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Control for Underactuated Systems Using Sliding Mode Observer
Djamila Zehar*, Khier Benmahammed, and Khalissa Behih

Abstract: In this work, first we estimate all the system’s state vector, with guarantied precision, for a category
of second order underactuated mechanical systems (UMS), exploiting the triangular observer (TO) model that
suits to the structure of these systems. Then we propose a sliding mode controller (SMC). The latter uses the
estimated states given by the observer. The underactuated system is decomposed into two subsystems, where the
sliding surface is constructed in two levels for each subsystem. The proposed controller guaranties the tracking
performances, with minimization of chattering phenomenon, due to the constructed observer, even for system with
uncertainties. Simulation results show the effectiveness of this strategy of control.
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1. INTRODUCTION

Control tools which are used in laboratories, in order
to prove the effectiveness of the developed strategies, be-
come more and more complicated, which means that this
control technics for delicate problems are difficult to en-
force. Among the most used systems to validate the new
approaches of control, we mention the UMS, these latter
are non-linear and complex systems; admit less number
of actuators than their degrees of freedom. Those sys-
tems use less energy, have a lighter weight structure, and
therefore they can be constructed with a low cost. We can
find this type of systems in a lot of applications such that:
robotics [1], underwater vehicle and ships [2–4], flexible
systems [5–7] and aerospace systems [8].The lack of ac-
tuators and nonlinearities complicate the control task for
this category of systems.

For years, scientific researchers on control have tried
to approach the complex nonlinear systems behaviour, as
linear models. However this linear approximation is valid
only in limited operating range, and even can lead to the
lose of their physical meaning. Analysis and control of
UMS is not a simple task and the elaborated technics are
not generalized for all systems in this category, they are
limited to particular forms. For this reason, UMS are
classified in several classes according to their dynamics
and structures, and each class are studied separately as in
[9, 10]. In fact, some already established methods for the
control of these systems, such that the passivity control

Manuscript received November 23, 2016; revised March 9, 2017, April 22, 2017, and July 13, 2017; accepted September 11, 2017.
Recommended by Associate Editor Huanqing Wang under the direction of Editor Hamid Reza Karimi.

Djamila Zehar is with the Electromechanical Department at the University of Bordj Bou Arreridj 34000, the Department of Electrical En-
gineering and member in LSI laboratory at University of Sétif, 19000, Algeria (e-mail: z.dj2005@hotmail.com). Khier Benmahammed is
with the Electronic Department and with the LSI Laboratory at University of Setif 19000, Algeria (e-mail: khierben@gmail.com). Khalissa
Behih is with the Department of Electrical Engineering and member in LSI Laboratory at University of Sétif, 19000, Algeria (e-mail: be-
hihkhalissa@yahoo.fr)
* Corresponding author.

(PC) proposed in [11] and the control based on energy of
system (EBC) found in [12], which generally switch to
linear controllers, have disadvantages because these meth-
ods are slow and don’t have a good precision, what ex-
plains their limited applications, and force the researchers
to consider other directions of control of these systems.

In order to improve the performances of UMS in terms
of stability and robustness, many technics are proposed.
Among them, we can mention the SMC [13] which has
known a very large success because of its robustness and
simplicity of implantation for controlling uncertain non-
linear systems. The main idea behind it is to define an
attractive sliding surface in terms of the state variables of
the system.

Second order UMS are widely studied by researchers
because of their nonlinear nature, their simplicity to im-
plement in laboratories as benchmark systems, which al-
lows developing control for high order systems and those
with more complex dynamics. An important number
of control scheme such that SMC [14–16], backstepping
control (BC) [17], adaptive control (AC) [18, 19], fuzzy
logic control (FLC) [20, 21] and neural network control
(NNC) [22], were been applied to UMS. In order to im-
prove performances of those systems in terms of stabil-
ity, convergence rapidity, precision and robustness against
structured and unstructured uncertainties, a combination
of SMC and the other different technics cited above, has
been known a prominent development, among these tech-
nics we can mention: backstepping sliding mode control
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(BSMC) [23], which exploit the advantage of the back-
stepping, where nonlinearities are used to compensate
those of system, and operate robustness of the SMC. There
is also the fuzzy adaptive sliding mode control (FASMC)
[24, 25], this combination allows to do fuzzy approxima-
tion of the unknown dynamic of system in direct or in-
direct way, and to obtain a robust control against uncer-
tainties and minimizing the chattering effect. In the same
context, we find the works based on neural network slid-
ing mode control (NNSMC) [26].

Among the requirements involved in the control of sys-
tems, is the knowledge of states which is practically diffi-
cult to be satisfied, because these state variables do not al-
ways have a physical meaning, and sometimes their mea-
surement is tricky, even impossible technically to achieve.
Furthermore it’s often desirable to use a minimum of sen-
sors, in order to reduce cost and maintenance. Therefore,
if control requests the use of the not measured state vari-
ables, it will be essential to construct fully or partially state
vector, using a dynamic system which is called state ob-
server (SO), its role is to provide a real time estimate of
the state vector.

The main contribution of this work, consist of intro-
ducing an approach for a category of second order UMS,
which is based on the combination of the two technics:
the SMC and the nonlinear observer (NO), the constructed
observer is decomposed on two sub systems, where the
estimation of the variables of each sub system is done in
parallel and the constructed sliding surface is calculated
simultaneously with the estimated variables, which pro-
duces a reduced observation error dynamic, and conse-
quently overcomes the influence of uncertainties and re-
duce the chattering phenomenon in the control signal and
the state variables.

This paper is organised as follows: Section 2 gives the
state space model of a category of second order UMS,
Section 3 presents the conception of the TO, Section 4 de-
scribe the synthesis of the SMC, by defining an appropri-
ate sliding surface using the estimated state variables and
we give the stability analysis based on Lyapunov function
(LF) of this control system. We discuss simulation results
in Section 5. Finally, concluding remarks is given in Sec-
tion 6.

2. MATHEMATIC MODEL OF A SECOND
ORDER UNDERACTUATED SYSTEMS

CATEGORY

A category of class of second order UMS (as the cart-
pole system, the pendubot, the rotating pendulum, the
crane system) are systems with two degree of freedom,
and have the following Lagrangian [10]:

L(q, q̇) = Ec −Ep, (1)

L =
1
2

q̇T
(

m11 (q2) m12 (q2)
m21 (q2) m22 (q2)

)
q̇−Ep (q) , (2)

where Ec is the kinetic energy and Ep is the potential
energy. q = (q1,q2)

T is the configuration vector. M =(
m11 (q2) m12 (q2)
m21 (q2) m22 (q2)

)
is symmetric invertible inertia

matrix.
The Euler-Lagrange (EL) equation is given as:

d
dt

∂L
∂ q̇1

− ∂L
∂q1

=U,

d
dt

∂L
∂ q̇2

− ∂L
∂q2

= 0, (3)

where U is the control force.
From (2) we have:

L =
1
2

m11 (q2) q̇2
1 +

1
2

m21 (q2) q̇1q̇2

+
1
2

m12 (q2) q̇1q̇2 +
1
2

m22 (q2) q̇2
2 −Ep (q) , (4)

∂L
∂ q̇1

= m11 (q2) q̇1 +
1
2

m21 (q2) q̇2 +
1
2

m12 (q2) q̇2.

(5)

Because the inertia matrix is symmetric we have m12 =
m21, so we get:

d
dt

∂L
∂ q̇1

= m11 (q2) q̈1 +
dm11 (q2)

dq2
q̇2q̇1 +m12q̈2

+
dm12 (q2)

dq2
q̇2

2, (6)

∂L
∂q1

=
∂Ep (q)

∂q1
= g1 (q) , (7)

∂L
∂ q̇2

= m22 (q2) q̇2 +
1
2

m21 (q2) q̇1 +
1
2

m12 (q2) q̇1,

(8)

d
dt

∂L
∂ q̇2

= m22 (q2) q̈2 +
dm22 (q2)

dq2
q̇2

2

+m21 (q2) q̈1 +
dm21 (q2)

dq2
q̇1q̇2, (9)

∂L
∂q2

=
∂Ep (q)

∂q2
= g2 (q) . (10)

From (3), we get:

m11 (q2) q̈1 +m12 (q2) q̈2 +
dm11 (q2)

dq2
q̇2q̇1

+
dm12 (q2)

dq2
q̇2

2 +g1 (q) =U, (11)

m22 (q2) q̈2 +m21 (q2) q̈1 +
dm21 (q2)

dq2
q̇1q̇2

+
dm22 (q2)

dq2
q̇2

2 +g2 (q) = 0. (12)
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According to the mathematical development mentioned
above , we can obtain the following matrix representation
(as an exemple you can see the development of the cart-
pole system given in Appendix):(

m11 (q2) m12 (q2)
m21 (q2) m22 (q2)

)(
q̈1

q̈2

)
+

(
H1 (q, q̇)
H2 (q, q̇)

)
=

(
U
0

)
. (13)

Hi (i = 1, 2) is the vector which represents centrifugal,
corioli and gravity terms, where

H1 (q, q̇) =
dm11 (q2)

dq2
q̇2q̇1 +

dm12 (q2)

dq2
q̇2

2 +g1 (q) ,

(14)

H2 (q, q̇) =
dm21 (q2)

dq2
q̇1q̇2 +

dm22 (q2)

dq2
q̇2

2 +g2 (q) .

(15)

With some manipulations of these second order equa-
tions, we can get the following state space representation:

ẋ1

ẋ2

ẋ3

ẋ4

=


x2

f1 (x)
x4

f2 (x)

+


0

g1 (x)
0

g2 (x)

U

+


0

d1 (x)
0

d2 (x)

 , (16)

y(t) = (x1,x3)
T , (17)

where x =
(

x1 x2 x3 x4
)T is the state space vector,

such that x1 = q1, x2 = q̇1, x3 = q2 and x4 = q̇2. f1, f2, g1

and g2 are nominal bounded nonlinear functions.

f1 (x)

=
1

m11 (x3)m22 (x3)−m12 (x3)m21 (x3)

× (m12 (x3)H2 −m12 (x3)H1), (18)

f2 (x)

=
1

m22 (m11 (x3)m22 (x3)−m12 (x3)m21 (x3))

× (−m21m12 +m22m21 − (m11 (x3)m22 (x3)

−m12 (x3)m21 (x3))H2), (19)

g1 (x) =
m22

m11 (x3)m22 (x3)−m12 (x3)m21 (x3)
, (20)

g2 (x) =
−m21

m11 (x3)m22 (x3)−m12 (x3)m21 (x3)
, (21)

y(t) is the outputs vector. d1 (x) and d2 (x) present the un-
certainties and disturbances.

Assumption 1: The system (16) is observable.

Assumption 2: The system in (16) is bounded input
bounded output and stable for t ∈ [0,T ].

Assumption 3: The uncertain terms are bounded by:
|d1 (x)| ≤ ρ1 and |d2 (x)| ≤ ρ2, where ρ1 and ρ2 are known
positive constants.

3. DESIGN OF THE TRIANGULAR OBSERVER

The implementation of the control laws based on the
system nonlinear model requires the knowledge of the sys-
tem complete state vector at every instant of time. usually,
only part of the state vector can be accessed through sen-
sors. To have the whole system state, one uses a soft sen-
sor, called observer. Generally the dynamics of non lin-
ear systems are approximated using fuzzy systems (FS),
nevertheless the latter need an exact model of the sys-
tem and fuzzy rules estabilished by an expert. Further-
more, in most cases, stability analysis for FS is difficult,
since they lack mathematical descriptions. In the litera-
ture, many strategies with FLC have been introduced, such
as the fuzzy PID controller (FPIDC) [27], the fuzzy adap-
tive controller (FAC) [28] the fuzzy neural network con-
troller (FNNC) [29], and the work [30] where the system
is described by a discrete time Takagi-Sugeno (T-S) fuzzy
affine model using a Markov chain to describe the actuator
fault behavior. However these combinations may make the
analysis and the control procedure tedious and long, which
require a long computation time and a powerful calculator.
The presented observer simplifies the computation of the
estimated states and the study of the closed loop system
stability, since it is obtained separately from the system
controller.

The most of synthesized observers, for nonlinear sys-
tems have the following structure [31]:

˙̂x = f (x̂,U)+φ (y, x̂) ,

y = h(x) . (22)

It’s a copy of the state space model plus a corrector term
φ (y, x̂) which establishes the convergence of the estimated
state x̂ to its real state x in finite time.

In the Extended Leunberger Observer (LO) [32], a lin-
earized model is needed, or a change of coordinates is
made, which requires a set of nonlinear partial differen-
tial equations, and that is so difficult to achieve. Another
technique of estimation which is widely studied for the
estimation for dynamical system is the Extended Kalman
Filter (EKF) [33], unfortunately, stability and convergence
proofs, established for linear systems couldn’t be extended
to nonlinear systems. One of the most known classes of
robust observer is Sliding Mode Observer (SMO) as de-
scribed in [34] and [31].

The principle of SMO is to constrained the “n” order
system dynamics to converge to the sliding surface S of
“n-p” dimension, using discontinuous functions (p is the
sensor vector dimension) [35].
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We propose the following TO dynamics, which is deco-
posed in two sub system:

˙̂x1
˙̂x2
˙̂x3
˙̂x4

=


x̂2

f̂1 (x̄1, x̄2, x̄3, x̄4)+ ĝ1 (x̄3)U
x̂4

f̂2 (x̄1, x̄2, x̄3, x̄4)+ ĝ2 (x̄3)U

+µ1sign11 (x1 − x̂1)
+µ2sign12 (x̄2 − x̂2)
+µ3sign23 (x3 − x̂3)
+µ4sign24 (x̄4 − x̂4)

 , (23)

where f̂1, f̂2, ĝ1 and ĝ2 are respectively the functions f1,
f2, g1 and g2 but with the new estimated state variables.
Function signi j is the classical function “sign” of the ith
subsystem if x̄ j − x̂ j = 0, where i = {1,2} and j = {1,2}
for the first subsystem, j = {3,4} for the second subsys-
tem, else signi j is set to zero. x̄1 = x1,

x̄2 = x̂2 +µ1atan
(π

2
(x̄1 − x̂1)

)
,

and  x̄3 = x3,

x̄4 = x̂4 +µ3atan
(π

2
(x̄3 − x̂3)

)
.

atan is usual arc tangente function, which is known to be
a continuous approximation to the sign function.

Estimation errors are: e1e = x1− x̂1, e2e = x2− x̂2, e3e =
x3 − x̂3, e4e = x4 − x̂4 .

Theorem 1: Suppose the observer (23) is constructed
for the system (16), which state variables are estimated by
choosing appropriate parameters µi (i = 1, 2, ..., n) for any
initial conditions and Assumptions 1, 2 and 3 are verified,
then the estimated state variables converge to the real sys-
tem state variables in finite time.

Proof: The dynamic of the observer errors is:
ė1e

ė2e

ė3e

ė4e

=


e2e

f1 (x1,x2,x3,x4)− f̂1 (x̄1, x̄2, x̄3, x̄4)
e4e

f2 (x1,x2,x3,x4)− f̂2 (x̄1, x̄2, x̄3, x̄4)

−µ1sign11 (x1 − x̂1)
−µ2sign12 (x̄2 − x̂2)+d1 (x)

−µ3sign23 (x3 − x̂3)
−µ4sign24 (x̄4 − x̂4)+d2 (x)

 . (24)

Step 1:
For the first subsystem, we have:

ė1e = ẋ1 − ˙̂x1 = x2 − x̂2 −µ1sign11 (x1 − x̂1) , (25)

ė1e = e2e −µ1sign11 (x1 − x̂1) . (26)

The LF is given by:

V11 =
1
2

e2
1e, (27)

V̇11 = e1eė1e = e1e (e2e −µ1sign11 (x1 − x̂1)) . (28)

We choose µ1 >max |e2e|→ e1e tends toward zero in finite
time, and consequently ė1e = 0 , which implies that: e2e =
µ1sign11 (x1 − x̂1).

In other hand, we have: x̄2 = x̂2 + e2e = x2.
For the second subsystem, we have the following LF:

V21 =
1
2

e2
3e, (29)

V̇21 = e3eė3e = e3e (e4e −µ3sign23 (x3 − x̂3)) . (30)

We choose µ3 >max |e4e|→ e3e tends toward zero in finite
time, and consequently ė3e = 0, which implies that e4e =
µ3sign23 (x3 − x̂3).

In other hand, we have: x̄4 = x̂4 + e4 = x4.
Step2:
We have:

ė1e = 0, (31)

ė2e =−µ2sign12 (x̄2 − x̂2)+d1 (x) , (32)

and

ė3e = 0, (33)

ė4e =−µ4sign24 (x̄4 − x̂4)+d2 (x) . (34)

The new LF for the first subsystem will be:

V1 =
1
2

e2
1e +

1
2

e2
2e, (35)

V̇1 = e1eė1e + e2eė2e. (36)

We have

ė1e = 0

⇒ V̇1 = e2eė2e = e2e (−µ2sign12 (x̄2 − x̂2)+d1 (x))

⇒ V̇1 ≤−µ2 |e2e|+ρ1 |e2e| .

For the second subsystem, we have

V2 =
1
2

e2
3e +

1
2

e2
4e, (37)

V̇2 = e3eė3e + e4eė4e. (38)

We have

ė3e = 0

⇒ V̇2 = e4eė4e = e4e (−µ4sign24 (x̄4 − x̂4)+d2 (x))

⇒ V̇2 ≤−µ4 |e4e|+ρ2 |e4e| .

So in order to obtain V̇1 < 0 and V̇2 < 0 we have just to
choose µ2 > ρ1 and µ4 > ρ2. □
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4. CONTROL DESIGN

The procedure of constructing observer is separated
from the control. After estimating the system states, for
the first level, one can construct the sliding surfaces as
follows:

S1 = c1e1 + e2, (39)

S2 = c2e3 + e4, (40)

where c1 and c2are positive constants.
Dynamic errors are:

e1 = x̂1 − x1d , e2 = x̂2 − x2d , e3 = x̂3 − x3d ,

e4 = x̂4 − x4d .

The desired vector is:

Xd = (x1d ,x2d , x3d ,x4d) .

The equivalent control can be extracted from the annu-
lation of the sliding surface derivative, as follows:

In the first level we differentiate S1and S2 with respect
to time, we get:

Ṡ1 = c1ė1 + ė2, (41)

Ṡ2 = c2ė3 + ė4. (42)

The equivalent control laws are:

Ueq1 =
−1
ĝ1

(
f̂1 + c1ė1 − ẋ2d

)
, (43)

Ueq2 =
−1
ĝ2

(
f̂2 + c2ė3 − ẋ4d

)
. (44)

For the second level, we propose the following sliding
surface:

S = σ1S1 +σ2S2. (45)

Parameters σ1and σ2 are positive constants, are chosen
such that:

σ1σ2S1S2 ≥ 0. (46)

The control law is given as:

U =Ueq1 +Ueq2 +Usw. (47)

The switching control is given by:

Usw =
−1

σ1ĝ1 +σ2ĝ2
(k.signe(S)+β .S) , (48)

such that k and β are positive constants.
The main objective of this work can be resumed by the

diagram presented in Fig. 1:
Theorem 2: for the UMS given by equation (16), the

sliding surfaces are given as equations (39), (40) and (45)

Fig. 1. The controller structure.

with the control law defined by equation (47), then the
output vector y(t) could track the desired trajectories and
the whole system is globally asymptotically stable.

Proof: The derivative of LF is:

V̇ = SṠ, (49)

V̇ = S
(
σ1 f̂1 +σ1ĝ1U +σ1c1ė1 +σ1d1 +σ2 f̂2

+σ2ĝ2U +σ2c2ė3 +σ2d2 −σ1ẋ2d −σ2ẋ4d) .
(50)

Applying the control of equation (47), we have:

V̇ = S (σ1d1 +σ2d2 − ksign(S)−β .S) ,
V̇ = (σ1d1 +σ2d2) |S|− k |S|−β .S2, (51)

where ρ = sup(σ1ρ1 +σ2ρ2) and choosing k > ρ , then

V̇ =−(k−ρ) |S|−β .S2 ≤ 0. (52)

Integrating both sides of (52), we get:∫ t

0
V̇ dτ =

∫ t

0

(
−(k−ρ) |S|−β .S2)dτ, (53)

V (t)−V (0) =−
∫ t

0

(
(k−ρ) |S|+β .S2)dτ < ∞,

∀t ≥ 0. (54)

We have V (t) is positive definite, which means:

0 ≤
∫ t

0

(
(k−ρ) |S|+β .S2)dτ ≤V (0)< ∞. (55)

This implies that

0 ≤ (k−ρ)
∫ ∞

0
(|S|)dτ < ∞. (56)

So

S ∈ L1 (L1: space of the function 1_Norm),

and

0 ≤
∫ ∞

0

(
β .S2)dτ < ∞. (57)
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So,

S ∈ L2 (L2: space of the function 2_Norm).

From (57), we have∫ ∞

0
S2dτ =

∫ ∞

0

(
σ 2

1 S2
1 +σ 2

2 S2
2 +2σ1σ2S1S2

)
dτ.

(58)

Thus,∫ ∞

0
(2σ1σ2S1S2)dτ ≤

∫ ∞

0

(
σ 2

1 S2
1 +σ 2

2 S2
2

)
dτ. (59)

From (58) we have

0 <
∫ ∞

0
(4σ1σ2S1S2)dτ ≤

∫ ∞

0
S2dτ. (60)

And

σ1

∫ ∞

0

(
S2

1

)
+σ2

∫ ∞

0
S2

2)dτ ≤
∫ ∞

0
S2dτ < ∞. (61)

We have S1 ∈ L2 and S2 ∈ L2, which means that
∫ ∞

0 S2
1dτ <

∞ and
∫ ∞

0 S2
2dτ < ∞.

From (56), we have∫ ∞

0
(|S|)dτ =

∫ ∞

0
|S1|dτ +

∫ ∞

0
|S2|dτ < ∞, (62)∫ ∞

0
|S1|dτ < ∞, i.e., S1 ∈ L1, (63)∫ ∞

0
|S2|dτ < ∞, i.e., S2 ∈ L1. (64)

Since the desired trajectory vector yd (t) and its deriva-
tives are bounded, the control input is bounded too, and
y(t) ∈ L∞, and from equations (41) and (42) we have
(ė1, ė2, ė3, ė4) ∈ L∞, hence Ṡ1 ∈ L∞, Ṡ2 ∈ L∞ using Bar-
barat’s lemma we get lim

t→∞
S1 = 0 and lim

t→∞
S2 = 0 , we can

conclude that sliding surfaces and tracking errors converge
asymptotically to zero, which means that the dynamic es-
timated states converge to their references.

5. SIMULATION RESULTS

The proposed control strategy is applied to a cart-pole
system, the dynamic equations are given as (16) (for the
detail see Appendix), where
x1 = x is the position of the cart.
x2 = ẋ is the velocity of the cart.
x3 = θ is the angle of the pole from the vertical axis.
x4 = θ̇ is the velocity of the pole.

M and m are respectively the masses of the cart and the
pole, l is the length of the pole and g is acceleration of
gravity.

In these simulations, the parameters are chosen as M =
2 kg, m = 0.1 kg, l = 0.25 m, and g = 9.81.

The simulations are done using Matlab environnement,
where we have used the ODE45 for the computation and
resolution of simple first order differential equations (the
mathematical model of the observer and the real system)
with a step ∆t = 0.001.

Fig. 2. The position of the cart, its estimatation and the
reference.

Fig. 3. The velocity of the cart, its estimatation and the
reference.

5.1. Case I: Without parameter uncertainties:

The initial conditions are x =
(
0.5,0, π

12 ,0
)T , xe =

(0,0,0,0)T , and the desired output vector is y(t) = (0,0)T ,
we choose c1 = 0.9, c2 = 2.5,k = 0.05 and β = 20, σ1 =
σ2 = 1.5.

Figs. 2-7 represent respectively the trajectories of x(t),
ẋ(t), θ(t), θ̇(t) their estimators, and their references, the
sliding surfaces S(t), S1(t) and S2(t) and the control signal
U(t).

5.2. Case II: With parameter uncertainties:

The initial conditions are:x =
(
0.2,0, −π

12 ,0
)T ,

xe = (0.8,0,0.5,0)T and the desired output vector is
y(t) =

(
0, π

30 sin(t)
)T , we have the uncertainty on the

two masses: M = 2 + 0.0randn(1, t f ), m = 0.1 +
0.05randn(1, t f ), we choose c1 = 0.9, c2 = 2.5, and
k = 0.05, β = 20, σ1 = σ2 = 1.5.

Figs. 8-13 represent respectively the trajectories of x(t),
ẋ(t), θ(t), θ̇(t) their estimators, and their references, the
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Fig. 4. The angle of the pole, its estimatation and the ref-
erence.

Fig. 5. The velocity of the pole, its estimatation and the
reference.

Fig. 6. The sliding surfaces.

sliding surfaces S(t), S1(t) and S2(t) and the control signal
U(t).

From these simulation results, we can see clearly that
the closed loop system with the control and the observer

Fig. 7. The control signal.

Fig. 8. The position of the cart, its estimatation and the
reference.

Fig. 9. The velocity of the cart, its estimatation and the
reference.

assure a good estimation of the all states, where the output
vector can track the desired output vector. A minimization
of chattering has been detected in the control signal.
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Fig. 10. The angle of the pole, its estimatation and the ref-
erence

Fig. 11. The velocity of the pole, its estimatation and the
reference.

Fig. 12. The sliding surfaces.

6. CONCLUSION

In this paper we have presented a nonlinear SMO for
a category of second order UMS, the observer is used in
order to estimate all the states of the system. This con-

Fig. 13. The control signal.

troller gives a good tracking performance, where the er-
rors converge to zero asymptotically, and minimises the
chattering phenomenon in the control signal. Simulation
results show the effectiveness and the robustness of this
controller.

The proposed approach, can be exploited for the control
of continuous and discrete time Markovian jump systems
with state delays [36–39]. Extending this study to other
class and higher order of UMS, deserve further investiga-
tions.

APPENDIX A

The simplified model of the cart-pote system is given in
this section.

The global mechanical energy is given by

L =
1
2
(M+m) ẋ2 +

1
2

ml2θ̇ 2 +ml cosθθ̇ ẋ

−mgl (cosθ −1) . (A.1)

Applying (3) of Euler-lagrange, we get the following
dynamic equations

(M+m) ẍ−ml sinθθ̇ 2 +ml cosθθ̈ =U, (A.2)

ml2θ̈ +ml cosθ ẍ−mgl sinθ = 0, (A.3)

such that

M (q) =
(

M+m ml cosθ
ml cosθ ml2

)
, (A.4)

H (q) =
(

−ml sinθθ̇ 2

−mgl sinθ

)
. (A.5)

From (66) and (67), we have

ẍ =
l

l
(
M+msin2 θ

)U −
sinθ

(
mgl cosθ −ml2θ̇ 2

)
l
(
M+msin2 θ

) ,

(A.6)
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θ̈ =
−cosθ

l
(
M+msin2 θ

)U +
(M+m)g−ml cosθθ̇ 2

l
(
M+msin2 θ

) ,

(A.7)

f1 =−
sinθ

(
mgl cosθ −ml2θ̇ 2

)
l
(
M+msin2 θ

) , (A.8)

g1 =
l

l
(
M+msin2 θ

) , (A.9)

f2 =
(M+m)g−ml cosθθ̇ 2

l
(
M+msin2 θ

) , (A.10)

g2 =
−cosθ

l
(
M+msin2 θ

) . (A.11)

Let x1 = x, x2 = ẋ, x3 = θ , x4 = θ̇ .
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