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Interacting Multiple Model Estimation-based Adaptive Robust Unscented
Kalman Filter
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Abstract: The unscented Kalman filter (UKF) is a promising approach for the state estimation of nonlinear dynamic
systems due to its simple calculation process and superior performance in highly nonlinear systems. However, its
solution will be degraded or even divergent when the system model involves uncertainty. This paper presents an
interacting multiple model (IMM) estimation-based adaptive robust UKF to address this problem. This method
combines the merits of the adaptive fading UKF and robust UKF and discards their demerits to inhibit the distur-
bance of system model uncertainty on the filtering solution. An adaptive fading UKF for the case of process model
uncertainty and a robust UKF for the case of measurement model uncertainty are established based on the principle
of innovation orthogonality. Subsequently, an IMM estimation is developed to fuse the adaptive fading UKF and
robust UKF as sub-filters according to the mode probability. The system state estimation is achieved as a proba-
bilistic weighted sum of the estimation results from the two sub-filters. Simulations, experiments and comparison
analysis validate the efficacy of the proposed method.

Keywords: Adaptive fading factor, interacting multiple model, robust factor, system model uncertainty, unscented
Kalman filter.

1. INTRODUCTION

The problem of state estimation in nonlinear dynamic
systems has been attracted considerable research interests
during the past several decades since it has widespread
applications in numerous science and engineering fields
such as vehicle navigation, signal processing, radar track-
ing, and automatic control [1–4]. The extended Kalman
filter (EKF), which is a nonlinear version of Kalman filter,
is the most commonly used filtering approach for nonlin-
ear systems [5,6]. The unscented Kalman filter (UKF) is a
relatively new nonlinear filtering method which has many
advantages over the EKF [7–9]. Given the fact that it is
much easier to approximate a probability distribution than
any other nonlinear transformation, the UKF directly uses
unscented transformation to approximate the probability
density of state distribution, overcoming the linearization
error involved in the EKF. Therefore, the UKF can approx-
imate the posterior mean and covariance of any Gaussian
random variable in third-order accuracy, whereas the EKF
in first-order accuracy. Furthermore, the UKF does not
require the computation of Jacobian matrices and has the
merits such as the simplicity in implementation, high esti-
mation accuracy and high convergence rate [9, 10]. Given
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these merits, the UKF has become a promising solution to
address the problem of nonlinear state estimation [10–12].

However, the UKF requires an accurate system model
and exact noise statistics information [13,14]. It is difficult
to satisfy these conditions in practice. The system model
usually involves uncertainties such as the model param-
eter mismatch, system noise statistic error and stochastic
drifts, leading to the deteriorated or even divergent UKF
solution [15, 16].

This paper presents an interacting multiple model
estimation-based adaptive robust UKF (IMM-ARUKF) to
overcome the problem of the classical UKF in require-
ment of accurate system model and exact noise statis-
tics information. Based on the principle of innovation
orthogonality, this method establishes an adaptive fading
UKF (AFUKF) for the case of process model uncertainty
and a robust UKF (RUKF) for the case of measurement
model uncertainty. Subsequently, it further develops an
interacting multiple model estimation to fuse the AFUKF
and RUKF according to the mode probability calculated
from the innovation information of both filters to combine
their advantages and eliminate their limitations. The over-
all system state estimation is obtained as the probabilistic
weighted sum of the estimation results from the two fil-
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ters. The proposed IMM-ARUKF not only overcomes the
limitation of the classical UKF in requirement of accu-
rate system model, but it also absorbs the merits and dis-
cards the demerits of the AFUKF and RUKF, leading to
improved adaptability and robustness. Simulations, prac-
tical experiments and comparison analysis have been con-
ducted to comprehensively evaluate the performance of
the proposed IMM-ARUKF.

2. RELATED WORK

Research efforts have been dedicated to improvement of
the UKF adaptability and robustness against system model
uncertainty. Cho and Choi presented a sigma-point based
receding horizon Kalman filter (SPRHKF) to improve the
UKF robustness [17]. This method uses a receding hori-
zon strategy to adaptively resist model errors and tem-
porarily unknown sensor bias. However, since this filter
is based on a finite impulse response structure, its filter-
ing convergence is poor [18]. Song and Han studied a
method to improve the UKF performance against process
model uncertainty by minimizing the difference between
the estimated covariance and actual innovation covariance
[19]. However, this method requires the calculation of
partial derivatives, leading to a relatively large computa-
tional burden [14]. Jwo et al. used fuzzy logic to detect
model uncertainties for improvement of the UKF adapt-
ability and robustness [20, 21]. However, the fuzzy rules
are developed based on empiricism and heuristic informa-
tion, leading to the limited performance.

Studies have also reported focusing on the use of the
scaling factor to improve the UKF adaptability and robust-
ness. These studies can be divided into two categories.
One is the AFUKF. Under the assumption that the actual
measurement is accurate, the AFUKF scales the process
noise covariance or predicted state covariance using the
adaptive fading factor to compensate process model un-
certainty [14, 15]. The other is the RUKF, which the ex-
act opposite of the AFUKF. The RUKF scales the mea-
surement noise covariance or innovation covariance with
a robust factor to deal with the measurement model uncer-
tainty under the assumption that the process model is con-
structed correctly [22, 23]. Both methods have their own
merits. The AFUKF can strongly track the discontinuous
variation of system state, while the RUKF is insensitive to
abnormal measurement. As these two filters have comple-
mentary features with each other, an obvious solution is to
combine them together to handle both process and mea-
surement model uncertainties. However, as the AFUKF
cannot handle measurement model uncertainty and the
RUKF cannot handle process model uncertainty, a simple
combination of both filters to handle process model uncer-
tainty and measurement model uncertainty would deterio-
rate the filtering solution [24]. Therefore, it is necessary
to study how to effectively combine both filters together

to fully take their individual advantages for improvement
of the UKF adaptability and robustness.

The interacting multiple model (IMM) estimation has
received a great deal of attention in the recent years due
to its great success in handling multi-mode behavior prob-
lems in the areas of target tracking, fault detection and
fault isolation [25–28]. This method runs several sub-
filters in parallel, each matching a particular system mode.
The probability of each mode is characterized using a like-
lihood function, and the transition between system modes
is performed via a transition probability. The overall state
estimation is computed as a probabilistically weighted
sum of the results from each sub-filter. According to the
mode probability calculated from the innovation informa-
tion of individual sub-filters, the IMM can always follow
a sub-filter that outperforms others. Therefore, the IMM
is very suitable for integration of the AFUKF and RUKF
to make full use of their respective merits and diminish
their demerits. However, there has been very limited re-
search on using the IMM to combine AFUKF and RUKF
to improve the UKF performance.

This paper presents a new IMM-ARUKF to address the
problem of the classical UKF in requirement of accurate
system model. The novelty of the paper is that the IMM
estimation is established for fusion of the AFUKF and
RUKF to combine their advantages and eliminate their
limitations, thus improving the UKF adaptability and ro-
bustness in presence of system model uncertainty.

3. CLASSICAL UKF

Consider the nonlinear dynamic system with additive
noises as follows:{

xxxk = f (xxxk−1)+wwwk,

zzzk = h(xxxk)+vvvk,
(1)

where xxxk ∈ Rn and zzzk ∈ Rm are the state vector and mea-
surement vector at time k; f (·) and h(·) are the nonlinear
functions describing the process and measurement mod-
els; and wwwk ∈ Rn and vvvk ∈ Rm are the process and mea-
surement noises, which are assumed as uncorrelated zero-
mean Gaussian white noises with covariances

E
[
wwwkwwwT

j

]
=QQQkδk j, E

[
vvvkvvvT

j

]
=RRRkδk j, (2)

where QQQk is a non-negative definite matrix, RRRk is a positive
definite matrix, and δk j is the Kronecker-δ function.

The computational process of the classical UKF for the
nonlinear system described by (1) can be summarized as:

Step 1: Initialization.x̂xx0 = E[xxx0],

PPP0 = E
[
(xxx0 − x̂xx0)(xxx0 − x̂xx0)

T
]
.

(3)
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Step 2: Time Update. Given the state estimate x̂xxk−1 and
its error covariance matrix PPPk−1, the sigma points can be
selected by


χχχ i,k−1 = x̂xxk−1, i = 0,

χχχ i,k−1 = x̂xxk−1 +
(

a
√

nPPPk−1

)
i

i = 1,2, · · · ,n,

χχχ i,k−1 = x̂xxk−1 −
(

a
√

nPPPk−1

)
i−n

, i = n+1,n+2, · · · ,2n,

(4)

where a is the tuning parameter that determines the spread
of the sigma points around x̂xxk−1, and it is usually set to a
small positive value; and

(√
nPPPk−1

)
i denotes the ith col-

umn of the square root of the matrix nPPPk−1.
The sigma points are instantiated through the process

model to yield a set of transformed samples

χχχ i,k/k−1 = f (χχχ i,k−1), i = 0,1, · · · ,2n. (5)

The predicted state mean and covariance are calculated
as

x̂xxk/k−1 =
2n

∑
i=0

ωiχχχ i,k/k−1 =
2n

∑
i=0

ωi f (χχχ i,k−1), (6)

PPPk/k−1 =
2n

∑
i=0

ωi(χχχ i,k/k−1 − x̂xxk/k−1)(χχχ i,k/k−1 − x̂xxk/k−1)
T

+QQQk, (7)

where


ωi = 1− 1

a2 , i = 0,

ωi =
1

2na2 , i = 1,2, · · · ,2n
.

Step 3: Sigma Point Update. A set of new sigma
points is reselected with the mean x̂xxk/k−1 and the covari-
ance PPPk/k−1



χχχ ′
i,k/k−1 = x̂xxk/k−1, i = 0,

χχχ ′
i,k/k−1 = x̂xxk/k−1 +

(
a
√

nPPPk/k−1

)
i
, i = 1,2, · · · ,n,

χχχ ′
i,k/k−1 = x̂xxk/k−1 −

(
a
√

nPPPk/k−1

)
i−n

,

i = n+1,n+2, · · ·,2n.
(8)

Step 4: Measurement Update. The transformed sigma
points for measurement are

γγγ i,k/k−1 = h(χχχ ′
i,k/k−1). (9)

The predicted measurement is calculated by

ẑzzk/k−1 =
2n

∑
i=0

ωiγγγ i,k/k−1 =
2n

∑
i=0

ωih(χχχ ′
i,k/k−1), (10)

and its corresponding covariance matrix (innovation co-
variance matrix) is described as

PPPẑzzk/k−1 =
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
+RRRk.

(11)

The covariance between the predicted state and mea-
surement is given by

PPPx̂xxk/k−1ẑzzk/k−1 =
2n

∑
i=0

ωi

(
χχχ i,k/k−1 − x̂xxk/k−1

)
×
(

γγγ i,k/k−1 − ẑzzk/k−1

)T
. (12)

The Kalman gain can be computed as

KKKk =PPPx̂xxk/k−1ẑzzk/k−1PPP
−1
ẑzzk/k−1

. (13)

Based on the above process, the state estimate x̂xxk and
associated error covariance matrix PPPk are updated as

x̂xxk = x̂xxk/k−1 +KKKk(zzzk − ẑzzk/k−1), (14)

PPPk =PPPk/k−1 −KKKkPPPẑzzk/k−1KKK
T
k . (15)

Step 5: Repeat Steps 2 to 4 for the next sample until all
samples are processed.

It is obvious that if the system model (1) involves un-
certainty, the predicted state x̂xxk/k−1 and predicted measure-
ment ẑzzk/k−1 obtained by (6) and (10) will become inaccu-
rate. This will further make the Kalman gain KKKk biased,
thus deteriorating the state estimate obtained from (14).
Therefore, without accurate system model, the filtering
solution of the classical UKF will be deteriorated or even
divergent.

4. IMM ESTIMATION-BASED ADAPTIVE
ROBUST UKF

4.1. Adaptive fading UKF and robust UKF
Assume uncertainty is involved in the process model

of nonlinear system (1). The core idea of the AFUKF is
to incorporate a time-varying adaptive fading factor into
the predicted state covariance matrix which can refrain the
influence of prior knowledge on the current state estimate
[15]. Thus, the predicted state covariance matrix in the
AFUKF is formulated as

PPP∗
k/k−1

= λk

{
2n

∑
i=0

ωi(χχχ i,k/k−1 − x̂xxk/k−1)(χχχ i,k/k−1 − x̂xxk/k−1)
T

+QQQk

}
, (16)

where λk is the adaptive fading factor.
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On the contrary, when uncertainty is involved in the
measurement model of nonlinear system (1), the basic
idea of the RUKF is to embed a time-varying robust factor
in the innovation covariance matrix to inhibit the distur-
bance of abnormal measurement on current state estimate
[29]. The innovation covariance matrix in the RUKF is
described as

PPP′
ẑzzk/k−1

= sk

{
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T

+RRRk

}
, (17)

where sk is the robust factor.
Define the innovation vector as

z̃zzk = zk − ẑzzk/k−1. (18)

As the classical UKF works under the optimal opera-
tional conditions, i.e., the nonlinear system described by
(1) does not exist uncertainty, the following relationship
can be fulfilled [30, 31]

E
[
z̃zzT

k · z̃zzk+ j
]
= 0, j = 1,2, · · · . (19)

Equation (19) is called the principle of innovation orthog-
onality, which means that the innovation sequence has to
be orthogonal to each other. This principle can guarantee
that all the useful information in the innovation sequence
can be extracted. The aforementioned adaptive fading fac-
tor and robust factor can be determined by compelling the
relationship (19) to be held.

4.1.1 Determination of adaptive fading factor
Define the estimation error and prediction error as

x̃xxk = xxxk − x̂xxk, (20)

x̃xxk/k−1 = xxxk − x̂xxk/k−1. (21)

Substituting (1) and (6) into (21) and expanding f (·) by
a Taylor series about x̂xxk−1, the prediction error is rewritten
as

x̃xxk/k−1 =FFFkx̃xxk−1 +∆(x̃xxk−1)+wwwk, (22)

where FFFk =
∂ f (xxx)

∂xxx

∣∣∣
xxx=x̂xxk−1

and ∆(x̃xxk−1) denotes the second

and higher-order moments in the Taylor series.
For the purpose of simplifying the error expres-

sion, an unknown time-varying diagonal matrix βββ k =
diag(βββ 1,k,βββ 2,k, · · ·,βββ n,k) is introduced to model the er-
rors due to the first-order linearization [1, 9]. Thus, (22)
becomes

x̃xxk/k−1=βββ kFFFkx̃xxk−1 +wwwk. (23)

Similar to the derivation process of x̃xxk/k−1, the innova-
tion vector can be formulated by

z̃zzk=αααkHHHkx̃xxk/k−1 + vk, (24)

where HHHk = ∂h(xxx)
∂xxx

∣∣∣
xxx=x̂xxk/k−1

and αααk = diag(ααα1,k,ααα2,k, · ·

·,αααm,k) is an unknown time-varying diagonal matrix.
From (24), we can obtain

PPPẑzzk/k−1 = E
[(

zzzk − ẑzzk/k−1
)(

zzzk − ẑzzk/k−1
)T
]

=αααkHHHkPPPk/k−1HHHT
k αααk +Rk, (25)

PPPx̂xxk/k−1ẑzzk/k−1 = E
[(

xxxk − x̂xxk/k−1
)(

zzzk − ẑzzk/k−1
)T
]

=PPPk/k−1HHHT
k αααk. (26)

DenotingYYY j,k =E
[
z̃zzk+ jz̃zzT

k

]
, it can be achieved from (23)

and (24)

YYY j,k =E
{[

αααk+ jHHHk+ j
(
βββ k+ jFFFk+ jx̃xxk+ j−1 +wwwk+ j

)
+vvvk+ j

]
× [αααkHHHk (βββ kFFFkx̃xxk−1 +wwwk)+vvvk]

T
}

=αααk+ jHHHk+ jβββ k+ jFFFk+ j ·

(
k+ j−1

∏
i=k+1

(III −KKKiααα iHHH i)βββ iFFF i

)
×
(
P̂PPx̂xxk/k−1ẑzzk/k−1 −KKKkYYY 0,k

)
, (27)

where YYY 0,k is the actual innovation covariance and can be
calculated as [31]

YYY 0,k =


z̃zz1z̃zzT

1 , k = 1,

ρ ·YYY 0,k−1 + z̃zzkz̃zzT
k

1+ρ
, k > 1,

(28)

in which 0 < ρ ≤ 1 is a forgetting factor and is generally
chosen as ρ = 0.95.

Letting YYY j,k = 0, we have

PPPx̂xxk/k−1ẑzzk/k−1 −KKKkYYY 0,k = 0. (29)

Substituting the modified prediction covariance matrix
(16) into (25), the innovation covariance matrix is rede-
fined as

PPP∗
ẑzzk/k−1

=αααkHHHkPPP∗
k/k−1HHH

T
k αk +RRRk

=λkαααkHHHkPPPk/k−1HHHT
k αααk +RRRk. (30)

Similarly, the covariance between the predicted state
and measurement can be modified as

PPP∗
x̂xxk/k−1ẑzzk/k−1

=PPP∗
k/k−1HHH

T
k αααk = λkPPPk/k−1HHHT

k αααk. (31)

Substituting (30) and (31) into (29) and further making
it hold, it is verified that

YYY 0,k−RRRk = λkαααkHHHkPPPk/k−1HHHT
k αααk = λk

(
PPPẑzzk/k−1 −RRRk

)
. (32)
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Embedding (11) into (32), we can obtain

λk

2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
=YYY 0,k−Rk.

(33)

Taking the trace of both sides of (33), the adaptive fad-
ing factor can be determined as

λk

=
tr (YYY 0,k −RRRk)

tr
(

∑2n
i=0 ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
) .

(34)

It should be noted that the λk in (34) may be less than
1. To avoid this situation, the adaptive fading factor can
be further chosen as

λk = max

1,

tr (YYY 0,k −RRRk)

tr

(
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
)
 .

(35)

4.1.2 Determination of robust factor
The robust factor sk can also be determined in a simi-

lar way as the derivation process of λk. Substituting the
modified innovation covariance matrix (17) into (29) and
further making it hold, it is verified that

PPP′
ẑzzk/k−1

=YYY 0,k, (36)

that is,

sk

{
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
+RRRk

}
=YYY 0,k. (37)

By taking the trace of both sides of (37), we obtain the
robust factor

sk

=
tr (YYY 0,k)

tr

(
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
+RRRk

) .

(38)

To avoid sk less than 1, the robust factor is also further
chosen as

sk = max

1,

tr (YYY 0,k)

tr

(
2n

∑
i=0

ωi

(
γγγ i,k/k−1 − ẑzzk/k−1

)(
γγγ i,k/k−1 − ẑzzk/k−1

)T
+RRRk

)
 .

(39)

4.2. Multi-filter fusion by IMM estimation
It can be seen from the above analysis that the AFUKF

only handles process model uncertainty while the RUKF
only handles measurement model uncertainty. Therefore,
the above two filters have complementary features with
each other. This section will develop an IMM estimation
method to fuse the AFUKF and RUKF to combine their
merits and discard their limitations. As shown in Fig. 1,
this method uses a multi-filter fusion process, where the
AFUKF and RUKF are run as two sub-filters in parallel,
each matching a particular system mode. One sub-filter
is the AFUKF for the case in presence of process model
uncertainty only, while the other is the RUKF for the case
in presence of measurement model uncertainty only. The
probability of transition between both sub-filters is gov-
erned by a Markov chain. The overall state estimate is
obtained by combination of all the state estimates from
each sub-filter.

4.2.1 Initialization
For the initialization of the multi-filter fusion, the fol-

lowing Markov transition matrix and the initial mode
probability are defined as

MMM =

[
m11 m12

m21 m22

]
, µµµ0 =

[
µµµ1,0
µµµ2,0

]
, (40)

where mi j is the Markov transition probability from sub-
filter i to sub-filter j; and the mode probability describes

Fig. 1. The architecture of the IMM estimation.
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the reliability of each sub-filter as probability at current
time. Thus, the summation of the elements for each col-
umn is 1.

Then, the normalization factor is set as

ccc0 =MMMTµµµ0 =
[

c1,0 c2,0
]T

. (41)

4.2.2 Mode probability update
To fuse the two sub-filters, the mode probability should

be firstly updated with the innovation vectors and the in-
novation covariance matrices of the two sub-filters

µ j,k =
Λ j,kc j,k−1

∑2
j=1 Λ j,kc j,k−1

( j = 1,2), (42)

where µ j,k is the mode probability of sub-filter j, and Λ j,k

is the likelihood function of sub-filter j at time k which is
computed as

Λ j,k =
1√

(2π)m
∣∣∣PPP j

ẑzzk/k−1

∣∣∣ exp
{
−1

2
z̃zzT

j,k

(
PPP j

ẑzzk/k−1

)−1
z̃zz j,k

}
,

(43)

where z̃zz j,k is the innovation vector of sub-filter j at time k,
PPP j

ẑzzk/k−1
is the corresponding innovation covariance matrix,

and m is the dimension of measurement vector zzzk.
The innovation covariance matrices of the AFUKF and

RUKF are respectively calculated as

PPP1
ẑzzk/k−1

=
2n

∑
i=0

ωi

(
γγγ1

i,k/k−1 − ẑzz1
k/k−1

)(
γγγ1

i,k/k−1 − ẑzz1
k/k−1

)T
+RRRk,

(44)

PPP2
ẑzzk/k−1

= sk

{
2n

∑
i=0

ωi

(
γγγ2

i,k/k−1 − ẑzz2
k/k−1

)(
γγγ2

i,k/k−1 − ẑzz2
k/k−1

)T

+RRRk

}
, (45)

where γγγ j
k/k−1 is the transformed sigma points through the

measurement function in sub-filter j, and ẑzz j
k/k−1 is the pre-

dicted measurement of sub-filter j.
In (42) and (43), the likelihood function Λ j,k character-

izes the relative performance of one sub-filter with respect
to the other. It can be seen from (43) that the closer to
zero the innovation vector z̃zz j,k is, which means the sub-
filter matches the actual system more closely, the large
Λ j,k will be, leading to the larger mode probability for
the sub-filter. If process model uncertainty is more sig-
nificant than measurement model uncertainty, the AFUKF
will have the larger Λ j,k than the RUKF, leading to the
larger mode probability for the AFUKF. On the contrary,
if measurement model uncertainty is more significant than

process model uncertainty, the RUKF will have the larger
mode probability than the AFUKF. Therefore, the IMM
estimation always follows a sub-filter, which is the one
that outperforms the other.

4.2.3 Mixing/redistribution
The states x̂xx j,k and the corresponding error covariance

matrices PPP j,k of the two sub-filters are redistributed as

x̂xx0
i,k =

2

∑
j=1

x̂xx j,kgi j,k (i = 1,2), (46)

PPP0
i,k =

2

∑
j=1

{
PPP j,k +

[
x̂xx j,k − x̂xx0

i,k

][
x̂xx j,k − x̂xx0

i,k

]T}
gi j,k

(i = 1,2),
(47)

where gi j,k is the mixing probability, which is calculated
as

gi j,k =
mi jµ j,k

ci,k
, g1 j,k +g2 j,k = 1, (48)

where µ j,k is the updated mode probability, mi j is the pre-
set Markov transition probability, and ci,k = ∑2

j=1 mi jµ j,k,
(i = 1, 2) is the normalization factor and is reused in the
mode probability update at the next time step.

Subsequently, the redistributed states and error covari-
ance matrices are sent to each sub-filter as the initial val-
ues for the calculation at the next time step.

4.2.4 State combination
The overall state estimation and error covariance matrix

can be obtained via the states and error covariance matri-
ces of the two sub-filters and the mode probability as

x̂xxk =
2

∑
j=1

x̂xx j,kµ j,k, (49)

PPPk =
2

∑
j=1

{
PPP j,k +

[
x̂xx j,k − x̂xxk

]
[x̂xx j,k − x̂xxk]

T
}

µ j,k. (50)

4.3. IMM estimation-based adaptive robust UKF
It can also be seen from Fig. 1 that the AFUKF and

RUKF are performed independently, and subsequently
their filtering results are fused using the IMM estimation
to obtain the overall state estimation. The procedure of
the proposed IMM-ARUKF involves the following main
steps:

Step 1: Initialization. This step is to initialize the two
sub-filters and multi-filter fusion process.

(i) The AFUKF and RUKF can be initialized asx̂xx j,0 = E[xxx j,0]

PPP j,0 = E
[
(xxx j,0 − x̂xx j,0)(xxx j,0 − x̂xx j,0)

T
] ( j = 1,2). (51)



Interacting Multiple Model Estimation-based Adaptive Robust Unscented Kalman Filter 2019

(ii) The initialization of the multi-filter fusion process is
conducted by presetting the Markov transition matrix and
the initial mode probability as (40).

Step 2: Parallel Filter. This step performs the AFUKF
and RUKF in a parallel structure to obtain the associated
state estimation x̂xx j,k and the error covariance matrix PPP j,k.

(i) The AFUKF is implemented by replacing the pre-
dicted state covariance matrix PPPk/k−1 of the classical UKF
with the modified type PPP∗

k/k−1 as described by (16). The
other procedures are same with the classical UKF.

(ii) Different with the AFUKF, the RUKF is performed
by modifying the innovation covariance matrix PPPẑzzk/k−1 of
the classical UKF as PPP′

ẑzzk/k−1
given by (17).

Step 3: Multi-Filter Fusion. Based on the IMM esti-
mation method discussed in Section 4.2, by (40)-(50), the
overall system state estimation and associated error co-
variance matrix can be described as

x̂xxk =
2

∑
j=1

x̂xx j,kµ j,k, (52)

PPPk =
2

∑
j=1

{
PPP j,k +[x̂xx j,k − x̂xxk] [x̂xx j,k − x̂xxk]

T
}

µ j,k. (53)

Step 4: Repeat Steps 2 to 3 for the next sample until all
samples are processed.

5. PERFORMANCE EVALUATION AND
DISCUSSION

Numerical simulations and practical experiments have
been conducted to comprehensively evaluate the perfor-
mance of the proposed IMM-ARUKF. Comparison analy-
sis of the proposed IMM-ARUKF with the classical UKF,
AFUKF and RUKF is also discussed in this section.

5.1. Numerical simulations and analysis
The univariate nonstationary growth model [32, 33] is

used to conduct numerical simulations to evaluate the per-
formance of the proposed IMM-ARUKF. The correspond-
ing discrete-time dynamic system model is described as

xk = 0.5xk−1 +25xk−1
/
(1+ x2

k−1)

+8cos [1.2(k−1)]+wk, (54)

zk = x2
k

/
20+ vk, (55)

where wk and vk are the uncorrelated zero-mean Gaussian
white noises with covariances Qk = 10 and Rk = 3.

The initial state and its error covariance of the dynamic
system were chosen as

x̂0 = 0.1, P0 = 1. (56)

The initial true state for generating the reference value
at each time step was set as

x0 = 0.1. (57)

The initial Markov transition matrix and initial mode
probability for the proposed IMM-ARUKF were chosen
as

MMM=

[
0.5 0.5
0.5 0.5

]
, µµµ0 =

[
0.5
0.5

]
. (58)

Trials were conducted under various types of system
model uncertainty including model parameter mismatch,
system noise statistic error and stochastic drifts. The sim-
ulation time step for each type of system model uncer-
tainty is 500. The estimation error of the proposed IMM-
ARUKF was evaluated by 200 times of Monte Carlo simu-
lations and compared with the classical UKF, AFUKF and
RUKF in terms of the root mean squared error (RMSE)
that is defined as

RMSE =

(
1
N

N

∑
i=1

[(x̂k − xk)i]
2

) 1
2

, N = 200. (59)

Case 1: Model parameter mismatch
In order to evaluate the performance of the proposed

IMM-ARUKF in terms of model parameter mismatch,
two different modifications are applied to the process
model and measurement model, respectively. During the
time interval (100, 200) the process model was changed to

xk =xk−1 +30xk−1
/
(1+ x2

k−1)+10cos [1.2(k−1)]

+wk. (60)

During the time interval (300, 400) the measurement
model was modified as

zk = x2
k

/
5+ vk. (61)

It is obvious that (60) and (61) involves model uncertainty
due to the parameter mismatch.

Fig. 2 illustrates the RMSEs of state xk obtained by
the classical UKF, AFUKF, RUKF and proposed IMM-
ARUKF, respectively. Table 1 lists the mean RMSEs of

Fig. 2. RMSEs of state xk by the classical UKF, AFUKF,
RUKF and proposed IMM-ARUKF for Case 1.
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state xk by the classical UKF, AFUKF, RUKF and pro-
posed IMM-ARUKF for the case of model parameter mis-
match during the time intervals (100, 200) and (300, 400).
It can be seen from Fig. 2 that, during the time interval
(100, 200), the classical UKF is significantly disturbed by
the mismatched process model parameters, resulting in a
large estimation error with the mean RMSE of 13.3173.
The AFUKF can effectively resist the influence due to the
process model parameter mismatch on the filtering solu-
tion and improves the estimation accuracy of the classical
UKF. The mean RMSE of state xk obtained by the AFUKF
is 9.4072. However, the mean RMSE of state xk achieved
by the RUKF is 14.7850, which is even worse than that
of the classical UKF. This is because the RUKF does
not have the capability to handle process model uncer-
tainty, thus deteriorating the filtering solution. Since the
proposed IMM-ARUKF always follows the sub-filter that
outperforms the other (i.e., the AFUKF in this case), the
resultant filtering solution is close to that of the AFUKF.
The mean RMSE of the IMM-ARUKF is 10.0139, which
is very close to that of the AFUKF and is also much
smaller than those of the classical UKF and RUKF.

For the time interval (300, 400) involving the measure-
ment model parameter mismatch, the classical UKF is also
disturbed by the mismatched measurement model param-
eters, leading to the mean RMSE of 12.4923. The AFUKF
accuracy is worse than that of the classical UKF, since
it does not have the capability to handle measurement
model uncertainty, while the RUKF can improve the per-
formance of the classical UKF by introducing the robust
factor to weaken the disturbance of measurement model
uncertainty. The mean RMSEs obtained by the AFUKF
and RUKF are 15.0753 and 8.7049, respectively. As the
RUKF has a better filtering performance than the AFUKF,
the IMM-ARUKF follows the RUKF, leading to the mean
RMSE of 9.4604, which is very close to that of the RUKF.

It should be noted that since both the AFUKF and
RUKF are essentially a suboptimal method, their estima-
tion errors are slightly larger than that of the classical
UKF in the time intervals (0, 100), (200, 300) and (400,
500) without system model uncertainty. Consequently,
the proposed IMM-ARUKF is also a suboptimal filter and
its estimation error is also slightly larger than that of the
classical UKF in the time intervals without system model
uncertainty. However, in practice, due to the effect of the
dynamic environment, uncertainty is always existed in
both process and measurement models, as shown in the
experimental case in Section 5.2.

Case 2: System noise statistic error
The similar strategy used in the case of model parameter

mismatch is also used to evaluate the performance of the
proposed IMM-ARUKF in terms of system noise statistics
error. Two modifications were applied to the two time in-
tervals (100, 200) and (300, 400), leading to a large bias

between the initial and real values for both process noise
covariance Qk and measurement noise covariance Rk. The
process noise covariance was enlarged to 10 times of its
initial value in the time interval (100, 200) and the mea-
surement noise covariance was enlarged to 100 times of
its initial value in the time interval (300, 400), i.e.,

Qk =


10, k ≤ 100,
100, 100 < k ≤ 200,
10, 200 < k ≤ 500,

Rk =


3, k ≤ 300,
300, 300 < k ≤ 400,
3, 400 < k ≤ 500.

(62)

The RMSEs of state xk obtained by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF are shown
in Fig. 3. Table 1 also shows the mean RMSEs of state
xk by the classical UKF, AFUKF, RUKF and proposed
IMM-ARUKF for the case of system noise statistic error
during the time intervals (100, 200) and (300, 400). It
can be seen that during the time interval (100, 200) with
process noise statistics error, the estimation accuracy of
the classical UKF and RUKF is deteriorated significantly,
leading to the mean RMSEs of 12.2395 and 14.3971, re-
spectively. The AFUKF decreases the estimation error to
the mean RMSE of 9.5048 by introducing the adaptive
fading factor to inhibit the disturbance of process model
uncertainty. As the proposed IMM-ARUKF follows the
sub-filter that outperforms the other (i.e., the AFUKF in
this case ), it also has a small estimation error with the
mean RMSE of 10.2386 in the time interval (100, 200).
The similar trend can also be found for the time interval
(300, 400) with the measurement noise statistics error,
where the mean RMSE of state xk is 13.1552 for the clas-
sical UKF, 14.5959 for the AFUKF, and 8.9610 for the
RUKF. Because the proposed IMM-ARUKF follows the
RUKF that outperforms the AFUKF in this time period,
its mean RMSE is 9.8062, which is much smaller than
those of the classical UKF and AFUKF.

Case 3: Stochastic drifts
Suppose that the system model involves the uncertainty

of stochastic drifts. Similar to the above two cases, the
following process model with stochastic drifts is adopted
during the time interval (100, 200)

xk =0.5xk−1 +25xk−1
/
(1+ x2

k−1)+8cos [1.2(k−1)]

+25rand(k)+wk (63)

and the following measurement model with stochastic
drifts is adopted during the time interval (300, 400)

zk = x2
k

/
20+50rand(k)+ vk (64)

where rand(k) is a pseudorandom number drawn from the
standard uniform distribution at time step k. It should be



Interacting Multiple Model Estimation-based Adaptive Robust Unscented Kalman Filter 2021

Table 1. Mean RMSEs of the state xk by the classical UKF, AFUKF, RUKF and proposed IMM-ARUKF during the time
intervals (100, 200) and (300, 400) for the simulation case.

Classical UKF AFUKF RUKF IMM-ARUKF

Case 1 (100, 200) 13.3173 9.4072 14.7850 10.0139
(300, 400) 12.4923 15.0753 8.7049 9.4604

Case 2 (100, 200) 12.2395 9.5048 14.3971 10.2386
(300, 400) 13.1552 14.5959 8.9610 9.8062

Case 3 (100, 200) 19.1809 11.9642 20.9689 12.5451
(300, 400) 14.7836 16.9041 9.0675 9.9430

Fig. 3. RMSEs of the state xk by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF for
Case 2.

noted that the covariance of the system noise in this case
is identical to those described by (54) and (55).

The RMSEs of state xk achieved by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF are depicted
in Fig. 4 and their mean RMSEs during the time intervals
(100, 200) and (300, 400) are also listed in Table 1. Fig. 4
shows the similar phenomenon as the cases of model pa-
rameter mismatch and system noise statistic error. As
shown in Fig. 4, the classical UKF has large estimation
errors with the mean RMSEs of 19.1809 and 14.7836 dur-
ing the time intervals (100, 200) and (300, 400). Com-
paring with the classical UKF, the AFUKF improves the
filtering performance to the mean RMSE of 11.9642 for
the time interval (100, 200), while it deteriorates the fil-
tering performance to the mean RMSE of 20.9689 for the
time interval (300, 400). On the contrary, compared to the
classical UKF, the RUKF increases the estimation error
to the mean RMSE of 16.9041 for the time interval (100,
200) and decreases the estimation error to the mean RMSE
of 9.0675 for the time interval (300, 400). The proposed
IMM-ARUKF follows the AFUKF that outperforms the
RUKF during the time interval (100, 200) and follows the
RUKF that outperforms the AFUKF during the time in-
terval (300, 400), leading to the mean RMSEs of 12.5451
and 9.9430 in these two time intervals, respectively.

The above numerical simulation results and analysis
demonstrate that the proposed IMM-ARUKF has a strong

Fig. 4. RMSEs of the state xk by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF for
Case 3.

ability to inhibit the disturbances on the filtering solution
due to system model uncertainties such as model param-
eter mismatch, system noise statistic error and stochastic
drifts. It overcomes the limitation of the classical UKF in
requiring accurately described system model. Further, it
also inherits the merits and overcomes the demerits of the
AFUKF and RUKF, leading to improved adaptability and
robustness.

5.2. Experiments and analysis

For the performance evaluation of the proposed IMM-
ARUKF, a practical experiment was also conducted for
vehicle navigation. As shown in Fig. 5, the vehicle used an
INS/GPS (Inertial Navigation System/Global Positioning
System) integration system for navigation and position-
ing. This navigation system consists of a Guanxing NV-
IMU300 inertial measurement unit and a JAVAD Lexon-
GGD112T GPS receiver with the output of C/A GPS data
at 1Hz. Moreover, another JAVAD Lexon-GGD112T GPS
receiver, which was placed at a local reference station, was
used along with the one mounted on the vehicle to provide
the differential GPS (DGPS) data at 1Hz. The maximal
distance between the vehicle and the local reference sta-
tion was less than 60 km to achieve the position accuracy
of less than 0.1 m from the DGPS via post difference pro-
cessing. The DGPS data were used as the reference values
for the comparison with the filtering results from the C/A
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Fig. 5. Experimental setup for the vehicle navigation.

code measurements of the INS/GPS integration system.
The navigation frame for the INS/GPS integration is

chosen as the E-N-U (East-North-Up) geography frame.
The process model of the INS/GPS integration consists of
the INS mechanical calibration equations and inertial sen-
sor error equations. The system state vector xxx is defined
as

xxx(t) = [ψ,θ ,γ,vE ,vN ,vU ,L,λ ,h,εx,εy,εz,∇x,∇y,∇z]
T,

(65)

where ψ , θ and γ are the yaw, pitch and roll angels;
(vE ,vN ,vU) is the velocity in the East, North and Up;
(L,λ ,h) is the position in latitude, longitude, and altitude;
(εx,εy,εz) is the gyro constant drift; and (∇x,∇y,∇z) is the
accelerometer constant bias.

The process model is described as

ẋxx(t) = f (xxx(t))+www(t), (66)

where f (·) and www(t) denote the nonlinear function describ-
ing the process model and the process noise, respectively
[34].

The measurement model for the INS/GPS integration is
established by use of the velocity and position output from
the GPS receiver. The corresponding measurement vector
zzz is chosen as

zzz = [vEG,vNG,vUG,LG,λG,hG]
T. (67)

The measurement equation is given by [34]

zzzk =HHHkxxxk +vvvk, (68)

where HHHk = [0006×3,III6×6,0006×6], and vvvk is the measurement
noise vector.

The vehicle navigation test was carried out from
the Northwestern Polytechnical University (NWPU) to
Guodu, both in Xi’an, China. The vehicle trajectory is
shown in Fig. 6. The start position of the vehicle was at

Fig. 6. Vehicle trajectory.

North latitude 34.026◦, East longitude 108.765◦, and al-
titude 439 m. The initial velocities were 10 m/s, 10 m/s
and 0 m/s in the East, North and Up. The gyro constant
drift was 0.1◦/h, and its white noise was 0.05◦/h. The
accelerometer zero bias was 10−3g, and its white noise
was 10−4g. The GPS receiver’s horizontal position error
(RMS) was 5 m, the altitude error (RMS) 8 m, and the
velocity error (RMS) 0.05 m/s. The vehicle’s initial po-
sition error was (12 m, 12 m, 15 m), initial velocity er-
ror (0.3 m/s, 0.3 m/s, 0.3 m/s), and initial attitude error
(1.5′, 1′, 1′). The test time was 2000 s and the filtering pe-
riod was 1s. The initial Markov transition matrix and the
initial mode probability for the proposed IMM-ARUKF
were chosen as

MMM =

[
0.4 0.6
0.6 0.4

]
, µµµ0 =

[
0.4
0.6

]
. (69)

Figs. 7-8 illustrate the longitude and latitude errors of
the vehicle achieved by the classical UKF, AFUKF, RUKF
and proposed IMM-ARUKF, respectively. As the nav-
igation system mounted on the vehicle is disturbed by
the dynamic environment during the testing process, the
INS/GPS integration involves various uncertainties in the
process and measurement models. It can be observed from
Figs. 7-8 that, the filtering accuracy of the classical UKF
is significantly distributed by the uncertainties involved in
the system model, leading to a large magnitude of oscil-
lations in the error curve. During the time period (200 s,
2000 s), the position errors in longitude and latitude by
the classical UKF are within (−23.4751 m, 22.1239 m)
and (−24.5960 m, 22.0306 m), respectively. Comparing
to the classical UKF, the AFUKF improves the filtering
performance and the position errors in longitude and lati-
tude are within (−15.3349 m, 13.1350 m) and (−17.1742
m, 16.4747 m). Similarly, the RUKF also improves the
filtering performance of the classical UKF, leading to the
position errors in longitude and latitude within (−14.4137
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Fig. 7. The longitude errors obtained by the classical
UKF, AFUKF, RUKF and proposed IMM-ARUKF
for the vehicle navigation case.

Fig. 8. The latitude errors obtained by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF for
the vehicle navigation case.

m, 16.4688 m) and (−18.2539 m, 17.4727 m). How-
ever, obvious oscillations still remain in the error curves
of the AFUKF and RUKF. This is because the AFUKF
only considers process model uncertainty without the ca-
pability to handle measurement model uncertainty, while
the RUKF only considers the measurement model uncer-
tainty without the capability to control process model un-
certainty. Compared with the above three methods, the
position errors in longitude and latitude obtained by the
proposed IMM-ARUKF are within (−8.9201 m, 9.9811
m) and (−9.9312 m, 10.5010 m), which are much smaller
than those of the classical UKF, AFUKF and RUKF. The
reason is that the proposed IMM-ARUKF can handle both
process model uncertainty and measurement model uncer-
tainty simultaneously by dynamically fusing the AFUKF
and RUKF to compensate their individual errors and fur-
ther follow one of them with better filtering solution. This
indicates that the proposed IMM-ARUKF has stronger
adaptability and robustness against uncertainties in both
process and measurement models than the AFUKF and
RUKF, resulting in a higher navigation accuracy than the
classical UKF, AFUKF and RUKF.

Table 2. MAEs and STDs of the position errors by the
classical UKF, AFUKF, RUKF and proposed
IMM-ARUKF during the time period from 200s
to 2000s for the vehicle navigation case.

Filtering Methods Position
Longitude Latitude

Classical UKF MAE(m) 6.4535 6.6170
STD(m) 7.9491 7.9725

AFUKF MAE(m) 4.8049 5.4617
STD(m) 5.8024 6.6258

RUKF MAE(m) 4.9728 4.4751
STD(m) 5.9467 5.5518

IMM-ARUKF MAE(m) 2.6972 2.8339
STD(m) 3.2240 3.5444

The mean absolute errors (MAEs) and standard devia-
tions (STDs) of the position errors by the classical UKF,
AFUKF, RUKF and proposed IMM-ARUKF during the
time period from 200 s to 2000 s are listed in Table 2. It
is evident that the MAE and STD of the position errors by
the proposed IMM-ARUKF are also much smaller than
those of the other three methods.

The above experiments and analysis confirm that the
proposed IMM-ARUKF significantly improves the adapt-
ability and robustness of the classical UKF and overcomes
the UKF limitation in the presence of system model uncer-
tainty. It also absorbs the merits and eliminates the limita-
tion of the AFUKF and RUKF, leading to higher estima-
tion accuracy than the classical UKF, AFUKF and RUKF.

6. CONCLUSION

This paper presents a novel adaptive robust UKF to ad-
dress the performance degradation and divergence of the
classical UKF in presence of system model uncertainty.
The contribution of this paper is that an IMM estimation
is developed for fusion of the AFUKF and RUKF to com-
bine their merits and discard their deficiencies, thus in-
hibiting the disturbance of system model uncertainty. The
proposed method establishes an AFUKF for the case of
process model uncertainty and a RUKF for the case of
measurement model uncertainty. Subsequently, it fuses
the above two filters by the IMM estimation as per the
mode probability. Based on the above, the overall sys-
tem state estimation is further obtained as the probabilistic
weighted sum of the filtering results from the two filters.
Simulation and experimental results as well as compari-
son analysis demonstrate that the proposed IMM-ARUKF
can refrain the disturbances of system model uncertainty
on the UKF solution, thus leading to improved filtering
adaptability and robustness.

Future research work will focus on the improvement of
the proposed IMM-ARUKF. The IMM estimation method
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will be combined with the advanced artificial intellegence
technologies such as pattern recognition, neural network
and advanced expert systems to establish an intelligent al-
gorithm to automatically identify the system mode for fu-
sion of the AFUKF and RUKF.
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