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Abstract: This paper proposes a new nonlinear state estimator that has a finite impulse response (FIR) structure.
The proposed state estimator is called the extended least square unbiased FIR filter (ELSUFF) because it is derived
using a least square criterion and has an unbiasedness property. The ELSUFF is a special FIR filter designed for
the constant velocity motion model and does not require noise information, such as covariance of Gaussian noise.
In situations where noise information is highly uncertain, the ELSUFF can provide consistent performance, while
existing nonlinear state estimators, such as the extended Kalman filter (EKF) and the particle filter (PF), often
exhibit degraded performance under the same condition. Through simulations, we demonstrate the robustness of
the ELSUFF against noise model uncertainty.

Keywords: Constant velocity motion model, extended least square unbiased FIR filter (ELSUFF), finite impulse
response (FIR) filter, state estimation, target tracking.

1. INTRODUCTION

The Kalman filter (KF) is an optimal state estimator for
linear systems with Gaussian noise. For state estimation
of nonlinear systems, suboptimal state estimators, such as
the extended Kalman filter (EKF) and the particle filter
(PF), have been widely used [1–4]. Nonlinear suboptimal
state estimators have been popularly used for target track-
ing applications using radar, sonar, and wireless sensor
networks (WSNs) [5]. Such applications typically use the
state-space model called the constant velocity (CV) mo-
tion model, which assumes that targets move with constant
velocity (constant speed and course) within a short sam-
pling time. However, real targets maneuver and change
speed. Thus, in the CV motion model, the process noise
compensates changes in target velocity. Large process
noise can compensate large changes in target course, but
can worsen estimation accuracy. Thus, the process noise
covariance should be carefully selected [6]. A modeling
error in the CV model (i.e., mismatch between the real
target motion and the CV motion model) leads to degra-
dation of tracking performance or even tracking failures.
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Therefore, a new nonlinear state estimator that is robust
against modeling errors in the CV model is necessary for
many target tracking applications.

In this paper, we propose a new nonlinear state esti-
mator that does not require noise information. The pro-
posed state estimator has a finite impulse response (FIR)
structure. State estimators with FIR structures are sim-
ply called FIR filters [7–11], and they have been studied
to overcome divergence phenomena occurring in state es-
timators with infinite impulse response (IIR) structures.
FIR filters are known to be robust against model errors
and incorrect noise information [12–16]. In this work, we
derived a linear FIR filter that specializes in the CV model,
and then we extended the linear FIR filter to nonlinear sys-
tems. Because the proposed FIR filter is derived using a
least square criterion and has an unbiasedness property,
the FIR filter is called the extended least square unbiased
FIR filter (ELSUFF). The filter does not require any noise
information and is free from the burden of selecting noise
covariance when applied to the CV model. The existing
nonlinear state estimators, such as the EKF and the PF,
may exhibit poor estimation performance or may even di-
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verge due to noise modeling errors. However, the EL-
SUFF is robust against noise modeling errors and can pro-
vide consistent performance regardless of the noise model
used. Through simulations of target tracking using the
CV model, we demonstrate the robustness of the ELSUFF
against noise modeling errors.

2. EXTENDED LEAST SQUARE UNBIASED FIR
FILTER FOR THE CONSTANT VELOCITY

MODEL

Consider the following linear time-varying discrete-
time state-space model:

xk+1 = Axk +Gwk, wk ∼ (0,Qk), (1)

zk = Ckxk +vk, vk ∼ (0,Rk), (2)

where xk ∈ ℜp, yk ∈ ℜq, wk ∈ ℜp, and vk ∈ ℜq are the
state, measurement, and process and measurement noise
vectors, respectively. We assume that A and G are time
invariant, only Ck is time varying, and A is nonsingular.
The process and measurement noise vectors, wk and vk,
are zero-mean white Gaussian with the covariance matri-
ces, Qk and Rk, respectively.

Our proposed FIR filter uses recent finite measurements
on the time horizon [m,n], where m = k−N and n = k−1
are the initial and final time steps of the horizon, k is the
current time step, and N is the horizon size. For the system
models (1) and (2), the augmented measurement vector,
Zn, can be expressed as a function of current state xk as
follows:

Zn = C̃Nxk + G̃NWn +Vn, (3)

where

Zn ≜ [zT
m zT

m+1 · · · zT
n ]

T , (4)

Wn ≜ [wT
m wT

m+1 · · · wT
n ]

T , (5)

Vn ≜ [vT
m vT

m+1 · · · vT
n ]

T , (6)

and C̃N and G̃N are given by

C̃N ≜


Cm

Cm+1A
...

CnAN−1

A−N , (7)

G̃N ≜−


CmA−1 CmA−2 · · · CmA−N

0 Cm+1A−1 · · · Cm+1A−N+1

...
...

...
...

0 0 · · · CnA−1

G.

(8)

The augmented measurement equation (3) can be writ-
ten as

Zn − C̃Nxk = G̃NWn +Vn. (9)

The left side of above equation, Zk−1 − C̃Nxk, is the out-
put error (also called the measurement residual), which is
required to be minimized. If there is no noise on the time
horizon [m,n], the right side of (9) becomes zero and the
output error also becomes zero. An FIR filter that min-
imizes the output error can be obtained by the following
least square criterion [7]:

x̂k = argmin
xk

[Zn − C̃Nxk]
T [Zn − C̃Nxk]. (10)

Following the well-known least square method, the solu-
tion of (10) is obtained as

x̂k = (C̃T
NC̃N)

−1C̃T
NZn. (11)

In summary, the least square unbiased FIR filter (LSUFF)
is described by the following theorem.

Theorem 1: When (A,Ck) is observable and N ≥ p,
the LSUFF using the recent finite measurement on the
time horizon [m,n] is given as

x̂k = (C̃T
NC̃N)

−1C̃T
NZn, (12)

where C̃N and Zn are defined in (7) and (8).

Taking expectation on both sides of (12) gives

E[x̂k] = (C̃T
NC̃N)

−1C̃T
NE[Zk−1]. (13)

In (3), the noise term G̃NWk−1+Vk−1 is zero-mean. Thus,
taking expectation on both sides of (3) gives

E[Zk−1] = C̃NE[xk]. (14)

Substituting (14) into (13), we obtain

E[x̂k] = (C̃T
NC̃N)

−1C̃T
NC̃NE[xk]

= E[xk]. (15)

Because E[x̂k] = E[xk], the LSUFF has an unbiasedness
property.

Now, we extend the LSUFF to nonlinear systems. Con-
sider the following nonlinear state-space model:

xk+1 = Axk +Gwk, wk ∼ (0,Qk), (16)

zk = hk(xk)+vk, vk ∼ (0,Rk), (17)

where the state equation is linear and only the measure-
ment equation is nonlinear. We can encounter this type
of state-space model in many target tracking applications
using the CV motion model. To extend the LSUFF to this
type of nonlinear system, we linearize the measurement
equation. Taylor approximation of (17) gives

zk ≈ hk(x̂k)+Hk(xk − x̂k)+vk

= Hkxk +[hk(x̂k)−Hkx̂k]+vk

= Hkxk + z̄k +vk, (18)
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where Hk and z̄k are defined as

Hk ≜
∂hk

∂x

∣∣∣∣
x̂k

, (19)

z̄k ≜ hk(x̂k)−Hkx̂k. (20)

z̄k is not the real measurement signal and can be discarded.
However, discarding z̄k causes a linearization error. Thus,
we utilize z̄k as a pseudo measurement signal rather than
discarding it. Defining the auxiliary measurement signal
as z̃k = zk − z̄k, we obtain a new measurement equation

z̃k = Hkxk +vk. (21)

Now, we can apply the LSUFF to the nonlinear system
models (16) and (21). The ELSUFF, a nonlinear extension
of LSUFF, is summarized in the following theorem.

Theorem 2: When (A,Hk) is observable and N ≤ p,
the ELSUFF on the horizon [m,n] is given as

x̂k = (H̃T
NH̃N)

−1H̃T
NZ̃n, (22)

where

H̃N =


Hm

Hm+1A
...

HnAN−1

A−N ,

Z̃n = [z̃T
m z̃T

m+1 · · · z̃T
n ]

T . (23)

3. NUMERICAL EXAMPLE

In this section, we present a numerical example to
demonstrate performance of the proposed ELSUFF. In a
typical target tracking application using the CV model, we
compare the ELSUFF with well-known nonlinear filters
such as the EKF and the PF.

Consider an indoor localization system based on a WSN
as shown in Fig. 1(a). A wireless tag (transmitter) is at-
tached to a target object, which can be human or equip-
ment. The WSN is composed of four receivers and a
server computer and provides time difference of arrival
(TDOA) measurements. The state-space model for the
indoor localization system has a linear motion model
(CV model) and nonlinear measurement model based on
TDOA measurement.

Introducing a state vector that describes the target’s 2D
positions and velocities, xk = [xk yk ẋk ẏk]

T , the CV motion
model can be described as

xk+1 = Axk +Gwk, (24)

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , G =


T 2/2 0

0 T 2/2
T 0
0 T

 ,

(25)
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Fig. 1. Localization results when Qk = I2: (a) real and es-
timated trajectories, and (b) localization errors.

where T is the sampling interval and A is always nonsin-
gular regardless of the value of T .

In turn, the TDOA measurement model can be de-
scribed as

zk =

 z1,k

z2,k

z3,k

=

 h1,k

h2,k

h3,k

=
1
c

 d1 −d2

d1 −d3

d1 −d4

 , (26)

where

di =
√

(xk − xi)2 +(yk − yi)2, (27)

and c is speed of light, vk ∈ ℜ3 is a zero-mean Gaussian
measurement noise with the covariance Rk.

Using the state-space models (24) and (26), we can ap-
ply the nonlinear state estimators. A scenario for the in-
door localization simulation is as follows. A target with a
transmitter starts from the position (5,5) and moves coun-
terclockwise along a rectangular trajectory as shown in
Fig. 1(a). We estimate the target’s positions by processing
the TDOA measurements using the nonlinear state esti-
mators including the EKF, the PF, and the ELSUFF. The
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Fig. 2. Localization results when Qk = 1×10−2I2: (a) real
and estimated trajectories, and (b) localization er-
rors.

initial position of the target is assumed to be unknown. In
the simulations, we use 1000 particles for the PF. Horizon
size for the ELSUFF is taken as N = 14. The measurement
noise covariance is set as Rk = 0.5I3 in every simulation,
and In denotes an n×n identity matrix.

Fig. 1 shows the localization results when we set the
process noise covariance as Qk = I2. In this case, all three
nonlinear state estimators (i.e., EKF, PF, and ELSUFF)
work successfully and exhibit localization errors smaller
than 0.5m during most of the simulation time. The total
operation times (in seconds) of the EKF, PF, ELSUFF are
0.025, 10.3, and 0.75, respectively. In terms of the compu-
tational efficiency, the ELSUFF is superior to the PF and
inferior to the EKF.

Fig. 2 shows the localization results obtained using
Qk = 1× 10−2I2. We can see that both the EKF and the
PF show degraded localization accuracy compared to that
in Fig. 1. The localization performances of the EKF and
the PF are especially degraded around the corners of the
rectangular trajectory, which can be observed around the
time indices k = 100, k = 200, and k = 300 in Fig. 2(b).

The target abruptly changes its course at the corners,
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Fig. 3. Localization results when Qk = 1×10−4I2: (a) real
and estimated trajectories, and (b) localization er-
rors.

and these abrupt motion changes lead to modeling errors
(i.e., mismatches between the CV model and the real mo-
tion) and degraded localization accuracy. Qk is related to
the amount of motion change in the CV model. If Qk is
small compared with the real motion change, state estima-
tors may exhibit degraded performance. Thus, the EKF
and the PF showed poor performance in the simulation
with Qk = 1×10−2I2. However, the ELSUFF does not re-
quire information on Qk and does not suffer from the per-
formance degradation caused by an incorrectly selected
Qk. In short, the simulation results demonstrate the ro-
bustness of the ELSUFF against noise modeling errors.

The robustness of the ELSUFF is demonstrated again
in Fig. 3, which shows the localization results with Qk =
1×10−4I2. The EKF exhibits poor localization accuracy,
and the PF diverges. The PF divergence is, in part, owing
to sample impoverishment, which occurs when the pro-
cess noise is small. In contrast to the EKF and the PF,
the ELSUFF successfully works and provides satisfactory
localization results under the same condition.

Table 1 compares the three state estimators in terms of
localization accuracy in various cases of Qk. For differ-
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Table 1. Average localization errors of EKF, PF, and EL-
SUFF for different values of Qk.

Qk EKF PF ELSUFF
I2 0.2560 0.2505 0.2984

1×10−1I2 0.3384 0.2607 0.2984
1×10−2I2 0.5356 0.5368 0.2984
1×10−3I2 0.9731 3.2568 0.2984
1×10−4I2 1.5365 3.3728 0.2984

ent values of Qk, we conducted Monte-Carlo (MC) simu-
lations to obtain average localization errors. Each value
in Table 1 was obtained through 100 MC runs. When
Qk = I2, the EKF and the PF work successfully and ex-
hibit better performance than the ELSUFF. However, de-
creasing Qk degrades performance of the EKF and PF due
to mismatch between the real motion and the CV model.
On the contrary, the ELSUFF exhibits consistent perfor-
mance, which demonstrates robustness of the ELSUFF
against noise modeling error.

4. CONCLUSIONS

In this paper, we proposed a new nonlinear state es-
timator called the ELSUFF, which has an FIR structure
and an unbiasedness property. The existing nonlinear
state estimators, such as the EKF and the PF, may ex-
hibit degraded performance if the process and measure-
ment noise are modeled incorrectly. However, the pro-
posed ELSUFF does not require noise information and
can provide consistent performance if noise information
is uncertain. Through indoor localization simulations, we
demonstrated the robustness of the ELSUFF against noise
modeling errors. Thus, the ELSUFF is expected to be ef-
fective in many tracking applications using the CV model
in which the noise information is highly uncertain. How-
ever, the ELSUFF is applicable only to systems with non-
singular system matrices. Therefore, development of an
advanced ELSUFF that is applicable to general nonlinear
systems is necessary and will be the focus of our future
work.
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