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Missing Output Identification Model Based Recursive Least Squares Al-
gorithm for a Distributed Parameter System
Jing Chen, Bin Jiang*, and Juan Li

Abstract: This paper proposes a recursive least squares algorithm for a distributed parameter system with missing
observations. By using the finite difference method, the distributed parameter system can be turned into a lumped
parameter system. Then a missing output identification model based recursive least squares algorithm is derived to
estimate the unknown parameters of the lumped parameter system. Furthermore, the parameters of the distributed
parameter system can be computed by the estimated parameters of the lumped parameter system. The simulation
results indicate that the proposed method is effective.
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1. INTRODUCTION

Systems can be roughly divided into two classes: the
lumped parameter systems (LPSs) and the distributed pa-
rameter systems (DPSs). The LPSs are described by dif-
ference equations and have finite dimension. The DPSs
are described by partial differential equations and are of
infinite dimension. Recently, LPSs identification has re-
ceived much attention, and there exist a lot of identifica-
tion methods for LPSs [1–3], including the least squares
(LS) algorithms [4–6], the stochastic gradient algorithms
[7–9] and the iterative algorithms [10–12].

The DPSs are widely existed in engineering practice,
e.g., in semiconductor manufacturing, nanotechnology,
biotechnology and chemical engineering [13, 14]. System
identification is the first step for many applications such
as prediction, control and fault tolerant control [15–19].
Unfortunately, the identification methods for LPSs are not
suitable for DPSs, because the LPSs identification meth-
ods ignore the important features of the spatial response
exhibited by the DPSs.

Over the past few decades, several methods have been
developed for DPSs identification [20–23], and these
methods use proper basis functions to turn DPSs into
LPSs. For example, Zill and Cullen proposed a weighted
residual method for DPSs, the spatio-temporal variable of
the DPSs can be expanded as a set of spatial basis func-
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tions [24]. Li and Qi used a Karhunen-Loeve method to
turn a DPS into an LPS, then applied an LS algorithm to
estimate the unknown parameters of the LPS [25]. How-
ever, when use these methods to truncate the infinite di-
mension to a finite dimension, the selection of dimension
is difficult, a small dimension may lead a large identifi-
cation error, but a large dimension may reduce the com-
putational efficiency. Recently, Chen and Jiang devel-
oped a RLS algorithm and an SG algorithm for a two-
dimensional system with the assumption that the system
is a single-rate system [26].

Dual-rate systems which have different sampled rates of
input and output, are widely existed in many engineering
applications [27–29]. For example, in polymer reactors,
the manipulated variables can be adjusted at relatively
fast rate, whereas the composition, density or molecular
weight distribution measurements are typically obtained
after several minutes of analysis [30]. The lifting tech-
nique and the polynomial transformation technique are
two methods which are generally used for dual-rate sys-
tems identification [31–34]. However, these two methods
can only estimate the parameters of the transformed sys-
tem and can increase the number of the unknown param-
eters. In order to overcome these difficulties, Chen pre-
sented a missing output identification (MOI) method for
dual-rate one-dimensional systems, the method can esti-
mate the parameters of the dual-rate systems directly and
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keep the number of the unknown parameters unchanged
[2]. In this paper, we will extend the MOI method to a
dual-rate two-dimensional system.

The contributions of this paper are as follows.

1) Propose a missing output identification model based
recursive least squares (MOI-RLS) algorithm for dual-
rate two-dimensional systems.

2) The proposed method can estimate the unknown pa-
rameters and the missing outputs simultaneously; Fur-
thermore, cannot increase the number of the unknown
parameters.

3) Compared with the work in [35], the MOI-RLS
method has less computation efforts.

The rest of this paper is organized as follows. Section 2
introduces the DPS and the finite difference method. Sec-
tion 3 presents an MOI-RLS algorithm for a general dual-
rate two-dimensional system. Section 4 provides an illus-
trative example. Finally, concluding remarks are given in
Section 5.

2. PROBLEM FORMULATION

Let “A =: X” or “X := A” stand for “A is defined as X”,
the superscript T denote the matrix transpose.

Consider the following DPS,

∂y(x, t)
∂ t

=a1
∂ 2y(x, t)

∂x2 +a2
∂y(x, t)

∂x
+a3y(x, t)+a4u(x, t), (1)

where y(x, t) is the system output, u(x, t) is the system in-
put, a1, a2, a3 and a4 are unknown parameters to be es-
timated, and with the assumption that 0 ⩽ a1, 0 ⩽ a2 ⩽ L
and K ⩽ a3 ⩽ 0, L is a positive constant and K is a negative
constant, both L and K are known in prior.

Using the finite difference method gives

∂ 2y(x, t)
∂x2 |xi,t j ≈

yi+1, j+1 −2yi, j+1 + yi−1, j+1

∆x2 ,

∂y(x, t)
∂ t

|xi,t j ≈
yi, j+1 − yi, j

∆t
,

∂y(x, t)
∂x

|xi,t j ≈
yi+1, j − yi, j

∆x
,

where yi, j = y(xi, t j) is the output at discretization node
(i, j), ∆x and ∆t are two small intervals at space and time,
respectively. By this difference algorithm, derivatives at
each discretization node (i, j) are approximated by the dif-
ference over a small interval. Then the DPS in (1) can be
transformed as follow,

yi, j+1 − yi, j

∆t
≈a1

yi+1, j+1 −2yi, j+1 + yi−1, j+1

∆x2

+a2
yi+1, j − yi, j

∆x
+a3yi, j +a4ui, j,

and can be simplified as an LPS (or two-dimensional sys-
tem),

(1+2r1)yi, j+1 − r1yi+1, j+1 − r1yi−1, j+1

= r2yi+1, j +(r3 − r2 +1)yi, j + r4ui, j, (2)

where r1 = a1
∆t

∆x2 , r2 = a2
∆t
∆x , r3 = a3∆t and r4 = a4∆t.

The finite difference method cannot guarantee that the
DPS be approximated by the LPS because of the approxi-
mation error. Therefore, in order to keep the finite differ-
ence method convergent, Von. Neumann stability analysis
is introduced.

Based on Von. Neumann stability analysis, the error
equation has the same structure with the LPS [36], and
can be written as

(1+2r1)zi, j+1 − r1zi+1, j+1 − r1zi−1, j+1

= r2zi+1, j +(r3 − r2 +1)zi, j, (3)

where zi, j+1 is the approximation error at (i, j+1), and

zi, j =V j(k)eikxi , zi, j+1 =V j+1(k)eikxi ,

zi+1, j+1 =V j+1(k)eikxi eik∆x,

zi−1, j+1 =V j+1(k)eikxi e−ik∆x,

zi+1, j =V j(k)eikxi eik∆x, (4)

in which V (k) is a growth factor, k is the number of waves
and e is short for exp. When |V (k)| ⩽ 1, the difference
algorithm is convergent; when |V (k)| > 1, the difference
algorithm is divergent.

Rewrite (3) as

(1+2r1)V j+1(k)eikxi − r1V j+1(k)eikxi eik∆x

− r1V j+1(k)eikxi e−ik∆x

= r2V j(k)eikxi eik∆x +(r3 − r2 +1)V j(k)eikxi , (5)

and the growth factor V (k) can be expressed as

V (k) =
r2eik∆x + r3 − r2 +1

1+2r1 − r1eik∆x − r1e−ik∆x . (6)

Since

eik∆x + e−ik∆x = 2cos(k∆x),

eik∆x − e−ik∆x = 2sin(k∆x)i,

1− cos(k∆x) = 2sin2 k∆x
2

,

we have eik∆x = cos(k∆x)+ sin(k∆x)i.
Simplifying Equation (6) gives

V (k) =
r2eik∆x + r3 − r2 +1

1+2r1 −2r1 cos(k∆x)

=
r2 cos(k∆x)+ r3 − r2 +1+ r2 sin(k∆x)i

1+4r1 sin2 k∆x
2
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=
r2 cos(k∆x)+ r3 − r2 +1

1+4r1 sin2 k∆x
2

+
r2 sin(k∆x)

1+4r1 sin2 k∆x
2

i. (7)

Let

a =
r2 cos(k∆x)+ r3 − r2 +1

1+4r1 sin2 k∆x
2

,

b =
r2 sin(k∆x)

1+4r1 sin2 k∆x
2

.

Then we have

|V (k)|2

= a2 +b2

=
(r2 cos(k∆x)+ r3 − r2 +1)2

(1+4r1 sin2 k∆x
2 )2

+
(r2 sin(k∆x))2

(1+4r1 sin2 k∆x
2 )2

=
4r2 sin2( k∆x

2 )(r2 − r3 −1)+(r3 +1)2

(1+4r1 sin2 k∆x
2 )2

.

Since r1 = a1
∆t

∆x2 , r2 = a2
∆t
∆x , r3 = a3∆t, a1 ⩾ 0, a2 ⩾ 0 and

a3 ⩽ 0, we can choose two small positive numbers ∆t and
∆x to keep r1 ⩾ 0, 0 ⩽ r2 ⩽ 1

2 and − 1
2 ⩽ r3 ⩽ 0. Then we

can get

|V (k)|2 =
4r2

2 sin2( k∆x
2 )(r2 − r3 −1)+(r3 +1)2

(1+4r1 sin2 k∆x
2 )2

⩽ (r3 +1)2

(1+4r1 sin2 k∆x
2 )2

⩽ 1. (8)

Here, r1 ⩾ 0, 0 ⩽ r2 ⩽ 1
2 and − 1

2 ⩽ r3 ⩽ 0 are equivalent
to a1 ⩾ 0, L ⩽ ∆x

2∆t and − 1
2∆t ⩽ K. Thus, based on Von.

Neumann stability analysis and the assumption of a1, a2

and a3, we can conclude that the DPS in (1) can be ap-
proximated by the LPS in (2).

Simplifying (2) gets

y(i+1, j+1) =a0,1y(i+1, j)+a1,0y(i, j+1)

+a2,0y(i−1, j+1)+a1,1y(i, j)

+b1,1u(i, j), (9)

where y(i, j) = yi, j, a0,1 = − r2
r1

, a1,0 = 1+2r1
r1

, a2,0 = −1,
a1,1 =− r3−r2+1

r1
and b1,1 =− r4

r1
.

Rewrite (9) as

y(i, j)+ y(i−2, j) =a0,1y(i, j−1)+a1,0y(i−1, j)

+a1,1y(i−1, j−1)

+b1,1u(i−1, j−1). (10)

3. THE MOI-RLS ALGORITHM

Consider the general dual-rate two-dimensional system
as

y(x, tq) =a0,1y(x, tq−1)+a0,2y(x, tq−2)+ · · ·

+a0,qy(x, tq−q)+ · · ·+a0,ny(x, tq−n)

+a1,0y(x−1, tq)+a2,0y(x−2, tq)+ · · ·
+am,0y(x−m, tq)

+a1,1y(x−1, tq−1)+a1,2y(x−1, tq−2)

+ · · ·+a1,qy(x−1, tq−q)+ · · ·
+a1,ny(x−1, tq−n)+ · · ·
+am,1y(x−m, tq−1)+am,2y(x−m, tq−2)

+ · · ·+am,qy(x−m, tq−q)+ · · ·
+am,ny(x−m, tq−n)

+b1,1u(x−1, tq−1)+ v(x, tq), (11)

where u(x, t) and y(x, t) are input and output, respectively.
v(x, t) is a stochastic white noise with zero mean. n means
that the output at time tq depends on all the outputs from
tq− n to tq− 1, while m means that the output at space
x depends on all the outputs from x − m to x − 1. For
the dual-rate sampled data system, the input data u(x, t)
is sampled at a quicker rate than the output y(x, t), thus
all the input data {u(x, t),x = 1,2, · · · ,M, t = 0,1,2, · · ·}
and only the scarce output data {y(x, tq),(q ⩾ 2)} are
measureable. The intersample outputs {y(x, tq+ h), h =
1,2, · · · ,q− 1} are unavailable. M is the total number of
the points in the space at time t, as shown in Fig. 1.

Define the parameter vector θ and the information vec-
tor φ(x, tq) as

θ := [a0,1,a0,2, · · · ,a0,n,a1,0,a2,0, · · · ,
am,0,a1,1,a1,2, · · · ,a1,n, · · · ,
am,1,am,2, · · · ,am,n,b1,1]

T ∈ Rp,

p = (m+1)(n+1), (12)

φ(x, tq) := [y(x, tq−1),y(x, tq−2), · · · ,
y(x, tq−q), · · · ,y(x, tq−n),y(x−1, tq),

y(x−2, tq), · · · ,y(x−m, tq),

y(x−1, tq−1),y(x−1, tq−2), · · · ,
y(x−1, tq−q), · · · ,
y(x−1, tq−n), · · · ,y(x−m, tq−1),

y(x−m, tq−2), · · · ,y(x−m, tq−q), · · · ,
y(x−m, tq−n),

u(x−1, tq−1)]T ∈ Rp. (13)

Rewrite (11) as an identification model,

y(x, tq) =φT(x, tq)θ + v(x, tq).

Using the following RLS algorithm proposed in [26] to
estimate the parameter vector θ(x, tq):

θ̂(x, tq) = θ̂(x−1, tq−1)+P(X ,T q)P−1(X −1, tq)

× (θ̂(x−1, tq)− θ̂(x−1, tq−1))

+P(X ,T q)×P−1(x,T q−1)(θ̂(x, tq−1)
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Fig. 1. The missing observations pattern

− θ̂(x−1, tq−1))

+P(X ,T q)φ(x, tq)(y(x, tq)

−φT(x, tq)θ̂(x−1, tq−1)), (14)

P−1(X ,T q) = P−1(0,0)+
x

∑
i=1

tq

∑
j=1

φ(i, j)φT(i, j),

P(0,0) = p0I, p0 = 106, (15)

P−1(X −1, tq) = P−1(0,0)+
x−1

∑
i=1

φ(i, tq)φT(i, tq),

(16)

P−1(x,T q−1) = P−1(0,0)+
tq−1

∑
j=1

φ(x, j)φT(x, j),

(17)

where P(·) is the covariance matrix, P−1(·) is the in-
verse matrix of P(·) and I is an identity matrix. Unfor-
tunately, this RLS algorithm is impossible to implement,
because the information vector φ(x, tq) on the right-hand
side of (14) contains the missing outputs y(x, tq− i), i =
1,2 · · · ,q − 1. If the system is a one-dimensional sys-
tem, the lifting technique and the polynomial transfor-
mation technique can be used to overcome this difficulty.
However, due to the complexity of the polynomial of the
output, the lifting technique and the polynomial transfor-
mation technique cannot be used for this dual-rate two-
dimensional system. In this paper, we use the MOI-RLS
algorithm to overcome this difficulty.

The missing outputs are replaced with the outputs of an
MOI model,

ŷ(x, tq−q+h) = φ̂T(x, tq−q+h)θ̂(x, tq−q),

x = 1, · · · ,M, h = 1,2, · · · ,q−1,

φ̂(x, tq−q+h) = [ŷ(x, tq−q+h−1),

ŷ(x, tq−q+h−2), · · · ,y(x, tq−q), · · · ,
ŷ(x, tq−q+h−n), ŷ(x−1, tq−q+h),

ŷ(x−2, tq−q+h), · · · , ŷ(x−m, tq−q+h),

ŷ(x−1, tq−q+h−1), ŷ(x−1, tq−q+h−2), · · · ,
y(x−1, tq−q), · · · , ŷ(x−1, tq−q+h−n), · · · ,
ŷ(x−m, tq−q+h−1), ŷ(x−m, tq−q+h−2), · · · ,
y(x−m, tq−q), · · · , ŷ(x−m, tq−q+h−n),

u(x−1, tq−q+h−1)]T,

where ŷ(x, tq− q+ h) represents the estimate of y(x, tq−
q+ h) at (x, tq− q+ h), θ̂(x, tq− q) represents the esti-
mate of θ at (x, tq−q), and φ̂(x, tq−q+h) represents the
estimate of φ at (x, tq−q+h).

Using the following MOI-RLS algorithm to estimate
the parameter vector θ in (12):

θ̂(x, tq) = θ̂(x−1, tq−q)+P(X ,T q)P−1(X −1, tq)

× (θ̂(x−1, tq)− θ̂(x−1, tq−q))

+P(X ,T q)P−1(x,T q−q)(θ̂(x, tq−q)

− θ̂(x−1, tq−q))

+P(X ,T q)φ̂(x, tq)(y(x, tq)

− φ̂T(x, tq)θ̂(x−1, tq−q)), (18)

θ̂(x, tq−q+h) = θ̂(x, tq−q), h = 1,2, · · · ,q−1,
(19)

P−1(X ,T q) = P−1(0,0)+
x

∑
i=1

tq

∑
j=1

φ̂(i, j)φ̂T(i, j),

P(0,0) = p0I, p0 = 106, (20)

P−1(X −1, tq) = P−1(0,0)+
x−1

∑
i=1

φ̂(i, tq)φ̂T(i, tq),

(21)

P−1(x,T q−q) = P−1(0,0)+
tq−q

∑
j=1

φ̂(x, j)φ̂T(x, j),

(22)

ŷ(x, tq−q+h) = φ̂T(x, tq−q+h)θ̂(x, tq−q), (23)

φ̂(x, tq−q+h)

= [ŷ(x, tq−q+h−1), ŷ(x, tq−q+h−2), · · · ,
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y(x, tq−q), · · · , ŷ(x, tq−q+h−n),

ŷ(x−1, tq−q+h), ŷ(x−2, tq−q+h), · · · ,
ŷ(x−m, tq−q+h), ŷ(x−1, tq−q+h−1),

ŷ(x−1, tq−q+h−2), · · · , y(x−1, tq−q), · · · ,
ŷ(x−1, tq−q+h−n), · · · ,
ŷ(x−m, tq−q+h−1), ŷ(x−m, tq−q+h−2),

· · · , y(x−m, tq−q), · · · , ŷ(x−m, tq−q+h−n),

u(x−1, tq−q+h−1)]T. (24)

The steps of computing the parameter estimate θ̂(x, tq)
by the MOI-RLS algorithm are listed in the following.

1) Let y(−i,− j) = 0,v(−i,− j) = 0,u(−i,− j) = 0, i =
0,1,2, · · · ,m−1, j = 0,1,2, · · · ,n−1 and give a small
positive numbers ε .

2) Let t = 1, r(0) = 1, and P(0,0) = p0I and θ̂(0,0) =
1/p0 with 1 being a column vector whose entries are
all unity and p0 = 106.

3) Let h = 1, x = 1, collect the input-output data
y(x, tq),u(x, t).

4) Compute ŷ(x, tq−q+h) by (23).
5) Increase x by 1 and compare x with M, if x ⩽ M, form

φ̂(x, tq−q+h) by (24) and go to step 4; otherwise, go
to step 6.

6) Let x = 1 again, and increase h by 1, if h ⩽ q−1, go to
step 4; otherwise, go to next step.

7) Form φ̂(x, tq) by (24), compute P−1(X ,T q), P−1(X −
1, tq) and P−1(x,T q − q) by (20), (21) and (22), re-
spectively.

8) Update the parameter estimation vector θ̂(x, tq) by
(18).

9) Compare θ̂(x, tq) and θ̂(x− 1, tq− q): if ∥θ̂(x, tq)−
θ̂(x−1, tq−q)∥⩽ ε , then terminate the procedure and
obtain θ̂(x, tq); otherwise, increase x by 1 and go to
next step.

10) Compare x and M: if x ⩽ M, go to step 7; otherwise,
increase t by 1 and go to step 3.

Next, we will compute the original parameters of the
DPS. Rewrite (10) as

y(x, tq)+ y(x−2, tq) =a0,1y(x, tq−1)

+a1,0y(x−1, tq)

+a1,1y(x−1, tq−1)

+b1,1u(x−1, tq−1).

Define the parameter vector θ and the information vec-
tor φ(x, tq) as

θ := [a0,1,a1,0,a1,1,b1,1]
T, (25)

φ(x, tq) := [y(x, tq−1),y(x−1, tq),

y(x−1, tq−1),u(x−1, tq−1)]T. (26)

By using the estimated parameters {â0,1, â1,0, â1,1, b̂1,1},
we can compute r̂1 =

1
â1,0−2 , r̂2 =−r̂1â0,1, r̂3 =−r̂1â1,1 +

r̂2 − 1 and r̂4 = −r̂1b̂1,1. Because ∆x and ∆t are already
known, we can compute â1 =

r̂1∆x2

∆t , â2 =
r̂2∆x
∆t , â3 =

r̂3
∆t and

â4 =
r̂4
∆t by the estimates r̂1, r̂2, r̂3 and r̂4.

4. NUMERICAL RESULTS

Consider the following temperature distributed param-
eter system of large-scale vertical quench furnace in [37],

∂y(x, t)
∂ t

=a1
∂ 2y(x, t)

∂x2 +a2
∂y(x, t)

∂x
+a3y(x, t)+a4u(x, t),

where y(x, t) is the temperature of the large-scale vertical
quench furnace and u(x, t) is the current of the heating
element, [a1,a2,a3,a4] = [0.1,0.4,−5,6]. Assume L= 0.4
and K =−5. Since L ⩽ ∆x

2∆t and − 1
2∆t ⩽ K, one can choose

∆t = 0.1 and ∆x = 0.1. Then, we have r1 = 1, r2 = 0.4,
r3 =−0.5 and r4 = 0.6, and

θ = [a0,1,a1,0,a1,1,b1,1]
T = [−0.4,3,−0.1,−0.6]T,

φ(x, t) = [y(x, t −1),y(x−1, t),y(x−1, t −1),

u(x−1, t −1)]T.

Then the DPS can be simplified as a two-dimensional sys-
tem. Assume that the two-dimensional system is a dual-
rate system with two different updating periods q = 2 and
q = 3, then we can get

y(x, t)+ y(x−2, t) = φT(x, t)θ + v(x, t).

In simulation, the input {u(x, t)} is taken as a persistent
excitation signal sequence with zero mean and unit vari-
ance, and {v(x, t)} is taken as a white noise sequence with
zero mean and variance σ 2 = 0.102. The noise-to-signal
ratio is δns = 16.667%.

Define the parameter estimation error as

δ := ∥θ̂ −θ∥/∥θ∥.

Assume M = 50, then apply the MOI-RLS algorithm to
estimate the parameters. The parameter estimates and
their errors are shown in Tables 1-2, and the parameter
estimation errors δ versus (x, t) are shown in Fig. 2.

From Tables 1-2 and Fig. 2, we can conclude:

1. The parameter estimation errors become smaller and
smaller and go to zero with (x, t) increasing.

2. When q = 2, we can compute the original param-
eters [a1,a2,a3,a4]

T = [0.099,0.399,−5.012,5.992]T

by using the parameter estimate θ̂(50,50).
3. When q becomes larger, the parameter estimation er-

rors also become larger because of too much outputs
are missing.
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Table 1. The MOI-RLS algorithm estimates and errors (q = 2).

(x, t) a0,1 a1,0 a1,1 b1,1 δ (%)

(5,5) −0.33974 4.01138 −0.03762 −0.31474 32.55981
(10,10) −0.40872 2.76224 −0.09443 −0.42255 9.15148
(15,15) −0.39827 2.82413 −0.11600 −0.48578 6.48163
(20,20) −0.39900 3.00628 −0.09972 −0.51248 2.70632
(30,30) −0.40003 3.01096 −0.09859 −0.56634 1.09169
(40,40) −0.40007 3.00411 −0.09937 −0.58447 0.49553
(50,50) −0.40004 3.00037 −0.09995 −0.59977 0.40364

True Values −0.40000 3.00000 −0.10000 −0.60000

Table 2. The MOI-RLS algorithm estimates and errors (q = 3).

(x, t) a0,1 a1,0 a1,1 b1,1 δ (%)

(5,5) −0.83309 4.92312 −0.48469 0.28315 89.05208
(10,10) −0.32622 3.68315 −0.07661 −0.37172 22.74399
(15,15) −0.45332 2.32576 −0.19272 −0.51357 22.03352
(20,20) −0.40905 2.40601 −0.15711 −0.52564 18.59932
(30,30) −0.39676 2.93020 −0.10138 −0.56119 2.46592
(40,40) −0.40034 2.96097 −0.09805 −0.57887 1.36904
(50,50) −0.40006 2.94766 −0.10002 −0.59576 1.61822

True Values −0.40000 3.00000 −0.10000 −0.60000
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Fig. 2. The parameter estimation errors δ versus (x, t)

5. CONCLUSIONS

This paper proposes an identification method for a
distributed parameter system with missing observations.
Based on Von. Neumann stability analysis, the distributed
parameter system can be simplified as a lumped param-
eter system. Then a missing output identification model
based recursive least squares algorithm is derived to es-
timate the unknown parameters of the lumped parameter
system. Different from the lifting technique and the poly-
nomial transformation technique, the method in this paper
can be used for dual-rate two-dimensional system identifi-
cation, and can estimate the unknown parameters directly.
Furthermore, this method can also be extended to fault de-
tection, diagnosis and estimation [38–42].
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