
International Journal of Control, Automation and Systems 15(5) (2017) 2292-2300
http://dx.doi.org/10.1007/s12555-016-0575-8

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Coupled Disturbance Reconstruction by Sliding Mode Observer Ap-
proach for Nonlinear System
Yiyong Sun, Jinyong Yu*, Zhan Li, and Yu Liu

Abstract: This paper concentrates on the estimation of system states and the reconstruction of disturbances in a
class of nonlinear systems considering stateless situation. The disturbances are coupled with time-varying param-
eters. The sliding mode observer approach is utilized to solve these two issues. Firstly, a descriptor model is
presented by transforming the coupled disturbances into the decoupled form. Secondly, the sliding mode observer
is designed to estimate the decoupled disturbances and system states of nonlinear systems. The coupled distur-
bance can be reconstructed hereafter. The detailed methods of designing the observer, together with the sufficient
condition to guarantee the existence of the observer are also given. Finally, a simulation and a robot manipulator
experiment are provided to examine the validity of the proposed design approach.
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1. INTRODUCTION

Disturbance, which can cause not only incorrect perfor-
mance but also serious damages to the instruments them-
selves and other equipments, is one of the dangers for the
unsecurity of modern industry. An intuitive and necessary
measure we can take is to reconstruct or estimate the dis-
turbance. The topics on disturbance estimation, fault esti-
mation (FE) and fault tolerant control (FTC) have drawn
the attentions of experts from engineering and academic
fields [1, 2]. For example, collision detection and safe re-
action for cooperation between manipulator arm and hu-
man are investigated [3], the friction compensation for
X-Y robot is discussed [4] and real-time implementation
of the FTC in benchmark is probed [5]. For the estima-
tion and reconstruction and estimation of disturbance in
nonlinear systems, new learning and data processing tech-
niques, like neural networks (NN), data driven and ar-
tificial intelligence (AI), are applied dramatically [6–8].
However, the foundations of these methods are long time
training, complicated computing, huge data storage and
even online dependence. The learning and data process-
ing methods work well for the low speed systems and sit-
uations where historic data are available, but might be in-
valid for those high-speed systems and emergency situa-
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tions. A new challenge for researchers is how to recon-
struct the coupled disturbance in the nonlinear systems by
faster and more reliable methods.

We aim at reconstructing the time-varying parameter
coupled disturbances of nonlinear systems with the as-
sumptions that the disturbances and part of the system
states are unknown. In literatures [9–11], the piecewise
methods and fuzzy methods are utilized for the modelling
of nonlinear affine systems. In [12], the linear assumption
is necessary on analyzing nonlinear system. However, if
the necessary elements for the approximation are failed
to measure or mix with faults, the piecewise and fuzzy
methods on modelling systems would be unavailable to
use. Hence, it is of practical value to evaluate the full
system states and reconstruct the coupled disturbance by
considering the nonlinear models directly. Due to its un-
sensitivity and adaptivity against uncertainties and faults,
in our paper, the sliding mode observer (SMO) approach
is used to reconstruct the coupled disturbance and evaluate
the full system state.

The sliding mode (SM) ideas have gradually been
applied in the control of linear and nonlinear systems
[13–15] from the time it was introduced. The SM method
has been brought to the new control fields, such as stochas-
tic systems [16, 17], control for spacecraft attitude and
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translation motion [18], uncertain systems for the flying
vehicle fault estimation [19], network system control [20]
and even FE and FTC for robots and manipulators [21,22].
However, in the current papers about FE by SMO for non-
linear systems [21–23], the full states and the decoupling
property are, partly or wholly, necessary for their meth-
ods. Besides, less literatures considering the coupled dis-
turbance reconstruction and estimation in the stateless sit-
uation for nonlinear systems have been published. In-
spired and encouraged by these excellent researchers in
[13,24,25], we utilize the descriptor augment method and
SMO approach to reconstruct the disturbance which is
coupled by time-varying parameters for a class of nonlin-
ear systems.

Since SMO method can not be used to reconstruct the
disturbances coupled with the time invariable parame-
ters, the disturbance is technically converted from coupled
form into a new decoupled form in our article. Then, a
descriptor mathematical model is obtained where the dis-
turbance and system state are put into the new augmented
state. Based on the new descriptor mathematical model,
the SMO is designed to estimate the full system states and
the decoupled disturbance. With the estimations of system
states and decoupled disturbance, the coupled disturbance
is reconstructed. The main contributions of this article are
threefold. Firstly, the nonlinear system is augmented into
the descriptor form by treating the disturbance into decou-
pled form. Secondly, the SMO method is extended to be
used to estimate the system states and decoupled distur-
bances of nonlinear systems. Thirdly, the coupled distur-
bance of the nonlinear system is reconstructed by SMO
with considering the statelessness. Simultaneously, the
system states are estimated.

The remainder of this paper is organised as follows:
Necessary assumptions and state space model of the con-
trol plant are offered in Section 2. Section 3 is consisted of
the SMO design, the stability analysis of the error system
and the proof process. To examine the validity of the SMO
approach proposed in this paper, a mathematical simula-
tion and a two-link experiment example are provided in
the Section 4. Section 5 concludes the paper.

2. PRELIMINARIES

2.1. System model
The model of nonlinear system considered the distur-

bance d (t) ∈ Rd is presented as{
ẋ(t) = Ax(t)+Bg(x,u, t)+B f f (x,d (t) , t),

y(t) =Cx(t) ,
(1)

where matrices A ∈Rn×n,B ∈Rn×m,B f ∈Rn×q,C ∈Rp×n

are the known system parameters of associated dimen-
sions. Nonlinear time-varying part g(x,u, t) ∈ Rm is re-
lated to the system state x ∈ Rn and control input u ∈ Rr.

The nonlinear time-varying function f (x,d(t), t) ∈ Rq de-
pends on the disturbance d (t) ∈Rd and system state x(t).
The disturbance d(t) is unmeasurable and coupled with
the time-varying parameters. Variable d (t) and nonlinear
part f (x,d(t), t) are in one to one mapping relationship
when x(t) is given. y(t) ∈ Rp means the measurable out-
put, whose parameter matrix C ∈ Rp×n, rank(C) = p ≤ n.
Rank(CB f ) = q ≤ p. Pair [A,C] is observable.

The following assumptions are made on nonlinearities
in (1) and disturbance d(t). For the function g(x,u, t), it
assumes there exists γ ≥ 0, such that for any x1, x2 [23]

∥g(x2,u, t)−g(x1,u, t)∥ ≤ γ∥x2 − x1∥. (2)

Disturbance d(t) and the function f (x,d, t) are bounded

∥d(t)∥ ≤ dM,
∥∥ḋ(t)

∥∥≤ dm, (3)

and

∥ f (x,d, t)∥ ≤ fM,
∥∥ ḟ (x,d, t)

∥∥≤ fm. (4)

In our paper, we need to estimate the full system state x(t)
and to reconstruct the coupled disturbance d(t). The es-
timated state x̂(t) and reconstructed disturbance d̂(t) are
of validity if x̂(t) → x(t), d̂(t) → d(t) and f (x̂, d̂, t) →
f (x,d, t), i.e the equilibrium point approximates to zero,
gradually. We analyze the asymptotical stability of equi-
librium point by Lyapunov approach. Note that the model
of this article is of nonlinear form. It’s more general com-
pared with the fuzzy and piecewise models.

3. MAIN RESULT

We aim to solve two problems in this paper. The first
one is to estimate the full state of the nonlinear system that
there exist unknown disturbance inputs. The second one is
to reconstruct the coupled disturbance. Therefore, a SMO
approach is applied to estimate the full state and decou-
pled disturbance. After that, the coupled disturbance is
reconstructed. To construct the SMO, we rebuild the state
space model (1) into a descriptor system by converting the
coupled torque disturbance into an equal decoupled form.

3.1. Model transformation
As presented in (1), the disturbance d(t) is coupled

with the time-varying parameter related to x(t). It can-
not be reconstructed by using the SMO method directly.
Thus, some equal transformation techniques should be
taken if we want to use the SMO method to reconstruct
the coupled disturbance. Instead of considering the time-
varying parameters dependent disturbance d(t) directly,
the f (x,d, t) is treated as

f (x,d, t) = fd(t). (5)
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fd(t) is unknown time-varying disturbance, and not cou-
pled with any time variable parameters. Then (1) can be
rewritten as the following form{

ẋ(t) = Ax(t)+Bg(x,u, t)+B f f d (t) ,

y(t) =Cx(t) .
(6)

The disturbance d(t), coupled with the time-varying pa-
rameters and state x(t) in f (x,d, t), presented in (1), is
changed into the decoupled form fd(t), as presented in (6),
such that we can reconstruct the coupled disturbance after
the evaluation of decoupled disturbance fd(t). The model
(6) is in nonlinear form but available for observer design
and fault estimation. The coupled disturbance d (t) and
the nonlinear part f (x,d, t) are assumed to be bounded as
in (3). Then, to estimate the full state and decoupled dis-
turbance, similar in [26, 27], we transform model (6) into
the descriptor form. We choose an approach, where (6) is
augmented into descriptor form (7) by introducing an aux-
iliary difference equation (8) for the disturbance fd . The
resulting descriptor system is derived{

Ē ˙̄x(t) = Āx̄(t)+ B̄g(x,u, t)+ B̄ f f̄ (t) ,

y(t) = C̄x̄(t) .
(7)

The auxiliary equation is

ḟd (t) = Θ fd (t)−Θ fd (t)+ ḟd (t) . (8)

The parameters in (7) are

Ē =

[
I B f Θ−1

0 I

]
, Ā =

[
A 0
0 −Θ

]
,

x̄(t) =
[

x(t)
fd(t)

]
, B̄ =

[
B
0

]
, B̄ f =

[
B f ,
Θ

]
Θ> 0, C̄ =

[
C 0

]
, f̄ (t)=

[
fd (t)+Θ−1 ḟd (t)

]
.

In order to get the descriptor system (7), a new auxiliary
disturbance f̄ (t) = fd(t) + Θ−1 ḟd(t) is introduced. The
amplitude of the discontinuous element us(t) can be de-
creased by selecting a proper Θ. In the new descriptor
model (7), by technically adding the auxiliary difference
equation (8) and transforming the coupled disturbance
d(t) into a complete decoupled fd(t), the decoupled dis-
turbance fd(t) and the state x(t) are put into the augmented
state x̄(t).

With the parameter Θ and the observable pair(A,C), the
observability of pair(Ā,C̄) in descriptor system (7) can be
guaranteed. For the convenience of expression, we rebuild
the augmented system into the descriptor form. It can also
be written into the normal form for the reason that Ē is
not singular. Then, the SMO is proposed based on the
augmented descriptor form in (7) in subsection 3.2.

3.2. SMO design
For the estimation of the unknown states and distur-

bance in x̄(t), the following SMO is proposed:{
Ē ˙̄̂x(t) = Ā ˆ̄x(t)+ B̄g(x̂,u, t)+ L̄ f us(t)+ L̄(y−C̄ ˆ̄x(t)),

ŷ(t) = C̄ ˆ̄x(t).
(9)

Here ˆ̄x(t) = [x̂T (t) f̂ T
d (t)]

T is the estimate of x̄(t). The
estimated disturbance d̂(t) can be reconstructed as d̂(t) =
f−1(x̂, f̂d , t) if f̂d(t) approaches fd(t) well. Matrices L̄ and
L̄ f are the gains to be designed or selected. Input us(t) is
the discontinuous control input. How to design or choose
L̄, L̄ f and us(t) are presented in the following.

Using the SMO (9) and the descriptor model (7), we
can get the error system

Ē ˙̄e(t) = (Ā− L̄C̄)ē(t)+ B̄ēg(x̂,u, t)− L̄ f us(t)+ B̄ f f̄ (t),
(10)

where ē(t) = x̄(t)− ˆ̄x(t) = [eT
x (t) eT

f (t)]
T . The other pa-

rameters are the same as mentioned in the former subsec-
tions. From assumption in 2, a positive parameter γ exists
that ēg(x̂,x,u, t) = g(x,u, t)− g(x̂,u, t) ≤ γ ∥ex (t)∥. The
presented error system will be used to prove that the es-
timated state ˆ̄x(t) in SMO (9) approaches the state x̄(t)
finally. The validity of the SMO can be demonstrated if
the error system (10) is stable. The asymptotic stability
analysis for (10) is provided in Subsection 3.3.

The nonlinear system (6) could be obtained by adding
Bg(x,u, t) to the linear system ẋ(t)=Ax(t)+B f fd (t). So,
we can extend methods of SMO design from linear sys-
tems, presented in [27, 28], to the nonlinear dynamics (7).
Stability of (10) can be proved by appropriate choice of L̄,
L̄ f (t) and us(t).

The discontinuous function us(t) is designed as

us(t) =
(

fM +λmax
(
Θ−1) fm +ζ

)
sgn(s(t)) , (11)

where the gains fM and fm have been defined in (4). Pos-
itive constant ζ is selected as ζ ≪ fM + λmax

(
Θ−1

)
fm.

As presented in subsection 3.1, the amplitude of the con-
stant gain ( fM + λmax

(
Θ−1

)
fm) in function us(t) can be

minimized via choosing Θ. The switching function s(t) is
defined as

s(t) = HC̄ē(t) , (12)

where H ∈ R(n+p)×p is defined by the bounded constraint(
HC̄

)T
= P̄Ē−1B̄ f . (13)

The matrix P̄ in (13), results from a Lyapunov equation
introduced in (10), is provided in the following subsection
3.3 The approach to solve the constraint is presented in
subsection 3.4 In [22], the high order SMO method was
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used, it is a kind of new switching function, and the calcu-
lation might be complex and hard to operate in SMO. For
the simplicity and easiness, we select a switching function
(12). The gain L̄ f for discontinuous function us(t) is se-
lected asL̄ f = B̄ f . Following the Lemma 2 in [28], Lemma
3 in [27], we design the high gain L̄ for the SMO in fol-
lowing Lemma 1 by similar method.

Lemma 1: If the descriptor system (7) is observable,
matrix Ē−1(Ā− L̄C̄) can be designed to be Hurwitz with
one appropriate matrix L̄.

Proof: As presented, the matrix Ē is non-singular, and
(7) is observable. Thus, a positive number κ exists such
that

Re[λi(Ē−1Ā)]>−κ,∀i ∈ {1,2, . . . ,2n}, (14)

and

Re[λi(−(κI + Ē−1Ā))]< 0,∀i ∈ {1,2, . . . ,2n}. (15)

Further, (15) implies that [−(κI+ Ē−1Ā),C̄] is observable.
There exists a positive definite matrix Q̄ such that

−C̄TC̄ =−(κI + Ē−1Ā)T Q̄− Q̄(κI + Ē−1Ā). (16)

Selecting L̄

L̄ = ĒQ̄−1C̄T , (17)

then there exists a positive Q such that

−C̄TC̄ = Q̄[κI + Ē−1(Ā− L̄C̄)]+ [κI + Ē−1(Ā− L̄C̄)]T Q̄,
(18)

thus,

Re[λi(Ē−1(Ā− L̄C̄))]<−κ,∀i ∈ {1,2, . . . , n̄},

i.e., Ē−1(Ā− L̄C̄) is Hurwitz. □

Except this method, there also exist other methods to
select the high observer gain L̄. Similar in [29], together
with the Lyapunov function to prove the stability of error
system, the observer gain is selected as L̄ = ĒQ̄−1C̄T . In
our paper the observer gain is selected before proving the
stability of error system. With the introduced gain κ , the
method we used to select L̄ is more conservative. There-
fore, in this paper Lemma 1 is introduced to design the
high gain for SMO.

3.3. Stability of error system
Now, with the high gain L̄ from Lemma 1, discontinu-

ous element us(t) from (11) and its gain matrix L̄ f = B̄ f ,
we are able to prove the equilibrium point ē(t) is asymp-
totically stable. Thus, limt→+∞ ˆ̄x(t) = x̄(t) , the estimate
ˆ̄x(t) approaches to the augmented state x̄(t) eventually.

The sufficient condition for the stability analysis of er-
ror system (10) is as in Theorem 1.

Theorem 1: With the observer gain L̄ in Lemma 1, the
discontinuous function us(t) in (11) and its gain matrix
L̄ f = B̄ f , the error system (10) is asymptotically stable,
if there exist a positive constant γ ≥ 0 and matrices P̄ ≥
0, H with appropriate dimensions, such that the bounded
constraint (13) and the below constraint (19) hold

(P̄Ē−1(Ā− L̄C̄)+ γP̄|B̄|Te)

+(P̄Ē−1(Ā− L̄C̄)+ γP̄|B̄|Te)
T < 0, (19)

where Te = [I 0].

Proof: To prove the error system (10) is asymptotically
stable, we choose the following Lypunov function

V (t) = ēT (t) P̄ē(t) . (20)

By (10), we obtain that

V̇ (t) =2ēT (t) P̄ ˙̄e(t)

=2ēT (t) P̄Ē−1 [(Ā− L̄C̄
)

ē(t) (21)

+B̄ēg (x̂,x,u, t)− L̄ f us (t)+ B̄ f f̄ (t)
]
.

With the equations (12) and (13) we have [27, 28]

2ēT (t) P̄Ē−1 [−L̄ f us (t)+ B̄ f f̄ (t)
]

=−2( fM +λmax
(
Θ−1) fm +ζ )

∣∣sT (t)
∣∣+2sT (t) f̄ (t)

≤−2( fM +λmax
(
Θ−1) fm +ζ )

∣∣sT (t)
∣∣+2

∣∣sT (t)
∣∣ ∣∣ f̄ (t)

∣∣
≤ 0. (22)

According to Te = [I 0], Ē−1B̄ = B̄, B̄ =
[
BT 0

]T
, P̄ > 0

and the assumption in (2), we obtain

2ēT (t) P̄Ē−1B̄ēg (x̂,u, t)≤ 2γP̄ |B̄|TeēT (t) ē(t) .

Combining (21), (22) and (23), it derives that

V̇ (t)≤ 2ēT (t)(P̄Ē−1(Ā− L̄C̄)+ γP̄|B̄|Te)ē(t). (23)

Hence, if the condition (19) is satisfied, V̇ (t) < 0. The
error system (10) is stable, and the effectiveness of SMO
(9) can be guaranteed. □

Adapting from the method on processing the error proof
in [23], the element γP̄ |B̄|Te is put inside in (19). With the
assumption (2), the element ēg(t) in (10) is reshaped into
the form related to γ and ē(t). And, it also makes that the
high gain L̄ in SMO is more conservative, and the ēg(t)
affects less to the stability analysis.

3.4. Calculation details and design procedure
In the previous subsections, the method to design the

SMO is presented. However, there still exists a key con-
straint (13). Following the ideas on solving this kind
of constraint in [27–29], we utilize the LMI approach to
solve the constraint (13).
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The constraint (13) can be written as

Trace[((HC̄)T −B̄T
f Ē−T P̄T )T ((HC̄)T −B̄T

f Ē−T P̄T )]= 0.

Thus there is a parameter η > 0,

((HC̄)T − B̄T
f Ē−T P̄T )T ((HC̄)T − B̄T

f Ē−T P̄T )≤ ηI,

(24)

where the parameter η is related to optimization (25)

minη . (25)

By Schur-complement, (24) is rebuilt as[
−ηI ((HC̄)T − B̄T

f Ē−T P̄T )T

∗ −I

]
≤ 0. (26)

The bounded constraint is solved by using the LMI equa-
tions (25) and (26) together.

The design procedure is summarized as follows:
(i) Augment the nonlinear affine system (1) into the de-

scriptor model as in (7) via selecting a proper matrix
Θ. Select L̄ f = B̄ f . Choosing a positive parameter κ,
the high gain L̄ in SMO is designed by Lemma 1.

(ii) With the parameter γ in (2), the stability for error
system (10) can be examined by combining the LMI
functions in (19), (25) and (26). The gain H can
be designed via the LMI equations. Then, with the
known parameters fM and fm in (4), the discontinuous
function us (t) and the switching function s(t) can be
selected as in (11) and (12) respectively.

(iii) With the estimated full state x̂(t) and the one-to-one
mapping relationship of decoupled disturbance fd(t)
and d(t) in function f (x,d(t), t), the reconstruction of
coupled disturbance d̂(t) can be calculated as

d̂(t) = f−1 (x̂, f̂d(t), t
)
. (27)

For the reason of noises, a proper filter can be designed to
smooth the disturbance d̂(t).

Remark 1: Instead of considering the piecewise and
fuzzy models, the nonlinear system model is considered
directly in this paper. The nonlinear part g(x,u, t) in state
space model (1) is assumed to be limited as in (2). If the
nonlinear element g(x,u, t) is replaced by linear element,
the SMO design method and (2) also hold. It means that
our study is also appropriate for the linear system.

Remark 2: By treating the coupled disturbance into
the decoupled form, the SMO method is applied to re-
construct the time-varying parameter coupled disturbance.
On one side the SMO is developed into the coupled dis-
turbance reconstruction on the nonlinear systems. On the
other side, compared with the learning and data processing
methods, our method demands less computation and stor-
age. Furthermore, the technique to reconstruct the cou-
pled disturbance is potential for engineering applications
such as robotic manipulator, flying vehicle, helicopter and
space manipulation.

4. EXAMPLE

In this section, we offer a numerical simulation and an
experiment to testify the method in our paper.

4.1. Simulation
The parameters of nonlinear system in (1) are as fol-

lows:

A=


−1.7 0 3.5 −1.8

0 −2 0 1
0 0.8 −1.5 0

−3.7 0.7 0 −4.9

 , B f =


0 0.7

1.2 0
0.1 0.7
0.9 0

 ,

f (x,d, t)=

[ 1
cos(2x2

1)+3.54
0.4cos(x4)

0 1
sin2(x2+x3)+0.5

+2.4

]
d (t) ,

g(x,u, t) =
[

cos(x1 + x2)+u1

sin(x3)+u2
1

cos(x2+x3)+2

]
,

C =

 0.14 1 0 0
1.1 0 0 0.5
0 0 2 0

 , B =


1.1 0
0 −0.5

0.4 0
0 −1


d (t) = [dT

1 (t) dT
2 (t)]

T is

d1 (t) =


0, t ∈ [0,π/2)
20sin(t −π/2) , t ∈ [π/2,π) ,
20, t ∈ [π,5+π/2) ,
0, t ∈ [5+π/2,+∞) ,

d2 (t)=


0, t ∈ [0,8+π/2)
−24(t −4−π/2)/π, t ∈ [8+π/2,8+π) ,
−12, t ∈ [8+π,13+π/2) ,
−12sin(t −13), t ∈ [13+π/2,13+π) ,
0, t ∈ [13+π,+∞) .

The initial states of x(t) in (6), x̂(t) and f̂d(t) in SMO (9)
are x(0) = [1 − 6.5 0 2.5]T , x̂(0) = [0 0 0 0]T , f̂d(0) =
[0 0]T . The control input torque u(t) is assumed as in
Fig. 1. According to the design procedures, we estimate
the state x(t) and reconstruct the disturbance d (t) as fol-
lows:

Fig. 1. Simulation: Control input u(t).
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Fig. 2. Simulation: State x(t) and its estimation x̂(t).

(i) Select positive matrix Θ

Θ =

[
100 2
2 10

]
.

Augment system (1) into (7). Choose L̄ f = B̄ f , κ =
0.1. By (17) and (18) in Lemma 1, we obtain gain L̄

L̄ = 104×


−0.1778 0.6119 −0.1281
0.0491 −0.0890 0.0379
0.0287 0.0123 0.1816
0.4409 −1.2449 0.6380
−0.0073 −0.0037 −0.0524
0.3854 0.1717 2.3247

 .

(ii) Assume fM = 20, fm = 100,ζ = 0.1,γ = 100. By (20),
(25) and (26), the stability for error system (10) can
be examined. Gain H is chosen as

H =

[
0.0040 −0.0138 0.0063
0.0004 −0.0010 0.0000

]
.

By (25), parameter η is 5.0768× 10−11. us (t) and
s(t) are designed as in (11) and (12). The sign func-
tion sgn(s(t)) in us(t) is calculated as sgn(s(t)) =
s(t)/(∥s(t)∥+δ ) via choosing δ = 1×10−6.

(iii) By (27) and f̂d(t), d̂(t) is reconstructed).

With the simulation results, we give the below analysis
and introduction. First, shown in Fig. 2 in the sensorless
case, although a portion of the state x(t) is not completely
known, the full estimated state variable x̂(t) can be accu-
rately obtained in limited time; Second, with the full es-
timated state x̂(t), the shapes of the coupled disturbance
d(t) can be roughly reconstructed, as in Fig. 3; Third,
the SMO approach can be used to estimate the general
shape of the disturbances, but not proper for rapid chang-
ing disturbances; Fourth, our former research and the sim-
ulation result in Fig. 4 has demonstrated that, even being

Fig. 3. Simulation: Disturbance d(t) and its estimation
d̂(t).

Fig. 4. Simulation: Disturbance d(t) and filtered estima-
tion d̂ f (t).

filtered, for strong disturbance (or high amplitude distur-
bance), duration 2s-6s of the up figure in Fig. 4, the SMO
method works well, however, for the weak disturbance (or
low amplitude disturbance), 10s-16s of the up figure in
Fig. 4, its applicability is limited.

The estimated disturbance in Fig. 3 is noisy. It can-
not be utilized directly in the real engineering. So, a
smoother d̂ f (t) = [d̂T

f 1(t) d̂T
f 2(t)]

T in Fig. 4 can be obtained
by d̂ f 1 =

1
0.05s+1 d̂1, d̂ f 2 =

1
0.01s+1 d̂2. The coupled distur-

bance can be reconstructed by the SMO method, which is
one of breaks compared with [20, 21, 27, 28]. In the sim-
ulations of [21, 23], the authors assume the states of non-
linear systems are measured or the disturbance is decou-
pled with time varying parameters. In our simulation, the
full system states don’t need to be fully measured. With
only part of the nonlinear system being measured, we can
estimate the disturbances and system states successfully.
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2−link Experiment

Fig. 5. Experiment.

Fig. 6. Experiment: Torque Input u(t).

Their methods cannot be used to reconstruct the coupled
disturbance d(t) in 4.1.

4.2. Experiment
In this subsection, we provide a planar 2-DOF manip-

ulator experiment in Fig. 5, whose parameters in (1) are

A =

[
0 I
0 0

]
, B f =

[
0
In

]
, B =

[
0
In

]
,

q = ϒx(t), ϒ = [I 0], C = [In 0],

x(t) = [qT (t) q̇T (t)]T , f (x, t) = M−1(ϒx),

g(x,u, t) =−M−1(ϒx)(C(ϒx, q̇)q̇+Fq̇)+M−1(ϒx)u.

Variable q(t) ∈ Rn×1 is the vector containing joint angles.
Generalized coordinates q̇(t) ∈ Rn×1 are the joint veloci-
ties. Matrices M (q) ,C (q, q̇) and F (q̇) are as follows.

M (q) =
[

0.442+0.0286cos(q2) ∗
0.0088+0.0143cos(q2) 0.2226

]
,

C (q, q̇)=
[

−0.029sin(q2)q̇2 −0.014sin(q2)q̇2

0.014sin(q2)q̇1 0

]
,
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Fig. 7. Experiment: State x(t) and its estimation x̂(t).

F (q̇) =
[

2.6×10−4q̇1

2.6×10−4q̇2

]
.

The control input u(t) is in Fig. 6. The initial values of
x(t), x̂(t), d(t) and d̂(t) are all zero vectors. The design
procedures of SMO are presented as follows.

(i) Select Θ = 36In. Gain L̄ f = B̄ f , κ = 0.1. The high
gain L̄ is designed as

L̄ = 103 ×


0.1446 0

0 0.1446
5.2418 0

0 5.2418
0.2621 0

0 0.2621

 .

(ii) Assume fM = 20, fm = 360,ζ = 0.1,γ = 100 and

H =

[
−0.0115 0

0 −0.0115

]
.

It obtains the parameter η = 6.6282e−11.
(iii) By (27), x̂(t) and f̂d (t), we can reconstruct torque

disturbance d̂ (t) as d̂ (t) = M (q̂) f̂d (t) .

In Fig. 7, q̇(t) = [xT
3 (t) xT

4 (t)]
T is calculated as q̇(t) =

q(t) s
0.001s+1 . The torque disturbance d(t) in Fig. 8 is calcu-

lated as d(t) = τ(t)−u(t). The torque input τ (t) is com-
puted τ(t) = Mq̈+C(q, q̇)q̇+F. The acceleration vector
q̈(t) is obtained by q̈(t) = q̇(t) s

0.02s+1 . In Fig. 7 and Fig. 8,
the x̂(t) and d̂(t) approach the real state x(t) and d(t) well.
The fault of encoder leads to the peaks, about 10.3s and
18.9s, in Fig. 7 and Fig. 8. The disturbance d(t) in this ex-
periment is caused by model uncertainties, static friction
and mechanical gears. Apparently, by the scheme pro-
posed in our paper, the reconstructed disturbance d̂(t) and
the estimated system state x̂(t) approximate the calculated
disturbance d(t) and system state x(t) well. It shows the
validity of our method.
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Fig. 8. Experiment: Torque disturbance d(t) and its esti-
mation d̂(t).

5. CONCLUSIONS

The study of this paper focuses mainly on the state esti-
mation and coupled disturbance reconstruction problems
of a class of nonlinear systems by SMO method. The
nonlinear system model and the sensorless problems are
considered. The model transformation is firstly utilized
to augment the original nonlinear system into a novel de-
scriptor system, based on which the SMO was designed.
With the state estimates in SMO, the sufficient criterium
on error system stability is verified. The full system state
and coupled disturbance are estimated successfully. At
the end of this paper, a numerical simulation and an ex-
periment show the effectiveness of the scheme.

Our future work will focus on the trajectory track-
ing control, fault tolerant control, fault compensation of
nonlinear systems, and their applications in robots, self-
driving car and other complicate industrial applications.
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