7. Here, the targets
are randomly chosen. In the figure, the start and end loca-
tions representing the ROI are marked as green plus and
star, and the size of the image mosaic is 1444×1865. Blue
dots represent the targets which are randomly selected. As
a result, Fig. 8(d) shows the image transformation from
the local coordinates to the global coordinates. The trans-
formed coordinates of the random targets (shown in Fig.
8(f)) are compared with yellow pins (for the targets) along
with red and blue pins (for the landmarks) in Fig. 8(e).
It validates that our transformation from the local image
mosaic to the global coordinates works well.

Next, we examined our path-finding algorithm. We
generated available edges among the targets while assum-
ing that no obstacles exist among them. For the generation
of edges in an environment with obstacles, one can refer
our previous publication [25]. Fig. 10(a) shows the gener-
ated edges for the targets shown in Fig. 8(c). The numbers
representing latitudes and longitudes express very small
differences (10−2 ∼ 10−6 in the experiment); for exam-
ple, the latitudes of S and E are 37.281704 and 37.2821,
respectively. To avoid loss of significance, we applied
(ga(·)−37.28)×105 and (gl(·)−127.899)×106 to each
target when we utilize them in our path generation. The
targets and the generated edges are shown in Fig. 10(a)
for the experiment shown in Fig. 8(b). The correspond-
ing paths with the path costs are shown in Fig. 10(b). The
x-axis is each target and the y-axis is the path costs. If a
target displays zero cost, it means there is no path initially
assigned to the target.

(a) Targets represented on
the image mosaic and gen-
erated edges

(b) Selected path costs and the start
locations along with the number of
paths, applied on the graph in (a)

Fig. 10. Comparison of each path cost. The x- and y-axes
are each target and the path costs. The maximum
path cost 42 by the proposed algorithm is com-
pared to 100 by kNN.
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Fig. 11. Comparison of the maximum path cost for var-
ious numbers of random targets. Red crosses
are the proposed method while green squares and
blue pluses represent the results from kNN and
kNN random, respectively.

As a result of generating the paths with the number of
robots, there are 7 paths as shown in Fig. 10(b). Each path
is compared with the kNN algorithm while we applied 15
targets. Since the kNN algorithm requires the number of
robots along with their initial locations, we used the same
start locations and the robots acquired by the proposed
algorithm. For the experiment, we first applied our al-
gorithm to get the set of paths (including the number of
robots and their initial locations), and then utilized the in-
formation when applying the kNN method. The compar-
ison exhibits that our proposed algorithm chose 42 as the
maximum path cost while the kNN algorithm chose 100
as the maximum path cost. Note that the chosen initial
locations for robots were 1,3,5,7,10,12 and 14 as shown
in Fig. 10(b). The numbers denoted in the graph are the
number of targets placed in each path.
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Fig. 12. Analysis of the chosen paths for a case of 43 tar-
gets. Blue circles and red crosses are the paths
chosen by kNN and the proposed method, respec-
tively. The selected robots are 16, and the maxi-
mum cost of 50 is compared with 62.

To demonstrate our path-finding algorithm, we com-
pared the maximum path cost with the best results from
kNN and kNN random. For kNN random, we used the
same number of robots as ours, but the start locations were
randomly chosen. We investigate the random case in or-
der to compare the results while we choose different ini-
tial locations for robots. For the experiments, we used
an obstacle-free environment with the size of 130× 130,
and randomly generated targets from 3 to 70 along with
random edges. Fig. 11 shows the comparison of the
maximum path cost with kNN and kNN random for each
trial (various number of targets). It reveals that our path-
finding algorithm chooses an efficient set of paths reduc-
ing the maximum path cost.

We analyzed each chosen path for the case of the ran-
domly generated 43 targets. Fig. 12 shows the choice of
the start targets (the ones have no zero cost), the desti-
nation targets (represented in text around red crosses in
the figure), and their corresponding path costs (the y-axis).
The selected robots are 16 and the maximum path cost is
50.

6. CONCLUSION AND FUTURE WORK

This work presented a solution for a team of heteroge-
neous robots, especially a cooperation of two groups of
UAVs and UGVs, for a time-critical mission. Our frame-
work has dealt with transforming local sensing images
taken from an UAV to a satellite map that uses a geo-
graphic coordinate system. In our work, UAVs construct
a map reflecting dynamic changes, which allow us a cen-
tralized path-finding method for targets in a dynamic en-
vironment. For future work, we will consider constructing

a map for search robots evolving in long-term changes.
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