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Global Finite-time Stabilization for a Class of Switched Nonlinear Sys-
tems via Output Feedback
Junyong Zhai* and Zhibao Song

Abstract: This paper addresses the problem of global finite-time stabilization for a class of uncertain switched non-
linear systems via output feedback under arbitrary switchings. Based on the adding a power integrator approach, we
design a homogeneous observer and controller for the nominal switched system without the perturbing nonlineari-
ties. Then, a scaling gain is introduced into the proposed output feedback stabilizer to implement global finite-time
stability of the closed-loop system. In addition, the proposed approach can be also extended to a class of switched
nonlinear systems with upper-triangular growth condition. Two examples are given to illustrate the effectiveness of
the proposed method.
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1. INTRODUCTION

The problem of global output feedback control for
switched nonlinear systems is one of the most important
problems in the field of nonlinear system control. Com-
pared with the results achieved for non-switched nonlin-
ear systems, for example, the works [1, 2] in the past sev-
eral decades, there are fewer results available on design-
ing nonlinear observers and output feedback controllers
for switched nonlinear systems. In this paper, we will
consider the problem of global finite-time stabilization via
output feedback for the following class of switched non-
linear systems described by

żi = zpi
i+1 + fi,σ(t)(t,z,u), i = 1, · · · ,n−1

żn = upn + fn,σ(t)(t,z,u),

y = z1, (1)
where z = (z1, · · · ,zn)

T ∈ Rn, u ∈ R, and y ∈ R are the
system state, control input and output, respectively. σ(t)
is the switching signal taking its values in a finite set M =
{1, · · · ,m} and m is the number of subsystems. For k ∈ M
and i = 1, · · · ,n, fi,k(t,z,u) : R+ ×Rn ×R → R are un-
certain continuous function with fi,k(t,0,0) = 0, and pi ∈
R≥1

odd ≜ {ζ ∈ R | ζ ≥ 1 and ζ is a ratio of odd integers}.
Moreover, it is assumed that the state of system (1) does
not jump at the switching instants, that is, the trajectory
z(t) is everywhere continuous.

It is well known that switched systems are an important
class of hybrid systems, which have achieved consider-
able attention in [3–15], and the references therein. The
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main concerns in study of switched systems are the issues
of stability and stabilization. Many methods have been
proposed in the study of switched systems, for example,
common Lyapunov function, single Lyapunov function,
multiple Lyapunov functions, and so on. The work [16]
investigated output feedback control problem for a class
of switched nonlinear systems with parameter uncertainty
by using single Lyapunov function method. The existence
of a common Lyapunov function for all subsystems was
shown in [6] to be a necessary and sufficient condition for
a switched system to be asymptotically stable under ar-
bitrary switchings. However, a common Lyapunov func-
tion may be usually difficult to find for switched nonlinear
systems. Therefore, attention is transformed to switched
nonlinear systems with special structures, which plays an
important role in the stabilization of switched nonlinear
systems [3, 4, 6].

On the other hand, due to fast convergence and good
performance on robustness and disturbance rejection,
many researchers have focused on the problem of finite-
time stability, such as the works [17, 19–21] in recent
years. The works [18, 19] provided the Lyapunov the-
ory for finite-time stability of nonlinear systems. The
work [21] presented a design method for global finite-
time state feedback stabilization of a class of nonlinear
systems. Compared with the state feedback case, there
are fewer results dealing with output feedback finite-time
stabilization. The work [22] discussed the finite-time sta-
bilization for a double integrator system. While the work
[23] studied the problem of global finite-time stabilization
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by dynamic output feedback for a class of nonlinear sys-
tems. A recent work [24] discussed global finite-time
output feedback stabilization for a class of non-triangular
nonlinear systems. A global finite-time observer with Lip-
schitz nonlinearity was proposed in [25]. However, the
above results are concerned with non-switching case. In
switched case, Nonlinear control for power integrator tri-
angular systems was investigated in [26] , and the work
[27] considered the problem of global finite-time out-
put feedback stabilization for system (1) with the strict
power order restriction (pi ≡ 1, i = 1, · · · ,n) under linear
growth condition. While global finite-time stabilisation
problem for a class of switched nonlinear systems with
(pi ≡ 1, i = 1, · · · ,n) was addressed in [28], and subse-
quently the work [29] studied the problem of global finite-
time state feedback stabilization of system (1) in strict
feedback form under linear growth condition. Immedi-
ately, one may raise the following question: Can it be
possible to relax the power order restriction and how can
we construct a finite-time output feedback controller for
switched high-order nonlinear systems (1) under homoge-
neous growth condition?

Motivated by the homogeneous domination approach
described in [30], we will resolve the problem of global
finite-time output feedback stabilization for a class of
switched high-order nonlinear systems under arbitrary
switchings. The main contributions of the paper are high-
lighted as follows: (i) We extend the methodology pre-
viously developed for non-switched nonlinear systems to
switched nonlinear systems. (ii) To overcome unmeasur-
able states, a homogeneous observer is designed by the
homogeneous theory. (iii) To handle uncertain nonlinear-
ities, a scaling gain is introduced, and this makes it more
intricate to construct a common Lyapunov function for all
subsystems. (iv) Lower-triangular homogeneous growth
conditions are extended to upper-triangular homogeneous
growth conditions.

Notations: The following notations will be used
throughout the paper. R+ denotes the set of all non-
negative real numbers, Rn denotes the real n-dimensional
space. Ci denotes the set of all functions with continuous
ith partial derivatives. K denotes the set of all functions:
R+ → R+, which are continuous, strictly increasing and
vanishing at zero.

2. PRELIMINARIES

Definition 1 [19]: Consider the following autonomous
system

ẋ = f (x), with f (0) = 0, x ∈ D, x(0) = x0, (2)

where f : D →Rn is continuous on an open neighborhood
D ⊆ Rn of the origin. The zero solution of (2) is finite-
time convergent if there are an open neighborhood U ⊆ D

of the origin and a function T : U\{0}→ (0,∞), such that
∀x0 ∈U , the solution trajectory x(t,x0) of (2) starting from
the initial point x0 ∈U\{0} is well-defined and unique in
forward time for t ∈

[
0,T (x0)

)
, and limt→T (x0) x(t,x0) = 0.

Then, T (x0) is called the settling time. The zero solu-
tion of (2) is finite-time stable if it is Lyapunov stable and
finite-time convergent. When U = D = Rn, the zero solu-
tion is said to be globally finite-time stable.

Definition 2 [31]: For real numbers ri > 0, i = 1, · · · ,n
and fixed coordinates (x1, · · · ,xn) ∈ Rn:
• the dilation ∆ε(x) is defined by ∆ε(x)= (ε r1 x1, · · · ,ε rn xn),
∀ε > 0, with ri being called as the weights of the co-
ordinates. For simplicity, we define dilation weight
∆ = (r1, · · · ,rn).
• a function V ∈ C(Rn,Rn) is said to be homogeneous of
degree τ if there is a real number τ ≥ 0 such that

V (∆ε(x)) = ετV (x1, · · · ,xn), ∀x ∈ Rn \{0}.

• a homogeneous p−norm is defined as ∥x∥∆,p =(
|xi|p/ri

)1/p
,∀x ∈ Rn, for a constant p ≥ 1. For simplicity,

we choose p = 2 and write ∥x∥∆ for ∥x∥∆,2.

Theorem 1 [19]: For system (2), the following state-
ments hold:
(i) If there exists a C1 function V : D →R, a class K func-
tion α(·), real numbers ρ > 0 and λ ∈ (0,1), and an open
neighborhood U ⊆ D of the origin such that

V (0) = 0, α(∥x∥)≤V (x), V̇ (x)≤−ρV (x)λ , x ∈U,
(3)

then the zero solution x(t) = 0 of system (2) is finite-time
stable.
(ii) If U = D = Rn and (3) holds, then the zero solution
x(t) = 0 of system (2) is globally finite-time stable.

Lemma 1 [31]: Suppose V : Rn → R is a homoge-
neous function of degree τ with respect to ∆. Then, the
following conclusions hold:
(i) ∂V/∂xi is homogeneous of degree τ − ri with ri being
the homogeneous weight of xi;
(ii) there is a constant c̄ such that V (x)≤ c̄∥x∥τ

∆. Moreover,
if V (x) is positive definite, then c

¯
∥x∥τ

∆ ≤ V (x) with c
¯
> 0

being a constant.

3. MAIN RESULTS

At first, we design an output feedback stabilizer for the
nominal system

ẋi = xpi
i+1, i = 1, · · · ,n−1, ẋn = ν pn , y = x1, (4)

where x = (x1, · · · ,xn)
T ∈Rn, ν ∈R, y ∈R are the system

state, control input and output, respectively.
According to the approach proposed in [32], we con-

struct a homogenous output feedback stabilizer for system
(4), which is given in the following lemma.
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Lemma 2: For any constant τ ∈
(
− 1

1+∑n−1
s=1 (p1···ps)

,0
)
,

there exist constants li > 0, i = 1, · · · ,n − 1 and β j >
0, j = 1, · · · ,n, such that the following homogeneous out-
put feedback stabilizer

η̇2 =−l1x̂p1
2 , x̂2 = (η2 + l1x1)

r2
r1 ,

η̇i =−li−1x̂pi−1
i , x̂i = (ηi + li−1x̂i−1)

ri
ri−1 ,

i = 3, · · · ,n (5)

ν =−βn
(
x̂

1
rn
n +β

1
rn

n−1(x̂
1

rn−1
n−1 + · · ·+β

1
r3

2 (x̂
1
r2
2

+β
1
r2

1 x1) · · ·)
)rn+1 (6)

with ri’s (For simplicity, let τ =− q
p with q being a positive

even integer and p being a positive odd integer.) defined
as

r1 = 1, ri+1 =
ri + τ

pi
, i = 1, · · · ,n (7)

renders system (4) globally finite-time stable.

Proof: By choosing a Lyapunov function V as

V =
n

∑
i=1

∫ xi

x∗i
(s

1
ri − x

∗ 1
ri

i )2−ri ds

+
n

∑
i=2

∫ x
2−ri−1

ri
i

(ηi+li−1xi−1)
2−ri−1

ri−1

(
s

ri−1
2−ri−1 − (ηi + li−1xi−1)

)
ds,

(8)

and a set of virtual controllers x∗1, · · · ,x∗n defined by

x∗1 = 0, ξ1 = x
1
r1
1 − x

∗ 1
r1

1 ,

x∗i =−βi−1ξ ri
i−1, ξi = x

1
ri
i − x

∗ 1
ri

i , i = 2, · · · ,n,
(9)

one can obtain the global finite-time stabilization result for
(4), whose proof is similar to the one [32, Theorem1] with
some modifications. For the sake of space, the detailed
proof is omitted here.

From the construction of V , it can be verified that the
Lyapunov function V is positive definite and proper with
respect to

X := [x1, · · · ,xn,η2, · · · ,ηn]
T . (10)

Under the denoting X , the whole system (4)- (5)-(6) can
be written as

Ẋ = F(X)

=
(
xp1

2 , · · · ,xpn−1
n ,ν pn , fn+1, · · · , f2n−1

)T
, (11)

where fn+1 = η̇2, fn+2 = η̇3, · · · , f2n−1 = η̇n.
By choosing the dilation weight ∆ as

∆ = (r1, · · · ,rn︸ ︷︷ ︸
f or x1,··· ,xn

,r1, · · · ,rn−1︸ ︷︷ ︸
f or η2,··· ,ηn

), (12)

we can obtain that

V (∆ε(X)) =
n

∑
i=1

∫ εri xi

εri x∗i
(s

1
ri − εx

∗ 1
ri

i )2−ri ds

+
n

∑
i=2

∫ (εri xi)
2−ri−1

ri

(εri−1 ηi+li−1εri−1 xi−1)
2−ri−1

ri−1

(
s

ri−1
2−ri−1

− (ε ri−1 ηi + li−1ε ri−1 xi−1)
)
ds

=
n

∑
i=1

∫ xi

x∗i
(ελ

1
ri

1 − εx
∗ 1

ri
i )2−ri ε ri dλ1

+
n

∑
i=2

∫ x
2−ri−1

ri
i

(ηi+li−1xi−1)
2−ri−1

ri−1

(
ε ri−1 λ

ri−1
2−ri−1

2

− (ε ri−1 ηi + li−1ε ri−1 xi−1)
)
ε2−ri−1 dλ2

=ε2V (X) (13)

is homogeneous of degree 2 with λ1 = ε−ri s and λ2 =
ε ri−2s.

Since the whole system (11) is globally finite-time sta-
ble, there is a constant C1 > 0 such that

V̇ (X) =
∂V
∂X

F(X)≤−C1∥X∥2+τ
∆ . (14)

Combined with the observer and controller established
in Lemma 2, we are ready to use the homogeneous domi-
nation approach to achieve the global finite-time stabiliza-
tion for system (1) under the following assumption.

Assumption 1: There exist constants ck > 0 and τ ∈(
− 1

1+∑n−1
s=1 (p1···ps)

,0
)

such that for k ∈ M and i = 1, · · · ,n

| fi,k(t,z,u)| ≤ ck
(
|z1|

ri+τ
r1 + |z2|

ri+τ
r2 + · · ·+ |zi|

ri+τ
ri
)
,
(15)

where ri’s are defined in (7).

Remark 1: In non-switched case, i.e., k ∈ M = {1},
the condition (15) doesn’t satisfy the structure and growth
conditions or the output feedback form in [33, 34]. As we
all know, system (1) satisfying Assumption 1 represents
an important class of nonlinear systems.

Theorem 2: Under Assumption 1, the problem of
global finite-time stabilization via output feedback can be
solved for switched nonlinear system (1).

Proof: The construction of the finite-time output feed-
back stabilizer for (1) is accomplished by introducing a
scaling gain into the output feedback observer (5) and con-
troller (6), respectively. Then, the global finite-time stabil-
ity of the closed-loop system under arbitrary switchings
can be guaranteed by an appropriate choice of the scaling
gain.

Before proceeding, we introduce the change of coordi-
nates

xi =
zi

Lqi
, i = 1, · · · ,n, and ν =

u
Lqn+1

, (16)
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where q1 = 0, qi+1 =
1+qi

pi
, and L ≥ 1 is a constant to be

determined later.
Under the change of coordinates, system (1) can be

rewritten as

ẋi = Lxpi
i+1 +

fi,k(·)
Lqi

, i = 1, · · · ,n−1

ẋn = Lν pn +
fn,k(·)
Lqn

,

y = x1. (17)

Next, we construct a homogeneous observer with the
parameter L

η̇2 =−Ll1x̂p1
2 , x̂2 = (η2 + l1x1)

r2
r1

η̇i =−Lli−1x̂pi−1
i , x̂i = (ηi + li−1x̂i−1)

ri
ri−1 ,

i =3, · · · ,n, (18)

where li > 0, i = 1, · · · ,n−1, are the gains in Lemma 2.
In addition, we design u using the same construction of

(6), that is,

u =−Lqn+1 βn
(
x̂

1
rn
n +β

1
rn

n−1(x̂
1

rn−1
n−1 + · · ·+β

1
r3

2 (x̂
1
r2
2

+β
1
r2

1 x1) · · ·)
)rn+1 . (19)

With the help of the notation (11), the closed-loop sys-
tem (17)-(18)-(19) becomes

Ẋ =LF(X)

+
( f1,k(·)

Lq1
,

f2,k(·)
Lq2

, · · · , fn,k(·)
Lqn

,0, · · · ,0
)T
. (20)

By choosing the same Lyapunov function V (X) for sys-
tem (20), one has

V̇ (X) =L
∂V (X)

∂X
F(X)+

∂V (X)

∂X

( f1,k(·)
Lq1

,
f2,k(·)
Lq2

,

· · · , fn,k(·)
Lqn

,0, · · · ,0
)T

≤−LC1∥X∥2+τ
∆ +

n

∑
i=1

∣∣∂V (X)

∂Xi

fi,k(·)
Lqi

∣∣. (21)

Noting that ri+1 pi = ri + τ , we can obtain that

q2

r2
=

1
τ +1

,
q3

r3
=

1+ p1

(1+ p1)τ +1
, (22)

and recursively

qi

ri
=

1+ p1 + · · ·+ p1 p2 · · · pi−2)

(1+ p1 + · · ·+ p1 p2 · · · pi−2)τ +1
. (23)

Due to τ ∈
(
− 1

1+∑n−1
s=1 (p1···ps)

,0
)
, it follows from (22) and

(23) that

1 <
q2

r2
<

q3

r3
< · · ·< qi

ri
. (24)

This together with (15) and the fact L ≥ 1, leads to

∣∣ fi,k(·)
Lqi

∣∣
≤ ck

Lqi

(
|Lq1 x1|

ri+τ
r1 + |Lq2 x2|

ri+τ
r2 + · · ·+ |Lqi xi|

ri+τ
ri
)

≤ckLqi
ri+τ

ri
−qi(|x1|

ri+τ
r1 + |x2|

ri+τ
r2 + · · ·+ |xi|

ri+τ
ri )

≤ck(|x1|
ri+τ

r1 + |x2|
ri+τ

r2 + · · ·+ |xi|
ri+τ

ri ), (25)

where the last inequality holds owing to τ < 0.
By Lemma 1, ∂V (X)/∂Xi is homogeneous of degree

2− ri. Thus, it can be verified that∣∣∂V (X)

∂Xi

∣∣(|x1|
ri+τ

r1 + |x2|
ri+τ

r2 + · · ·+ |xi|
ri+τ

ri
)

(26)

is homogeneous of degree 2+ τ .
With (25) and (26) in mind, one can find a constant

ρi,k > 0 such that for i = 1, · · · ,n and k ∈ M

∣∣∂V (X)

∂Xi

fi,k(·)
Lqi

∣∣≤ ρi,k∥X∥2+τ
∆ . (27)

Substituting (27) into (21) yields

V̇ (X)≤−L
(
C1 −L−1 max

k∈M
{

n

∑
i=1

ρi,k}
)
∥X∥2+τ

∆ . (28)

Therefore, we can choose the scaling gain L as

L ≥ 1
C1

max
k∈M

{
n

∑
i=1

ρi,k} (29)

such that the right-hand side of (28) is negative definite.
Since V (X) is homogeneous of degree 2 with respect to

∆, there is a constant c̄1 > 0 such that

V (X)≤ c̄1∥X∥2
∆. (30)

Combining (28) and (30), one has

V̇ (X)+ k1V (X)
2+τ

2 ≤ 0 (31)

for a constant k1 > 0, which indicates that the closed-loop
system (1)-(18)-(19) is globally finite-time stable under
arbitrary switchings.

Remark 2: In the control design procedure, if we
choose individual virtual controllers x∗ik i= 1, · · · ,n, k ∈M
for the kth subsystem, we will obtain ξik = x1/ri

i −x∗1/ri
ik in-

stead of ξi = x1/ri
i −x∗1/ri

i in (9) and η̇ik =−li−1,kx̂pi−1
i , x̂i =

(ηik+ li−1,kx̂i−1)
ri/ri−1 instead of η̇i =−li−1x̂pi−1

i , x̂i = (ηi+
li−1x̂i−1)

ri/ri−1 in (5), i = 2, · · · ,n, k ∈ M, which leads to
different coordinate transformations and observers for dif-
ferent subsystems. This results in the difficulty of stability
analysis for the closed-loop system. Therefore, this paper
attempts to address the output feedback control problem of
system (1) by the common Lyapunov function approach.
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Finally, an example is given to illustrate the effective-
ness of the proposed method.

Example 1: Consider the following switched nonlin-
ear system:

ż1 = z
5
3
2 + f1,σ(t)(t,z,u),

ż2 = u+ f2,σ(t)(t,z,u),

y = z1, (32)

where σ(t) : [0,∞) → M = {1,2}, f1,1 = 0.1z
13
15
1 sinz1,

f1,2 = 0.5z
13
15
1 , f2,1 = 0, f2,2 = z

29
39
2 sinz1. By choosing τ =

− 2
15 , r1 = 1, and q1 = 0, we can obtain r2 =

13
25 , r3 =

29
75

and q2 =
3
5 , q3 =

8
5 . It is clear that Assumption 1 is satis-

fied.
With the help of (16), system (32) becomes

ẋ1 = Lx
5
3
2 +

f1,σ(t)

Lq1
,

ẋ2 = Lν +
f2,σ(t)

Lq2
,

y = x1. (33)

By using Theorem 2, we design the following homoge-
nous observer and output feedback controller

η̇2 =−Ll1x̂
5
3
2 , x̂2 = (η2 + l1x1)

13
25 ,

u =−L
8
5 β2(x̂

25
13
2 +β

25
13

1 x1)
29
75 (34)

to globally finite-time stabilize system (32) under arbitrary
switchings.

In the simulation, the gains are chosen as β1 = 1.25,
β2 = 0.98, l1 = 7.8, L = 2, which are sufficient to give sat-
isfactory simulation results shown in Fig.1 with the initial
condition (x1(0),x2(0),η2(0))T = (0.5,−0.3,0)T .

Remark 3: It is worth emphasizing that the works
[28,29] focus on state feedback stabilization problem, but
this paper considers output feedback stabilization prob-
lem. In addition, the system under consideration in
[17, 24] are non-switched nonlinear system while that of
this paper is switched nonlinear system. Therefore, the
control methods in [17, 24, 28, 29] cannot be applied to
system (1), such as Example 3.1.

4. EXTENSION AND DISCUSSION

In the preceding discussion, it is assumed that the non-
linear terms satisfy lower-triangular homogeneous growth
conditions. In this part, we extend Assumption 1 to the
following upper-triangular form.

Assumption 2: There exist constants dk > 0,k ∈ M
such that i = 1, · · · ,n−1

| fi,k(t,z,u)| ≤ dk
( n

∑
j=i+2

|z j|
ri+τ

r j + |u|
ri+τ
rn+1

)
. (35)

 

Fig. 1. The response of the closed-loop system (32)-(34).

Theorem 3: Under Assumption 2, the problem of
global finite-time stabilization via output feedback is
solved for switched nonlinear system (1).

Proof: To start with, we introduce the change of coor-
dinates

xi =
zi

εqi
, i = 1, · · · ,n, and ν =

u
εqn+1

, (36)

where 0 < ε < 1 is a constant to be determined later. Un-
der the coordinates (36), system (1) becomes

ẋi = εxpi
i+1 +

fi,k(·)
εqi

, i = 1, · · · ,n−1,

ẋn = εν pn ,

y = x1. (37)

Similar to (18), one can design a homogenous observer
with the parameter ε

η̇2 =−εl1x̂p1
2 , x̂2 = (η2 + l1x1)

r2
r1 ,

η̇i =−εli−1x̂pi−1
i , x̂i = (ηi + li−1x̂i−1)

ri
ri−1

i = 3, · · · ,n, (38)

where li > 0, i = 1, · · · ,n−1, are the gains in Lemma 2.
Moreover, the controller u is designed by the same con-

struction of (6), i.e.,

u =− εqn+1 βn
(
x̂

1
rn
n +β

1
rn

n−1(x̂
1

rn−1
n−1 + · · ·+β

1
r3

2 (x̂
1
r2
2

+β
1
r2

1 x1) · · ·)
)rn+1 . (39)

By the notation (11), the whole system (37)-(38)-(39)
can be rewritten as

Ẋ =εF(X)+
( f1,k(·)

εq1
,

f2,k(·)
εq2

, · · · , fn−1,k(·)
εqn−1

,0, · · · ,0
)T
.

(40)
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By using the same Lyapunov function V (X) for system
(40), one has

V̇ (X) =ε
∂V (X)

∂X
F(X)+

∂V (X)

∂X

( f1,k(·)
εq1

,

f2,k(·)
εq2

, · · · , fn−1,k(·)
εqn−1

,0, · · · ,0
)T

≤− εC1∥X∥2+τ
∆ +

n−1

∑
i=1

∣∣∂V (X)

∂Xi

fi,k(·)
εqi

∣∣. (41)

From the definitions of ri and qi, it can be deduced that
for j = i+2, · · · ,n+1,

q j

r j
(ri + τ)−qi

=
q jτ +

(1+p1+···+p1···p j−2)−(1+p1+···+p1···pi−2)
(p1···pi−1)(p1···p j−1)

q jτ + 1
p1···p j−1

> 1. (42)

Due to 0 < ε < 1, one has∣∣ fi,k(·)
εqi

∣∣
≤ dk

εqi

( n

∑
j=i+2

|εq j x j|
ri+τ

r j + |εqn+1 ν |
ri+τ
rn+1

)
≤ dk

( n

∑
j=i+2

ε
q j
r j
(ri+τ)−qi |x j|

ri+τ
r j + ε

qn+1
rn+1

(ri+τ)−qi |ν |
ri+τ
rn+1

)
≤ dkε1+µ(|xi+2|

ri+τ
ri+2 + · · ·+ |xn|

ri+τ
rn + |ν |

ri+τ
rn+1

)
, (43)

where µ = min{ q j

r j
(ri +τ)−qi −1}> 0 for i = 1, · · · ,n−

1, j = i+2, · · · ,n+1.
Similar to (26), the term

∣∣∂V (X)

∂Xi

∣∣(|xi+2|
ri+τ
ri+2 + · · ·+ |xn|

ri+τ
rn + |ν |

ri+τ
rn+1

)
(44)

is homogeneous of degree 2+τ . Thus, we can find a con-
stant ρi,k > 0 such that for i = 1, · · · ,n−1 and k ∈ M

∣∣∂V (X)

∂Xi

fi,k(·)
εqi

∣∣≤ ρi,kε1+µ∥X∥2+τ
∆ . (45)

Substituting (45) into (41) yields

V̇ (X)≤−ε
(
C1 − εµ max

k∈M
{

n−1

∑
i=1

ρi,k}
)
∥X∥2+τ

∆ . (46)

Obviously, a small enough parameter ε is chosen sat-

isfying ε <
(

C1
maxk∈M{∑n−1

i=1 ρi,k}

)1/µ
and 0 < ε < 1 such that

the right-hand side of (46) is negative definite. It can be
deduced from (46) that the whole system (1)-(38)-(39) is
globally finite-time stable under arbitrary switchings.

In the end, we provide an example to demonstrate the
effectiveness of the proposed control scheme.

 

Fig. 2. The response of the closed-loop system (47)-(48).

Example 2: Consider the switched upper-triangular
nonlinear system

ẋ1 = x2 + f1,σ(t)(t,x3,u),

ẋ2 = x3
3 + f2,σ(t)(t,u),

ẋ3 = u,

y = x1, (47)

where σ(t) : [0,∞) → M = {1,2}, f1,1 = 0.1x
29
9

3 , f1,2 =

0.2u
29
7 (sin(x3))

3, f2,1 = u(sin(u))5, f2,2 = 0. Assumption
2 holds with r1 = 1, r2 =

29
31 , r3 =

9
31 , r4 =

7
31 , τ = − 2

31
and q1 = 0, q2 = 1, q3 =

2
3 , q4 =

5
3 .

By applying Theorem 3, a homogenous observer and
output feedback controller are designed as follows

η̇2 =−εl1x̂2, x̂2 = (η2 + l1x1)
29
31 ,

η̇3 =−εl2x̂3
3, x̂3 = (η3 + l2x̂2)

9
29 ,

u =−ε
5
3 β3(x̂

31
9

3 +β
31
9

2 (x̂
31
29
2 +β

31
29

1 x1))
7
31 (48)

to globally finite-time stabilize system (32) under arbitrary
switchings.

In the simulation, the gains are chosen as β1 = 1,
β2 = 1.3, β3 = 3, l1 = 17, l2 = 13, and ε = 0.43. With
the initial condition (x1(0),x2(0),x3(0),η2(0),η3(0))T =
(0.1,−0.5,−0.3,0,0)T , the simulation results are shown
in Fig.2, which demonstrate the effectiveness of the pro-
posed method.

5. CONCLUSION

This paper has discussed global finite-time stabiliza-
tion problem for a class of uncertain switched nonlinear
systems via output feedback. First, we explicitly con-
structed a homogeneous observer and controller for the
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nominal system. Then, we introduced an adjustable scal-
ing gain into the output feedback stabilizer to dominate
the nonlinearities. It can be indicated that an appropri-
ate choice of the scaling gain will enable us to achieve
global finite-time stability of the whole system under ar-
bitrary switchings. In addition, the proposed approach can
be also extended to a class of switched nonlinear systems
with upper-triangular growth condition. In the future, we
will focus on global adaptive finite-time output-feedback
control for a class of high-order switched nonlinear sys-
tems under weaker conditions.
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