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Adaptive Neural Dynamic Surface Control for a General Class of Stochas-
tic Nonlinear Systems with Time Delays and Input Dead-zone
Wen-Jie Si*, Xun-De Dong, and Fei-Fei Yang

Abstract: This paper investigates adaptive tracking control for a more general class of stochastic nonlinear time-
delay systems with unknown input dead-zone. For the considered system, the drift and diffusion terms contain
time-delay state variables. In control design, Lyapunov-Krasovskii functionals are employed to handle unknown
time-delay terms. Then, unknown nonlinear functions are approximated by RBF neural networks, and the dynamic
surface control (DSC) technique is utilized to avoid the problem of explosion of complexity. At last, based on
the Lyapunov stability theory, a robust adaptive controller is designed to guarantee that all closed-loop signals are
bounded in probability and the tracking error converges to a small neighborhood of the origin. The simulation
example is presented to further show the effectiveness of the proposed approach.

Keywords: Dynamic surface control, input dead-zone, neural adaptive control, stochastic nonlinear systems, un-
known time delays.

1. INTRODUCTION

Stochastic disturbance and time delay appear in many
real systems, which may degrade system performance and
even cause instability [1]. To ensure the system stability
and control performance, the control design for stochastic
nonlinear systems with time delays needs to be studied.

Many studies have focused on the control of complex
systems [2, 3]. However, these results were only suitable
for nonlinear systems in which the nonlinearities were
known or can be linearly parameterized. For the systems
with unknown nonlinear dynamics, both fuzzy logic sys-
tems (FLSs) and neural networks (NNs) have been proved
to be useful in control design [4–6]. In [7,8], the control of
the time-delay systems was presented via fuzzy logic. Hy-
brid feedback feedforward was presented based on neural
learning control in [9, 10]. The fuzzy H∞ control was pre-
sented in [11], and [12] designed an interval type-2 con-
troller for discrete-time fuzzy systems. Stochastic non-
linear systems were considered in [13]. Recently, many
approximation-based control has also been developed to
deal with the control problem for stochastic nonlinear
time-delay systems [14–16]. The above-mentioned full-
state feedback approaches in [14–16] require that all sys-
tem states are available. When states were unmeasurable,
an adaptive NN output-feedback controller was developed
in [17] for a class of stochastic nonlinear strict-feedback
systems with time delay. An observer-based adaptive con-
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trol scheme was proposed in [18] for nonlinear stochastic
systems with full-state time delays.

However, the above-mentioned results do not consider
the effect of input nonlinearity. In [19, 20], the robust
adaptive control methods were used for nonlinear systems
with parametric uncertainties subject to the input deal-
zone, and the systems must satisfy linear parameterized
condition. Recently, when the knowledge of system func-
tions is unavailable, in order to handle unknown nonlinear
systems with input dead-zone, many adaptive controllers
have been proposed by [21–24]. In [25], adaptive fuzzy
backstepping output feedback tracking control was pre-
sented for multi-input and multi-output (MIMO) stochas-
tic nonlinear systems. The problem of adaptive decentral-
ized NN control was investigated in [26] for large-scale
stochastic nonlinear time-delay systems with input dead-
zone.

During the traditional backstepping design procedure,
repeated differentiations of virtual functions cause the ‘ex-
plosion of complexity’. Recently, to overcome this prob-
lem, a dynamic surface control (DSC) method has been
developed in [27]. Using the DSC technique, [28] pro-
posed a decentralized adaptive controller for a class of
large-scale nonlinear time-delay systems. The work in
[29] considered an adaptive fuzzy output-feedback back-
stepping control approach. The dynamic surface control
was incorporated to stochastic nonlinear systems in [30].
In [31, 32], the composite learning was achieved via the
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DSC technique. Furthermore, when the states were un-
measured, in [33], the problem of adaptive neural DSC
method was addressed for nonstrict-feedback stochastic
nonlinear systems.

Motivated by these observations, we investigate the
problem of adaptive neural DSC for a more general class
of stochastic nonlinear systems with time delays and input
dead-zone. The drift and diffusion terms are the functions
of time-delay states and current states, which makes the
control design more difficult. The proposed controller can
guarantee the boundedness of the closed-loop system in
probability.

The main contributions lie in the following:

1) A general class of stochastic nonlinear time-delay sys-
tems is investigated, in which the drift and diffusion
terms are dependent on the states and time-delay states.
A Lyapunov-Krasovskii functional is introduced to
deal with the unknown time delays. The variable sepa-
ration technique and the neural networks approxima-
tion are effectively employed to design an adaptive
controller.

2) By using the DSC technique, the designed control
scheme can overcome the defect of ’explosion of com-
plexity’. In addition, the norm of the unknown weight
vector itself is estimated in this paper. Therefore, the
proposed controller can reduce the number of learning
parameters, and reduce the computational burden.

The rest of the paper is organized as follows. In Sec-
tion 2, the preliminaries and problem formulation are pro-
vided. Section 3 presents an adaptive neural controller,
and the stability analysis is provided. Section 4 shows the
simulation example. Finally, this paper is concluded in
Section 5.

2. PRELIMINARY KNOWLEDGE AND SYSTEM
FORMULATION

2.1. Preliminaries
Consider the following stochastic nonlinear system

dx = f (x, t)dt +h(x, t)dω,∀x ∈ Rn, (1)

where x∈Rn is the system state vector, f : Rn×R+ →Rn,
h : Rn × R+ → Rn×r are locally Lipschitz. ω is an r-
dimensional independent standard Brownian motion de-
fined on the complete probability space(Ω,F,{Ft}t≥0,P)
with Ω being a sample space, F being σ−field, {Ft}t≥0

being a filtration, and P being a probability measure.

Definition 1 [34]: For any given positive function
V (x, t) ∈ C2, associated with system (1), the differential
operator L is defined as:

LV =
∂V
∂ t

+
∂V
∂x

f +
1
2

Tr
{

hT ∂ 2V
∂x2 h

}
, (2)

where Tr(A) denotes A trace.

Lemma 1 (Young’s inequality) [35]: For ∀(x,y) ∈ R2,
the following inequality holds:

xy ≤ ε p

p
|x|p + 1

qεq |y|
q, (3)

where ε > 0, p > 1, q > 1, (p−1)(q−1) = 1.

Lemma 2 [36]: For 1 ≤ i ≤ n and ιi > 0, define the set
Λ given by Λ := {zi

∣∣|zi| ≤ 0.8814ιi}. Then, for zi /∈ Λ, the
inequality 1−4tanh4( zi

ιi
)< 0 is satisfied.

2.2. System representation
Consider the following stochastic nonlinear time-delay

systems

dxi = (xi+1 +ϕi(x̄i)+ fi(t, x̄i(t), x̄i(t − τi)))dt

+hT
i (t, x̄i(t), x̄i(t − τi))dω,

i = 1,2, . . . ,n−1,

dxn = (u+ϕn(x)+ fn(t,x(t),x(t − τn)))dt

+hT
n (t,x(t),x(t − τn))dω,

u = D(v),

y(t) = x1(t),

(4)

where xi ∈ R(i = 1, . . . ,n), u ∈ R and y ∈ R are the sys-
tem state variable, system input and output, respectively.
x̄i := [x1, . . . ,xi]

T, x = x̄n := [x1, . . . ,xn]
T. ϕi(·) are un-

known smooth nonlinear function. fi(·) and hi(·) are un-
known smooth functions. ω is defined in (1). τi is the
unknown constant time delay term. u(v) ∈ R is the system
input and the output of the dead zone, and the dead-zone
characteristic is described as D(v) with v being the input.

The main goal is to present an adaptive controller for the
system (4) such that y can track the desired signal yd(t),
and all closed-loop signals remain bounded.

Assumption 1: The desired signal yd(t) and its nth or-
der yn

d(t) are continuous and bounded.

Assumption 2 [37,38]: For nonlinear functions fi and
hi, there exist nonnegative smooth functions fi1, fi2, hi1

and hi2 such that

| fi(x̄i, x̄i(t − τi))| ≤ fi1(x̄)+ fi2(x̄(t − τi)),

|hi(x̄i, x̄i(t − τi))| ≤ hi1(x̄)+hi2(x̄(t − τi)). (5)

According to Assumption (2), let p ≥ 1, and based on
[39], the following inequalities are obtained as

| fi(x̄, x̄(t − τi))|p ≤ 2p−1( f p
i1(x̄)+ f p

i2(x̄(t − τi))),

|hi(x̄, x̄(t − τi))|p ≤ 2p−1(hp
i1(x̄)+hp

i2(x̄(t − τi))). (6)

2.3. Dead-zone characteristic
The dead-zone nonlinearity of the actuator can be de-

scribed as follows [40]:

u = D(v) =


hr(v−br), v ≥ br,

0, bl < v < br,

hl(v−bl), v ≤ bl ,

(7)
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where hr(·), hl(·) are unknown smooth functions.
According to [40], the dead-zone nonlinearity can be

rewritten as

u = D(v) = Ξ(v)v+d(v), (8)

where Dmin ≤ Ξ ≤ Dmax, ∥d(v)∥ ≤ d∗.

2.4. RBF neural networks
In this paper, RBF NNs will be used to model any

continuous function f (Z) : Rq → R over a compact set
ΩZ ⊂ Rq for given arbitrary accuracy ε∗ > 0 as follows

f (Z) =W ∗TS(Z)+ ε(Z),∀Z ∈ ΩZ , (9)

where W = [w1, w2, · · · , wl ]
T ∈ Rl is the neural

weight vector with l > 1 being the NN node number.
S(Z) = [s1(Z),s2(Z), · · · ,sl(Z)]T is the basis function
vector with si(Z) = exp

[
−(Z −ξi)

T(Z −ξi)/η2
]
, where

ξi = [ξi1,ξi2, · · · ,ξiq]
T is the center of the receptive field

and η is the width of Gaussian function [41]. Ŵ denotes
the estimate of W ∗, with W̃ = Ŵ −W ∗.

3. ADAPTIVE CONTROLLER DESIGN

In this section, an adaptive control design and stabil-
ity analysis will be developed. To simplify the notations,
fi = fi(t, x̄i(t), x̄i(t −τi)), hi = hi(t, x̄i(t), x̄i(t −τi). For the
time-delay functions, hi(x(t − τi)) is denoted as hi(τi) and
fi(x(t − τi)) is denoted as fi(τi).

The following coordinate transformation is used.

z1 = x1 − yd ,zi = xi −αi−1, f ,

ei = αi−1, f −αi−1, i = 2, . . . ,n, (10)

where αi−1 is the virtual control law, which will be devel-
oped later. ei is the first filter error. αi−1, f is the filtered
virtual control, we pass αi−1 through the following first-
order filter

βiα̇i−1, f +αi−1, f = αi−1, (11)

where βi is a time constant.
Step 1: Define z1 = x1 − yd , and its differential is

ż1 = (z2 + e2 +α1 +ϕ1 + f1 − ẏd)dt +hT
1 dω. (12)

To obtain the filtered virtual control α1 f , we pass α1

through a first-order filter, β2α̇1 f +α1 f = α1, where β2 is
a time constant.

Define the filter output error e2 = α1 f −α1. One has
α̇1 f =− e2

β2
and its differential is

de2 = (− e2

β2
− lα1)dt +

∂α1

∂y
hT

1 dω, (13)

where

lα1 =
∂α1

∂x1
(x2 +ϕ1 + f1)+

∂α1

∂θ1
θ̇1

+
1
2

∂ 2α1

∂y2 hT
1 h1 +

∂α1

∂yd
ẏd +

∂α1

∂ ẏd
ÿd . (14)

Choose the following Lyapunov function candidate

V1 =
1
4

z4
1 +

1
4

e4
2 +

1
2r1

θ̃ 2
1 +VQ1, (15)

where VQ1 is the Lyapunov-Krasovskii function in the fol-
lowing form

VQ1 = exp(−π1t)
∫ t

t−τ1

exp(π1s)Ψ1(x1(s))ds. (16)

V̇Q1 is given by

V̇Q1 =−π1VQ1 +Ψ1(x1(t))

− exp(−π1τ1)Ψ1(x1(t − τ1))
)
, (17)

where π1 is a positive constant and Ψ1 is given later.

LV1 =z3
1(z2 + e2 +α1 +ϕ1 + f1 − ẏd)

+
3
2

z2
1hT

1 h1 + e3
2(−

e2

β2
− lα1)

+
3
2

e2
2∥

∂α1

∂y
hT

1∥2 +
θ̃1

r1

˙̂θ1 −π1VQ1

+Ψ1(x1)− e−π1τ1 Ψ1(x1(t − τ1))
)
. (18)

We choose Ψ1(x1(t − τ1)) as

Ψ1(x1(t − τ1)) =4exp(π1τ1) f 4
12(x1(t − τ1))

+14exp(π1τ1)h4
12(x1(t − τ1)). (19)

Define a new function M2

−M2 =−
(∂α1

∂x1
(x2 +ϕ1)+

∂α1

∂θ1
θ̇1

+
∂α1

∂yd
ẏd +

∂α1

∂ ẏd
ÿd
)
. (20)

Obviously, M2 is a smooth function, which has its maxi-
mum denoted by B∗

2

−e3
2M2 ≤

3
4

e4
2 +

1
4

B∗4
2 . (21)

Define the following functions

H1(x1) =Ψ1(x1)+2h4
11(x1)+2 f 4

11(x1(t))

+6h4
11(x1)+

3
4

e4
2(

∂α1

∂y
)4 +6h4

11(x1)

+
3
4

e4
2(

∂α1

∂y
)

4
3 +2 f 4

11(x1(t))+
1
4

e6
2(

∂ 2α1

∂y2 )2.

(22)
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Now, choose the virtual control law α1 as

α1 =−k1z1 −
b1

2a2
1

θ̂1ST(Z1)S(Z1)z3
1 + ẏd , (23)

where k1 and a1 are positive constants with the parameter
b1 being specified later.

Define the adaptive law as follows:

˙̂θ1 =
r1b1

2a2
1

z6
1ST

1 (Z1)S1(Z1)−σ1θ̂1, (24)

where σ1 is a positive constant.

LV1 ≤z3
1(α1 +ϕ1 − ẏd +3z1

+
H1(x1)

z3
1

)+ e3
2(−

e2

β2
)+

1
4

z4
2

+
1
4

B∗4
2 + e4

2 +
θ̃1

r1

˙̂θ1 −π1VQ1. (25)

Define the unknown function F1(x1):

F1(x1) = ϕ1 +
4
z3

1
tanh4(

z1

ι1
)H1, (26)

where ι1 is a positive parameter.
It is shown in (25) the unknown term H1

z3
1

is not well de-
fined at z1 = 0. The hyperbolic tangent function tanh( z1

ι1
)

is introduced here.
A RBF NN W ∗T

1 S1 is employed to approximate F1

F1 =W ∗T
1 S1(Z1)+ ε1(Z1), |ε1(Z1)| ≤ ε∗

1 , (27)

where Z1 = [x1, θ̂1,yd ]
T and ε1(Z1) is the approximation

error.
The following inequality holds:

z3
1F1 ≤

b1

2a2
1

z6
1θ ∗

1 ST
1 S1 +

1
2

a2
1 +

3
4

z4
1 +

1
4

ε∗4
1 , (28)

where ∥W ∗
1 ∥2 = b1θ ∗

1 . Considering θ̃1 = θ̂1 −θ ∗
1 , one has:

−σ1

r1
θ̃1θ̂1 ≤−σ1θ̃ 2

1

2r1
+

σ1θ ∗2
1

2r1
. (29)

Considering (29), one yields

LV1 ≤− (k1 −3
3
4
)z4

1 − (
1
β2

−1)e4
2 +

1
4

z4
2

− σ1θ̃ 2
1

2r1
+

σ1θ ∗2
1

2r1
+

1
2

a2
1 +

1
4

ε∗4
1 +

1
4

B∗4
2

−π1VQ1 +(1−4tanh4(
z1

ι1
))H1. (30)

Step i (2 ≤ i ≤ n−1): At this step, similar to (30), we
can obtain a result as

Vi−1 =V1 +
i−1

∑
j=1

(
1
4

z4
j +

1
4

e4
j+1 +

1
2r j

θ̃ 2
j +VQ j). (31)

We have

LVi−1 ≤− (k1 −3
3
4
)z4

1 −
i−1

∑
j=2

(k j −4)z4
j

−
i

∑
j=2

(
1
β j

−1)e4
j +

1
4

z4
i +

i

∑
j=2

1
4

B∗4
i

−
i−1

∑
j=1

σ jθ̃ 2
j

2r j
+

i−1

∑
j=1

(
σ jθ ∗2

j

2r j
+

1
2

a2
j +

1
4

ε∗4
j )

+
i−1

∑
j=1

(
−π jVQ j +(1−4tanh4(

z j

ι j
))H j

)
. (32)

In the following, we will prove that (32) holds for ith
Lyapunov function defined as follows:

Vi =Vi−1 +
1
4

z4
i +

1
4

e4
i+1 +

1
2ri

θ̃ 2
i +VQi, (33)

where VQi is the Lyapunov-Krasovskii function given as
follows:

VQi = exp(−πit)
∫ t

t−τi

exp(πis)Ψi(x̄i(s))ds. (34)

Then, its time derivative is

V̇Qi =−πiVQi +Ψi(x̄i(t))

− exp(−πiτi)Ψi(x̄i(t − τi))
)
, (35)

where πi is a positive constant, the positive function Ψi is
defined later to cancel the time-delay terms.

A similar procedure is recursively employed for each
step i, define zi = xi − αi−1, f , with the first-order filter
αi−1, f being defined as the (i− 1)th step. Let the virtual
control law αi−1 pass through it with time constant βi, i.e.
βiα̇i−1, f +αi−1, f = αi−1, αi−1, f (0) = αi−1(0), one can ob-
tain that

dzi = (zi+1 + ei+1 +αi +ϕi + fi +
ei

βi
)dt +hidω.

(36)

Define the output of this filter as ei+1 = αi, f −αi. It yields
that α̇i−1, f =−ei/βi. Its differential is

dei+1 = (−ei+1/βi+1 − lαi)dt −
i

∑
j=1

∂αi

∂x j
hT

j dω, (37)

where

lαi =
i

∑
j=1

∂αi

∂x j
(x j+1 +ϕ j + f j)

+
i

∑
j=1

∂αi

∂θ j
θ̇ j +

i

∑
j=0

∂αi

∂y( j)
d

y( j+1)
d

+
1
2

i

∑
p,q=1

∂ 2αi

∂xp∂xq
hT

phq +
i−1

∑
j=1

∂αi

∂αi, f
α̇i, f . (38)
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Define Ψi(x̄i(t − τi)) in (35) as

Ψi(x̄i(τi)) =
i

∑
j=1

8exp(πiτi)∥h j2(x j(τ j))∥4

+
i

∑
j=1

2exp(πiτi)∥ f j2(x j(τ j))∥4

+2exp(πiτi) f 4
i2(x̄i(τi))

+6exp(πiτi)h4
i2(x̄i(τi)). (39)

For i = 2, . . ., n−1, define the following functions

−Mi+1 =−
( i

∑
j=1

∂αi

∂x j
(x j+1 +ϕ j)+

i

∑
j=1

∂αi

∂θ j
θ̇ j

+
i

∑
j=0

∂αi

∂y( j)
d

y( j+1)
d +

i−1

∑
j=1

∂αi

∂αi, f
α̇i, f

)
, (40)

where Mi+1 is a smooth functions, which has its maximum
denoted by B∗

i+1.

−e3
i+1Mi+1 ≤

3
4

e4
i+1 +

1
4

B∗4
i+1. (41)

Define the following nonlinear function Hi as

Hi(x̄i) =Ψi(x̄i)+
3
4

e4
i+1 +2 f 4

i1(x̄i(t))+6h4
i1(x̄i)

+
i

∑
j=1

3
4

i2e4
i+1(

∂αi

∂x j
)4 +

i

∑
j=1

6∥h j1(x j(t))∥4

+
i

∑
j=1

3
4

e4
i+1

∂αi

∂x j
+

i

∑
j=1

2 f 4
j1(x j(t))

+
i

∑
j=1

i

∑
k=1

1
4

∣∣e6
i+1

∣∣∣∣ ∂ 2αi

∂x j∂xk

∣∣2. (42)

Design the virtual control function as

αi =−kizi −
bi

2a2
i

θ̂iST
i (Zi)Si(Zi)z3

i −
ei

βi
, (43)

where ki and ai are positive constants with bi being a de-
sign parameter defined later.

LVi ≤LVi−1 + z3
i (−(ki −3)zi +ϕi

+
Hi(xi)

z3
i

)− (
1

ϖi+1
+1)e4

i+1 +
1
4

B∗4
i+1

+
1
4

z4
i+1 +

θ̃1

ri

˙̂θi −πiVQi. (44)

Similar to Step 1, the unknown term 4
z3

i
tanh4( zi

ιi
)Hi can

be approximated by RBF neural network.
Define the unknown nonlinear function Fi(x̄i):

Fi(x̄i) =
4
z3

i
tanh4(

zi

ιi
)Hi +ϕi, (45)

where ιi a positive design parameter.
A RBF NN W ∗T

i Si is employed to approximate Fi

Fi =W ∗T
i Si(Zi)+ εi(Zi), |εi(Zi)| ≤ ε∗

i , (46)

where Zi = [x1, . . . ,xi, θ̂1, . . . , θ̂1,αi f ]
T, εi(Zi) is the ap-

proximation error.
The following inequality holds:

z3
i Fi ≤

bi

2a2
i

z6
i θ ∗

i ST
i Si +

1
2

a2
i +

3
4

z4
i +

1
4

ε∗4
i , (47)

where ∥W ∗
i ∥2 = biθ ∗

i .
The adaptive law:

˙̂θi =
ribi

2a2
i

z6
i ST

i (Zi)Si(Zi)−σiθ̂i. (48)

Considering θ̃i = θ̂i −θ ∗
i , one has:

−σi

ri
θ̃iθ̂i ≤−σiθ̃ 2

i

2ri
+

σiθ ∗2
i

2ri
. (49)

Then, one has

LVi ≤− (k1 −3
3
4
)z4

1 −
i

∑
j=2

(k j −4)z4
j

−
i

∑
j=1

(
1

β j+1
−1)e4

j+1 +
1
4

z4
i+1 −

i

∑
j=1

σ jθ̃ 2
j

2r j

+
i

∑
j=1

1
4

B∗4
j+1 +

i

∑
j=1

(
σ jθ ∗2

j

2r j
+

1
2

a2
j +

1
4

ε∗4
j )

+
i

∑
j=1

(
−π jVQ j +(1−4tanh4(

z j

ι j
))H j

)
. (50)

Step n: This is the final step, the actual control u(v)
will be given. Define zn = xn −αn−1, f , and by Itô formula,
we have

dzn = (Ξ(v)v+d(v)+ϕn(x)+ fn +
en

βn
)dt +hndω.

(51)

Take the stochastic Lyapunov function

Vn =Vn−1 +
1
4

z4
n +

1
2rn

θ̃ 2
n +VQn, (52)

where the Lyapunov-Krasovskii function VQn is defined as

VQn = exp(−πnt)
∫ t

t−τn

exp(πns)Ψn(x(s))ds, (53)

and its derivative is

V̇Qn =−πnVQn +Ψn(x̄n(t))

− exp(−πnτn)Ψn(x̄n(t − τn)), (54)

where πn is a positive constant and Ψn is defined later.
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Then, by the Itô differentiation formula, it yields

LVn = LVn−1 + z3
n

(
Ξ(v)v+d(v)+ϕn(x)+ fn +

en

βn

)
+

3
2

z2
nhT

n hn +
1
rn

θ̃n
˙̂θn +V̇Qn, (55)

z3
n fn ≤

3
4

z4
n +2 f 4

n1(x̄n(t))+2 f 4
n2(x̄n(t − τn)), (56)

3
2

z2
nhT

n hn ≤
3
4

z4
n +6h4

n1(x̄n)+6h4
n2(x̄n(t − τn)). (57)

The actual controller v is designed as

v =
1
gv
(−knzn −

bn

2a2
n

θ̂nST(Zn)S(Zn)z3
n −

en

βn
), (58)

where gv = Dmin. kn, bn and an are positive constants, and
the adaptive law

˙̂θn =
rnbn

2a2
n

z6
nST

n (Zn)S(Zn)−σnθ̂n. (59)

Considering θ̃n = θ̂n −θ ∗
n , one has:

−σn

rn
θ̃nθ̂n ≤−σnθ̃ 2

n

2rn
+

σnθ ∗2
n

2rn
. (60)

The following inequality holds

z3
nd(v) =

3
4

z4
n +

1
4

d∗4. (61)

The function Ψn(x̄n(t − τn)) in (53) is defined as

Ψn(x̄n(τn)) =2exp(πnτn) f 4
n2(x̄n(τn))

+6exp(πnτn)h4
n2(x̄n(τn)). (62)

Define the following the nonlinear function Hn as

Hn = Ψn(x̄n)+2 f 4
n1(x̄n(t))+6h4

n1(x̄n), (63)

LVn = LVn−1 + z3
n(−(kn +

9
4
)zn +ϕn(x)+

Hn

z3
n
)

+
1
4

d∗4 −πnVQn +
1
rn

θ̃n
˙̂θn. (64)

Similarly, the unknown term 4
z3

n
tanh4( zn

ιn
)Hn can be ap-

proximated by neural network.
Define the unknown nonlinear function Fn

Fn(x̄n) = ϕn(x)+
4
z3

n
tanh4(

zn

ιn
)Hn. (65)

The RBFNN can be used to approximate Fn as

Fn =W ∗T
n Sn(Zn)+ εn(Zn), |εn(Zn)| ≤ ε∗

n , (66)

where Zn = [x1, . . . ,xn, θ̂1, . . . , θ̂n,αn f ]
T, εn(Zn) is is the ap-

proximation error.

The following inequality holds:

z3
nFn ≤

bn

2a2
n

z6
nθ ∗

n ST
n Sn +

1
2

a2
n +

3
4

z4
n +

1
4

ε∗4
n , (67)

where ∥W ∗
n ∥2 = bnθ ∗

n .
Substituting the above inequality into (64), we have

LVn ≤LVn−1 − (kn −3)z4
n +

1
2

a2
n +

1
4

ε∗4
n

+
1
4

d∗4 −πnVQn −
σnθ̃ 2

n

2rn
+

σnθ ∗2
n

2rn

+(1−4tanh4(
zn

ιn
))Hn. (68)

Based on (50), (68) and Itô differentiation rule, the fol-
lowing inequality can be obtained

LVn ≤− (k1 −3
3
4
)z4

1 −
n−1

∑
i=2

(ki −4)z4
i

− (kn −3
1
4
)z4

n −
n

∑
i=2

(
1
βi

−1)e4
i +

n

∑
i=2

1
4

B∗4
i +

1
4

d∗4

+
n

∑
i=1

(−σiθ̃ 2
i

2ri
−πiVQi)+

n

∑
i=1

(
σiθ ∗2

i

2ri
+

1
2

a2
i

+
1
4

ε∗4
i )+

n

∑
i=1

(1−4tanh4(
zi

ιi
))Hi. (69)

Given ci > 0(i = 1, . . . ,n), li+1 > 0(i = 1, . . . ,n − 1),
such that

c1 = k1 −15/4,ci = ki −4, i = 2, . . . ,n−1,

cn = kn −13/4, li+1 =
1

βi+1
−1, i = 1, . . . ,n−1.

Then, one has

LV ≤−α0V +β +
n

∑
i=1

(1−4tanh4(
zi

ιi
))Hi, (70)

where α0 = min{4ci,4li,σi,πi}, i = 1, . . . ,n, β =

∑n
i=1(

1
2 a2

i +
1
4 ε∗4

i + σiθ ∗2
i

2ri
) + ∑n

i=2
1
4 B∗4

i + 1
4 d∗4. For the

last term of (70), the further discussion will be given.

Theorem 1: Consider the closed-loop system consist-
ing of plant (4), the controller (58) together with the vir-
tual control signals (23), (43) and adaptive laws (24), (48),
(59) under Assumptions 1, 2. For bounded initial condi-
tions, there exist suitable design parameters ci, li, σi, πi

such that all closed-loop signals remain bounded in prob-
ability, and the tracking errors can be arbitrarily small.

Proof: For the last term in (70), it is obvious that it can
be rewritten as follows

n

∑
i=1

(1−4tanh4(
zi

ιi
))Hi

= ∑
zi∈Λi

(1−4tanh4(
zi

ιi
))Hi + ∑

zi /∈Λi

(1−4tanh4(
zi

ιi
))Hi

= ξI +ξJ, (71)
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where

ξI = ∑
zi∈Λi

(1−4tanh4(
zi

ιi
))Hi

ξJ = ∑
zi /∈Λi

(1−4tanh4(
zi

ιi
))Hi. (72)

For zi /∈ Λi, by Lemma 2 and Hi ≥ 0, we can get that ξJ ≤
0. For zi ∈ Λi, |zi| ≤ 0.8814νi with ιi being a positive
constant, zi is bounded and ξI is also bounded.

Furthermore, there exists a positive constant β ∗, such
that |β +ξI |< β ∗. Thus, (70) is rearranged as

LV ≤−α0V +β ∗. (73)

Thus, from Lemma 2 and (73), all the signals of the
closed-loop system are bounded. □

4. SIMULATION RESULTS

Consider the following second-order stochastic time-
delay system.

dx1 = (x2 + x1e(−0.5x1)

+ x2
1(t − τ1)cos(x1x1(t − τ1)))dt

+
x2

1

1+ x2
1(t − τ1)

dω,

dx2 = (u(v)+ x1x2
2 +

x1(t − τ1)x2(t − τ2)

1+ x2
1 + x2

2
)dt

+0.6sin(x2
1 + x2

2)x1(t − τ2)x2(t − τ2)dω,

(74)

where ω̇ is chosen as the one-dimensional Gaussian white
nose with zero mean and variance 1. τ1 and τ2 are time-
delay terms, with τ1 = 3, τ2 = 1. u is defined as follows:

u = D(v) =


1.2(v−1.3), v ≥ 1.3,

0, −0.6 < v < 1.3,

1.5(v+0.6), v ≤−0.6.

(75)

The system output y tracks the ideal reference signal
yd = 0.8sin(t).

The initial conditions [x1(0),x2(0)]T = [0.3,0.1]T,
[θ̂1(0), θ̂2(0)]T = [0,0]T.

In the simulation, the design parameters are taken as
follows as: k1 = 30, k2 = 20, r1 = 1, r2 = 1.2, a1 = 2,
a2 = 2, b1 = 1, b2 = 1, σ1 = 0.1, σ2 = 0.3. Base on the
control design, we construct the RBF NNs Ŵ T

1 S1(Z1) us-
ing 53 nodes, with the width η1 = 0.95 and Ŵ T

2 S2(Z2) us-
ing 35 nodes, with the width η2 = 1.49

The simulation results are shown in Figs. 1-4. From
the simulation results, all the signals in the closed-loop
system are bounded.
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Fig. 1. The system output y and the reference signal yd .
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5. CONCLUSIONS

In this study, the adaptive neural DSC has been pre-
sented for a more general class of stochastic nonlinear
time-delayed systems with unknown input dead-zone. The
drift and diffusion terms of the controlled system are de-
pendent on the states and time-delay variables. It has been
shown that the proposed controller can guarantee that all
signals in the closed-loop systems are bounded in proba-
bility.
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