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Global Adaptive Tracking Control of Robot Manipulators Using Neural
Networks with Finite-time Learning Convergence
Chenguang Yang*, Tao Teng, Bin Xu, Zhijun Li, Jing Na, and Chun-Yi Su

Abstract: In this paper, the global adaptive neural control with finite-time (FT) convergence learning performance
for a general class of nonlinear robot manipulators has been investigated. The scheme proposed in this paper offers
a subtle blend of neural controller with robust controller, which palliates the limitation of neural approximation
region to ensure globally uniformly ultimately bounded (GUUB) stability by integrating a switching mechanism.
Moreover, the proposed scheme guarantees the estimated neural weights converging to optimal values in finite time
by embedding an adaptive learning algorithm driven by the estimated weights error. The optimal weights obtained
through the learning process of the neural networks (NNs) will be reused next time for repeated tasks, and can
thus reduce computational load, improve transient performance and enhance robustness. The simulation studies
have been carried out to demonstrate the superior performance of the controller in comparison to the conventional
methods.

Keywords: Finite-time learning convergence, globally uniformly ultimate boundedness, neural networks, robot
manipulators.

1. INTRODUCTION

In the last decades, robots have been widely used in
various fields. With the rapid development and extensive
applications of robotic technology, the requirements for
fine working and flexible control are becoming increas-
ingly demanding under different environments. However,
due to the increasing complexity of dynamics model of
robots, exact knowledge of robot dynamics is unavailable
in actual engineering application. In addition, the working
condition could be extremely uncertain, such as variation
of the external environment and change of payload, etc.
Thus, a crucial problem in robot control is to overcome
the uncertainties mentioned above.

In practical industrial applications, there are many ways
to overcome the uncertainties of the systems [1–5]. NNs
[6] play a significant role to enhance robot’s intelligence
[7–14], by improvement of the performance of the con-
trol systems in uncertain environments. With the univer-
sal approximation ability, the NNs can be used as an ef-

Manuscript received August 15, 2016; revised November 1, 2016; accepted November 11, 2016. Recommended by Associate Editor Choon
Ki Ahn under the direction of Editor Euntai Kim. This work was partially supported by National Nature Science Foundation (NSFC) under
Grant 61473120, 61622308, 61573174, Guangdong Provincial Natural Science Foundation 2014A030313266 and International Science
and Technology Collaboration Grant 2015A050502017, Science and Technology Planning Project of Guangzhou 201607010006, State Key
Laboratory of Robotics and System (HIT) Grant SKLRS-2017-KF-13, the Fundamental Research Funds for the Central Universities, and
Fundamental Research Funds of Shenzhen Science and Technology Project under Grant JCYJ20160229172341417.

Chenguang Yang, Tao Teng, Zhijun Li, and Chun-Yi Su are with the Key Lab of Autonomous Systems and Networked Control, Ministry
of Education, South China University of Technology, Guangzhou, China (e-mails: cyang@ieee.org, tao.teng_1994@qq.com, zjli@ieee.org,
cysu@algol.concordia.ca). Chenguang Yang is also with Zienkiewicz Centre for Computational Engineering, Swansea University, SA1 8EN,
UK. Chun-Yi Su is on leave from Concordia University. Bin Xu is with the School of Automation, Northwestern Polytechnical University,
Xian, China (e-mail: binxu@nwpu.edu.cn). Jing Na is with Faculty of Mechanical & Electrical Engineering, Kunming University of Science
& Technology, Kunming, China (e-mail: najing25@163.com).
* Corresponding author.

fective tool in approximation based control of highly un-
certain, nonlinear and complex systems. The approxima-
tion ability of the NNs lies on the foundation of the Stone-
Weierstrass theorem [15–18], which states that any real
continuous function on a compact set is able to be uni-
formly approximated to an arbitrary degree of accuracy.

NNs can be embeded into control framework in a vari-
ety of means [19–23], and remarkable achievements have
been made. However, it is essential to note that the NNs
approximation ability is valid merely in a compact do-
main. The conventional NN-based robot manipulators
control could merely guarantee the semi-global uniformly
ultimately bounded (SGUUB) stability. In this sense, it is
ideal to grow a global NNs controller for robot manipu-
lators [24]. In [25], the global NNs controller was only
designed for strict-feedback systems in the case of exist-
ing unknown dynamics. To palliate the difficulty in prior
estimation of the domain for the employment of the NNs,
a robust adaptive NNs controller was addressed in [26]
to achieve global uniformly ultimately bounded (GUUB)
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tracking.
It should also be noted that the conventional adaptive

NNs controls only focus on control performance rather
than neural learning performance. However, with conven-
tional adaptive laws (e.g. gradient method, e-modification
and σ -modification), it is not possible to guarantee that
the learned neural weights converge to the optimal values.
Moreover, the speed of the learning convergence cannot
be specified by the designer. As a matter of fact, the es-
timation of NN weights usually do not converge to their
optimal values. Therefore, neural learning has to be car-
ried out each again next time even if for a repeated task.

In order to associate with conventional learning rate, the
FT adaptive learning algorithm is employed to enhance
neural learning performance. In [27, 28], the parameter
estimation error was obtained by introducing a set of aux-
iliary filtered variables in a novel way. Therefore, adaptive
laws established by the estimation error were presented to
achieve the FT convergence. It is remarkable that the FT
adaptive learning algorithm can also ensure that the esti-
mated weights converge to optimal values in finite time.
The optimal weights obtained through learning process
of NNs could therefore be reused next time to repeat the
same control task. In this way, the FT adaptive learn-
ing algorithm reduces computational load and enhances
transient performance for a repeated control task. Con-
sequently, the FT adaptive learning algorithm is of great
importance in practical applications of NNs. Inspired
by the aforementioned works, in this paper we will de-
velop a global adaptive neural control approach using the
NNs with the FT learning convergence, aiming at a gen-
eral class of nonlinear robot manipulators with unknown
dynamics. Based on the learning capability, RBF NNs
[29–31] are employed to learn the unknown robot ma-
nipulators dynamics. To characterize the neural learning
performance, the FT adaptive learning algorithm is pre-
sented to enhance neural learning performance. Moreover,
a global adaptive neural control scheme is proposed to
guarantee not only the global uniformly ultimately bound-
edness (GUUB) of all the signals in the closed-loop sys-
tem, but also the neural learning performance such that the
estimated neural weights converge to their optimal values
in finite time. Consequently, the NNs could simply re-use
the learned weights’ values for a repeated task next time
instead of re-learning them. Thus transient performance
and robustness could be improved by skipping the neural
learning process.

The remainder of this paper is outlined as follows:
mathematical model of a robot manipulator is character-
ized in Section 2. Section 3 briefly introduces the concept
and structure of the radial basis function neural networks
(RBF NNs), as well as some functions and key lemmas
which are crucial for the controller design. The global
adaptive neural controller enhanced by FT learning con-
vergence is designed in Section 4. In Section 5, the simu-

lation results validate the approach we suggest is credible.
Finally, Section 6 summarizes up the previous design.

2. PROBLEM FORMULATION

2.1. System description
The dynamics equation of an n-link robot manipulator

can be described as follows:

M(q)q̈+C(q, q̇)q̇+G(q) = τ, (1)

where q = [q1, ...,qn]
T ∈ Rn, q̇ = [q̇1, ..., q̇n]

T ∈ Rn and
q̈= [q̈1, ..., q̈n]

T ∈Rn represent the robot joint position vec-
tor, joint velocity vector and joint acceleration vector, re-
spectively. M(q) ∈ Rn×n, V (q, q̇) ∈ Rn×n, and G(q) ∈ Rn

are the inertia matrix, Coriolis/centripetal torque matrix
and gravity vector, respectively. According to [32], the
following properties hold for the robotic system (1):

Property 1: The matrix M(q) ∈ Rn×n is symmetric
positive-definite.

Property 2: The matrix Ṁ(q) − 2C(q, q̇) is skew-
symmetric, i.e., zT

(
Ṁ−2C

)
z = 0, ∀z ∈ Rn.

Property 3: The matrices M(q), C(q, q̇) and G(q) are
all bounded.

2.2. System transformation
Define x1i = qi, i = 1, ...n, x1 = [x11, ...,x1n]

T ∈ Rn, and
x2i = qi, i = 1, ...n, x2 = [x21, ...,x2n]

T ∈ Rn. An n-link
robot manipulator (1) is a multiple-input-multiple-output
(MIMO) vector functions system which can be trans-
formed to the following form:

ẋ1 = x2,

Mẋ2 =−(Cx2 +G)+ τ, (2)

y = x1,

where y= x1 is the output of the robot manipulator system.

3. PRELIMINARIES

3.1. RBF neural networks
In this paper, the RBF NNs are employed as a universal

approximator to emulate any real continuous function f :
RM → R with the following form:

f (Xin) = f̂ (Xin,W ∗)+ ε(Xin), ∀Xin ∈ ΩXin , (3)

where f̂ (Xin,Ŵ ) = Ŵ T S(Xin), with the input vector Xin ∈
ΩXin ⊂ RM , the NNs output f̂ ∈ R is the estimation of f ,
Ŵ = [ω̂1, ..., ω̂N ]

T ∈ RN is the weight parameter vector,
and N is the number of NNs nodes. W ∗ is optimal NNs
weights, According to [29], W ∗ is defined as:

W ∗ = argmin
(W )

[
sup

Xin∈ΩXin

| f (Xin)− f̂ (Xin,Ŵ )|

]
, (4)
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and ε(Xin) is the NNs approximation error, which is uni-
formly bounded by |ε(Xin)| ≤ ε∗,∀Xin ∈ ΩXin . S(Xin) =
[s1(Xin), ...,sN(Xin)]

T is a nonlinear vector function of the
inputs, the components of which have the following form:

si (Xin) = exp
[
− (Xin −ξi)

T (Xin −ξi)

ϑ 2

]
, i = 1, ...,N,

(5)

where ξi = [ξi1,ξi2, ...,ξiM]
T ∈ RM represents the center of

the ith basis function and ϑ represents the variance.
Assumption 1: The optimal weight W ∗ is bounded as

∥W ∗∥ ≤Wm on the compact ΩXin .
Assumption 2: The reference signals qd and their

derivatives q̇d are smooth and bounded functions.

3.2. Partial PE condition
In adaptive systems, the persistent excitation (PE) con-

dition is of great significance, which has be proven that,
the RBF NNs can achieve accurate approximation of
closed-loop system dynamics in a neighborhood of a spe-
cific periodic trajectory with the partial PE condition [29],
when tracking a reference periodic-like trajectory.

Definition 1 [27]: A vector or matrix Ψ(t) is called
persistently excited if there exist T > 0, ς > 0, such that∫ t+T

t
ΨT (τ)Ψ(τ)dτ ≥ ς I,∀t ≥ 0. (6)

3.3. Useful functions and key lemmas
Lemma 1 [25]: The following inequality holds for any

ω0 > 0 and η ∈ R:

0 ⩽ |η |−η tanh
(

η
ω0

)
⩽ κω0, (7)

where κ is a constant satisfying κ = e−(κ+1), i.e.,κ =
0.2785.

Lemma 2 [27]: For a continuous system ẋ = f (x, t),
f (0, t) = 0, x ∈ Rn, there is a continuously differentiable
positive-definite function V (x, t) and real numbers α1 > 0,
0 < α2 < 1, such that when V̇ (x, t)≤−α1V α2(x, t) holds,
then V (x, t) converges to zero in finite time with the set-

tling time T ≤
(

1
α1(1−α2)

)
V 1−α2 (x(t0), t0), for any

given initial condition x(t0).

Definition 2 [25]: Given constants 0 < 1r j,i <
2r j,i, i =

1, ...,n and j = 1,2, being the constants defining the
boundaries of the compact subsets Ωr, the set of switching
functions is specified as below:

bk(xk,i)≜



1 if |xk,i|< 1rk,i

2r2
k,i − x2

k,i
2r2

k,i − 1r2
k,i

e

(
x2
k,i−

1r2
k,i

ϖ(2r2
k,i−

1r2
k,i)

)2b

if 1rk,i ≤ |xk,i| ≤ 2rk,i

0 if |xk,i|> 2rk,i

(8)

b j,i(x̄ j)≜
j

∏
k=1

bk(xk,i), (9)

where x̄1 = xT
1 ∈ Rn, x̄2 =

[
xT

1 ,x
T
2

]T ∈ R2n, and B j(x̄ j) =
diag(b j,1(x̄ j), ..,b j,n(x̄ j)), with ϖ > 0 and b ≥ 1.

4. GLOBAL NEURAL CONTROL OF ROBOT
MANIPULATOR

The global adaptive neural control with finite-time (FT)
convergence learning performance for robot manipulators
is investigated in this section. During the controller de-
sign, the procedure breaks down into two steps.

4.1. Controller design
Step 1: The robot manipulator joint position error is de-

fined as x̃1 = x1 − x1d , where x1d = qd . Taking the deriva-
tive of x1 and using (2), we have:

˙̃x1 = ẋ1 − ẋ1d = x2 − ẋ1d , (10)

where ẋ1d = q̇d .
Take x2 as the virtual control of (10) and design the sig-

nal x2d as:

x2d =−K11x̃1 −K12sign(x̃1)+ ẋ1d , (11)

where K11 = diag(k11,1, ...,k11,n), and k11,i > 0, i = 1, ...,n,
K12 = diag(k12,1, ...,k12,n), and k12,i > 0, i = 1, ...,n.

Then define x̃2 = x2 − x2d and (10) is calculated as:

˙̃x1 = x2 − ẋ1d

= x2 − x2d + x2d − ẋ1d

= x̃2 −K11x̃1 −K12sign(x̃1) .

(12)

Step 2: The robot manipulator joint velocity error is
written as x̃2 = x2 − x2d . Taking the derivative of x2 and
using (2), we have:

M ˙̃x2 +Cx̃2 = τ −Mẋ2d −Cx2d −G. (13)

The vector M ˙̃x2 in (13) is a function of the robot ma-
nipulator joint acceleration q̈, which is sensitive to mea-
surement noise. To make control design independent of
joint acceleration, inspired by [27], the Eq. (13) can be
rewritten as:

Ḟ1 (z)+F2 (z) = τ +F3 (z) , (14)

where F1 = Mx̃2, F2 = −Ṁx̃2 +Cx̃2 and F3 = −Mẋ2d −
Cx2d −G. Using NNs to emulate the unknown functions
F1, F2 and F3, respectively, we have:

F1 = Mx̃2 =W ∗T
1 S1(z)+ ε1,

F2 =−Ṁx̃2 +Cx̃2 =W ∗T
2 S2(z)+ ε2,

F3 =−Mẋ2d −Cx2d −G =W ∗T
3 S3(z)+ ε3,

(15)

where z = [q, q̇,x2d , ẋ2d ], and W ∗T
1 , W ∗T

2 and W ∗T
3 are the

optimal NNs weights matrix, S1, S2 and S3 are the basis
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function vectors, while ε1, ε2 and ε3 are the NNs construc-
tion error, and ∥ε1∥< ε∗

1 , ∥ε2∥< ε∗
2 , ∥ε3∥< ε∗

3 .
Then, equation (15) can be further formulated as:

F1,i = ST
1 W ∗

1,i + ε1,i,

F2,i = ST
2 W ∗

2,i + ε2,i,

F3,i = ST
3 W ∗

3,i + ε3,i,

(16)

where i = 1, ...,n. W ∗
1,i, W ∗

2,i and W ∗
3,i are ith column of the

matrices W ∗
1 , W ∗

2 and W ∗
3 , respectively.

Consequently, using RBFNNs method, the Eq. (14) can
be divided into n subsystems as:

ṠT
1 W ∗

1,i + ε̇1,i +ST
2 W ∗

2,i + ε2,i −ST
3 W ∗

3,i − ε3,i = τi. (17)

Define a new weight matrix as follows:

W ∗
i =

[
W ∗T

1,i W ∗T
2,i W ∗T

3,i

]T
=

 W ∗
1,i

W ∗
2,i

W ∗
3,i

 . (18)

Consequently, the Eq. (17) can be formulated as:

S̄TW ∗
i + ε̄i = τi, (19)

where S̄T = ˙̄ST
1 + S̄T

2 − S̄T
3 and ˙̄S1 =

[
ṠT

1 ,0
T
N ,0

T
N

]T
, S̄2 =[

0T
N ,S

T
2 ,0

T
N

]T
, S̄3 =

[
0T

N ,0
T
N ,S

T
3

]T
, NS̄ = N +N +N, ε̄i =

ε̇1,i + ε2,i − ε3,i.
We can design an adaptive controller as:

τi =−x̃1,i − k21,ix̃2,i − k22,isign(x̃2,i)−b2,i(x̄2)uN
i

− (1−b2,i(x̄2))uR
i , i = 1, ...,n, (20)

uN
i = Ŵ T

i S̄3(z), (21)

uR
i = FU

3,i(z) tanh

(
FU

3,i(z)
ω2

)
, (22)

where K21 = diag(k21,1, ...,k21,n), and k21,i > 0, i = 1, ...,n,
K22 = diag(k22,1, ...,k22,n), and k22,i > 0, i = 1, ...,n. FU

3,i(z)
is upper bound of F3,i(z).

To facilitate weights estimation, let us first design the
following filters:

ρ ˙̄S1 f + S̄1 f = S̄1, S̄1 f |t=0= 0NS̄
,

ρ ˙̄S2 f + S̄2 f = S̄2, S̄2 f |t=0= 0NS̄
,

ρ ˙̄S3 f + S̄3 f = S̄3, S̄3 f |t=0= 0NS̄
,

ρτ̇i f + τi f = τi, τi f |t=0= 0n,

(23)

where S̄1 f , S̄2 f , S̄3 f and τi f are the filtered version of S̄1,
S̄2, S̄3 and τi, respectively. According to (19) and (23), one
can obtain:

W ∗T
i

(
S̄1 − S̄1 f

ρ
+ S̄2 f − S̄3 f

)
=W ∗T

i S̄ f = τi f − ε̄i f . (24)

Let us introduce matrices P ∈ RNS̄×NS̄ , Qi ∈ RNS̄ , which
are defined as below:{

Ṗ =−ℓP+ S̄ f S̄T
f ,

Q̇i =−ℓQi + S̄ f τi f ,
(25)

where ℓ > 0 is design parameter. The solution of (25) is
derived as:{

P(t) =
∫ t

0 e−ℓi(t−r)S̄ f S̄T
f dr,

Qi(t) =
∫ t

0 e−ℓi(t−r)S̄ f τi f dr,
(26)

Let us now define auxiliary vector Ei ∈ RN which can
be calculated from P, Qi:

Ei = PŴi −Qi

= PŴi −PW ∗
i −ψi

=−PW̃i −ψi,

(27)

where Qi = PW ∗
i +ψi with ψi =

∫ t
0 e−ℓi(t−r)S̄ f ε̄i f dr.

The closed-loop error equation becomes:

M ˙̃x2 +Cx̃2 =− x̃1 −K21x̃2 −K22sign(x̃2)

+B2(x̄2)
(
F̃3 + ε3

)
+(I −B2(x̄2))

(
F3 −uR) , (28)

where F̃3,i = W̃ T
3,iS3(z) = W̃ T

i S̄3(z), W̃3,i =W ∗
3,i−Ŵ3,i, W̃i =

W ∗
i −Ŵi.
The adaptation laws of the estimated parameters are de-

signed as:

˙̂Wi = Γ
(

S̄3x̃2,ib2,i(x̄2)−δi
PT Ei

∥Ei∥

)
, i = 1, ...,n, (29)

where Γ is a symmetric positive definitive matrix, δi is
designed positive parameter.

4.2. Stability analysis
Consider system (1), with control laws (20), and adap-

tive laws (29) under Assumptions 1 and 2. Let us choose
a suitable Lyapunov function as below:

V =V1 +V2, (30)

with

V1 =
1
2

x̃T
1 x̃1, (31)

V2 =
1
2

x̃T
2 Mx̃2 +

1
2

n

∑
i=1

(
ET

i P−1Γ−1P−1Ei
)
, (32)

where Γ−1 is a positive-definite matrix.
Taking the derivative of V1, we have:

V̇1 = x̃T
1

˙̃x1

= x̃T
1 (x̃2 −K11x̃1 −K12sign(x̃1))

=−x̃T
1 K11x̃1 −

n

∑
i=1

(k12,i|x̃1,i|)+ x̃T
1 x̃2

≤−
n

∑
i=1

(k12,i|x̃1,i|)+ x̃T
1 x̃2

≤−K∗
1
√

V1 + x̃T
1 x̃2,

(33)

where K∗
1 =

√
2λmin (K12).



1920 Chenguang Yang, Tao Teng, Bin Xu, Zhijun Li, Jing Na, and Chun-Yi Su

According to (27), we have:

∂ (P−1Ei)

∂ t
=−∂ (W̃i +P−1ψi)

∂ t
=− ˙̃Wi +P−1ṖP−1ψi −P−1ψ̇i

=− ˙̃Wi +ψ ′
i

= ˙̂Wi +ψ ′
i ,

(34)

where ψ ′
i = P−1ṖP−1ψi −P−1ψ̇i.

Taking the derivative of V2 yields:

V̇2 =x̃T
2 M ˙̃x2 +

1
2

x̃T
2 Ṁx̃2

+
n

∑
i=1

(
ET

i P−1Γ−1
(

˙̂Wi +ψ ′
i

))
=

1
2

x̃T
2 Ṁx̃2 − x̃T

2 Cx̃2 − x̃T
2 x̃1 − x̃T

2 K21x̃2

−
n

∑
i=1

(k22,i|x̃2,i|)+ x̃T
2 B2(x̄2)

(
F̃3 + ε3

)
+ x̃T

2 (I −B2(x̄2))
(
F3 −uR)

+
n

∑
i=1

(
ET

i P−1Γ−1 ˙̂Wi

)
+

n

∑
i=1

(
ET

i P−1Γ−1ψ ′
i

)
.

(35)

Substituting the adaptation laws (29) into (35), we have:

V̇2 =− x̃T
2 x̃1 − x̃T

2 K21x̃2 −
n

∑
i=1

(k22,i|x̃2,i|)

+ x̃T
2 B2(x̄2)ε3 + x̃T

2 (I −B2(x̄2))
(
F3 −uR)

+
n

∑
i=1

(
−ψT

i P−1S̄3x̃2,iB2,i(x̄2)
)

+
n

∑
i=1

(
ET

i P−1Γ−1ψ ′
i −δi

ET
i P−1PT Ei

∥Ei∥

)
.

(36)

The following inequalities hold:

x̃T
2 B2(x̄2)ε3 ≤

n

∑
i=1

(
ε∗

3,i|x̃2,i|
)
,

F3,i −uR
2,i ≤ |F3,i|−FU

3,i tanh

(
FU

3,i

ω2

)
≤ κω2.

(37)

Using the Young inequality, we have:

V̇2 ≤− x̃T
2 x̃1 − x̃T

2 K21x̃2 −
n

∑
i=1

(k22,i|x̃2,i|)

+
n

∑
i=1

(
ε∗

3,i|x̃2,i|
)
+

n

∑
i=1

(κω2|x̃2,i|)

−
n

∑
i=1

(
|x̃2,i|∥ψT

i P−1S̄3∥
)

−
n

∑
i=1

(
∥ET

i ∥
(
δi −∥P−1Γ−1ψ ′

i∥
))

(38)

≤−
n

∑
i=1

(
|x̃2,i|

(
k22,i − ε∗

3,i −κω2 +∥ψT
i P−1S̄3∥

))

Fig. 1. Illustration of the 2DOF robot manipulator.

−
n

∑
i=1

(
∥ET

i ∥
(
δi −∥P−1Γ−1ψ ′

i∥
))

− x̃T
2 x̃1

≤−K∗
2
√

V2 − x̃T
1 x̃2,

where K∗
2 = min[(k22,i − ε∗

3,i − κω2 + ∥ψT
i P−1S̄3∥) ×√

2/λmax(M),(δi −∥P−1Γ−1ψ ′
i∥)δp

√
λ max(Γ−1)].

V̇ = V̇1 +V̇2 ≤−K∗√V , (39)

where K∗ = min[K∗
1 ,K

∗
2 ] .

Note that the inequation (39) satisfies the condition of
Lemma 2. Therefore, the error terms x̃1, x̃2 and Ei, i =
1, ..., n, converge to zero in finite time. Moreover, the
parameter error W̃ converges to a compact set in finite time
satisfying lim

t→∞
PW̃i = −ψi. Then, V ≡ 0, ∀t > tc with the

finite-time

tc ≤ 2K∗
√

V (0). (40)

The tracking errors x̃1 and x̃2 vanish to zeros in finite
time, so that the tracking error x̃1, x̃2 to zero is guaranteed.

Remark 1: According to [33] [34], the dissipativity
and l2-l∞ approaches can be incorporated into the Lya-
punov function to ensure the robustness.

5. SIMULATIONS STUDIES

Contrast simulation studies have been carried out on a
model of 2DOF robot manipulator to analyze the effec-
tiveness of the controller we developed above.

The dynamics of 2DOF robot manipulator is described
as: [

M11 M12

M21 M22

]
q̈+
[

V11 V12

V21 V22

]
q̇+
[

G1

G2

]
= τ,

(41)

where m1 = 2 kg, m2 = 0.85 kg, l1 = 0.35 m, l2 = 0.31
m, I1 = 0.061 kgm2 and I2 = 0.020 kgm2. The mi is the
inertia of link i, Ii is the inertia of link i around the axis
at the mass center of link i, li and lci are the length of link
i and the distance between i− 1th joint and the ith joint’s
mass center, i = 1,2, respectively.
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Table 1. The description of 2-joint robot manipulator.

M11 m1l2
c1 +m2(l2

1 + l2
c2 +2l1lc2 cosq2)+ I1 + I2

M12 m2(l2
c2 + l1lc2 cosq2)+ I2

M21 m2(l2
c2 + l1lc2 cosq2)+ I2

M22 m2l2
c2 + I2

V11 −m2l1lc2q̇2 sinq2

V12 −m2l1lc2(q̇1 + q̇2)sinq2

V21 m2l1lc1q̇1 sinq2

V22 0
G1 (m1lc2 +m2l1)gcosq1 +m2lc2gcos(q1 +q2)

G2 m2lc2gcos(q1 +q2)

Fig. 2. Tracking performance of q1.

The desired trajectories are given as qd1 = 3sin0.5t
and qd2 = 2cos0.5t, where t ∈ [0, t f ], and t f = 15s.
The control gains are selected as K11 = diag(10,10),
K12 = diag(0.0001,0.0001), K21 = diag(10,10), K21 =
diag(0.0001,0.0001). And the NNs adaptive laws are cho-
sen as ΓF = 15I, ΓH = 15I, δF = 0.005, δH = 0.005.
The number of hidden layer nodes of the NNs is set as
N1 = N2 = N3 = 256. The NNs weight matrix are ini-
tialized as Ŵ1(0) = 0 ∈ R768, Ŵ2(0) = 0 ∈ R768. The ro-
bust parameters are set as ω2 = 0.01, while 1r1,1 =

1r1,2 =
1r2,1 =

1r2,2 = 2 and 2r1,1 =
2r1,2 =

2r2,1 =
2r2,2 = 3, and

ϖ = 1 and b = 1. In the comparative simulation studies,
the σ -modification adaptive laws is given as:

˙̂Wi = Γ
(
S̄3x̃2,ib2,i(x̄2)−σiŴi

)
. (42)

The simulation results are presented in Figs. 2-9.
Figs. 2-5 show that the reference signal qd and q̇d can

be tracked in finite time. As it can be seen, all adapta-
tion laws could lead to stable control performance. How-
ever, comparing with the conventional adaptive law, the
global adaptive neural control with FT learning adaptive
laws (30) achieve faster convergence speed of the tracking
errors. It may be due to the employment of the derived
weights error information Ei for the adaptive law.

Therefore, the proposed global adaptive neural con-
troller for robot manipulators is able to achieve good tran-
sient tracking performance of tracking errors in the pres-
ence of unknown dynamics.

Fig. 3. Tracking performance of q2.

Fig. 4. Tracking performance of q̇1.

Fig. 5. Tracking performance of q̇2.

Fig. 6. FT weights update for the 1st joint.
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Fig. 7. FT weights update for the 2nd joint.

Fig. 8. Conventional weights update for the 1st joint.

Fig. 9. Conventional weights update for the 2nd joint.

Figs. 6-7 show the weights converge to the optimal
value in finite time. In comparison to the results shown
in Figs. 8-9, the FT adaptive learning algorithm ensures
that the adaptation of weights estimation converges to the
optimal value in a prescribed time horizon, such that the
learning weights can be reused for repeated task, and thus
could reduce computational load, improve transient per-
formance and enhance robustness.

6. CONCLUSIONS

In this work, a smooth switching algorithm has been
employed by which adaptive neural controller and robust
controller cooperate to ensure closed-loop system global

stability as rigorously established by the Lyapunov ap-
proach. The FT adaptive learning algorithms are em-
ployed to guarantee that the estimated weights converge
to optimal values in finite time. The optimal weights ob-
tained through learning process of NNs could be reused
next time for a repeated task, such that neural learning
could be spared and thus transient control performance
and robustness could be improved. In future work, we
will extend the proposed scheme to more general nonlin-
ear systems to test the performance of the proposed con-
trol method for more complex systems such as hypersonic
flight vehicles [35–37].
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