
International Journal of Control, Automation and Systems 15(3) (2017) 1069-1076
http://dx.doi.org/10.1007/s12555-016-0378-y

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Quasi-min-max Output-feedback Model Predictive Control for LPV Sys-
tems with Input Saturation
Tae-Hyoung Kim* and Ho-Woon Lee

Abstract: In the research field of model predictive control (MPC), an output-feedback-type MPC method is con-
sistently required for controlling a wide range of constrained systems. In this paper, we propose a two-stage control
strategy for polytopic linear parameter varying (LPV) systems subject to input constraints. This strategy consists
of a modified quasi-min-max output-feedback MPC method and a novel terminal output-feedback robust control
technique. The proposed control mechanism involves the system states to be first controlled via the MPC method
to be driven into a prescribed neighborhood of the origin, and then, the terminal output-feedback robust control
method guaranteeing the input constraints is applied to make such states converge to the origin. It is also verified
that our control method guarantees the closed-loop stability and feasibility in the presence of model uncertainties
and input constraints. Finally, a numerical example is given to demonstrate its effectiveness.

Keywords: Constrained systems, linear matrix inequality, linear parameter varying systems, model predictive con-
trol, quasi-min-max optimization.

1. INTRODUCTION

Model predictive control (MPC) is one of the most
promising control approaches because of its ability to han-
dle control problems for constrained systems (see [1, 2]).
Model quality plays a vital role in this control scheme;
however, in practical applications, there always exist mod-
eling errors, which may significantly degrade certain sys-
tem performances. Thus, a number of advanced MPC al-
gorithms, which are robust against model uncertainties,
have been investigated by considering the explicit model
uncertainty descriptions (see, for example, [3–10]). On
the other hand, most existing MPC schemes are based on
state-feedback techniques. Furthermore, system states are
assumed to be exactly measurable. However, such MPC
methodologies and assumptions may be restrictive be-
cause in practical implementations only the output signals
of the systems are usually available. Hence, an output-
feedback-type MPC method is consistently required for
controlling a wide range of constrained systems.

With regard to an output-feedback MPC, Park et al.
[11] recently proposed a quasi-min-max MPC method for
linear parameter varying (LPV) systems subject to input
constraints. Note that LPV system can be described as
a polytopic system model which is effective for uncer-
tainty modeling of both linear time-varying (LTV) and
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linear time-invariant (LTI) systems. Their MPC approach
mainly consists of a robust state observer designed using
an off-line process, and a state-feedback predictive control
that works on-line iteratively. Additionally, they claimed
that for this control system structure the proposed MPC
scheme can guarantee recursive feasibility and robust sta-
bility of closed-loop constrained LPV systems. However,
as stated recently by Su and Tan [12], such a simple com-
bination of a stable state observer and stable state feedback
controller might not guarantee a closed-loop stability be-
cause the separation principle does not hold for nonlinear
systems. From the above viewpoint, the quasi-min-max
output-feedback MPC algorithm proposed by Park et al.
[11] should be improved in a simple and direct way in or-
der to rigorously stabilize closed-loop LPV systems sub-
ject to input constraints. This is the main focus of this
paper.

In this paper, we first present discrete-time LPV sys-
tems subject to input constraints followed by the control
aim in Section 2.1 Next, the optimization problem for
Park et al.’s output-feedback MPC [11], which was de-
rived based on a quasi-min-max algorithm, is summarized
in Section 2.2 It is noteworthy that their MPC method in-
troduced an auxiliary condition on the cost value to sta-
bilize the controlled system; however, it undermines the
recursive feasibility of the developed optimization prob-
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lem [12]. Consequently, the intended closed-loop robust
stability may not be guaranteed, which could be fatally
counterproductive. To overcome such a problem, we pro-
pose a two-stage control strategy in Section 3 It consists
of a quasi-min-max MPC scheme, which is a modification
of Park et al.’s MPC scheme [11], and a novel terminal
output-feedback robust control scheme. This two-stage
control mechanism involves the system states to be first
controlled via the MPC method to be driven into a pre-
scribed neighborhood of the origin, and then, the terminal
output-feedback robust control method guaranteeing the
input constraints is applied to make such states converge
to the origin. A detailed off-line design method to deter-
mine a terminal output-feedback gain, which is used when
the system states are in the robustly invariant ellipsoidal
set, is described in this section. The proposed control
scheme can guarantee the robust stability of the closed-
loop LPV systems subject to input constraints, which are
thoroughly analyzed. The effectiveness of the proposed
method is illustrated through a numerical example in Sec-
tion 4 Finally, in Section 5, the conclusion is presented.

Notation: The symbol ∗ will be used for convenience
to denote[

M ∗
N H

]
:=
[

M NT

N H

]
.

We denote the transpose and inverse of a matrix M by MT

and M−1, respectively. M ≻ 0 (M ⪰ 0) implies that M is a
symmetric positive (semi-) definite matrix. The ith entry
of a vector x is denoted by xi. A diagonal matrix is denoted
as diag(·).

2. PROBLEM STATEMENT

In this section, the discrete-time constrained LPV sys-
tems to be controlled is described first. Next, the optimiza-
tion problem for Park et al.’s output-feedback MPC [11]
is summarized. Finally, the infeasibility of their MPC for-
mulation and resulting closed-loop instability shown by
Su and Tan [12] are briefly presented.

2.1. System description
The discrete-time LPV system to be controlled is de-

scribed as follows:

x(k+1) = A(p(k))x(k)+B(p(k))u(k), (1)

y(k) =Cx(k), (2)

where x(k) ∈Rnx is the state, y(k) ∈Rny is the output, and
u(k) ∈ Rnu is the input. The system matrices A and B are
affine functions of p(k), which denotes the time-varying
parameter, and [A(p(k))|B(p(k))] belongs to a given poly-
tope Ω at all times k as

[A(p(k))|B(p(k))] ∈Ω, ∀k ≥ 0, (3)

with

Ω := Co {[A1|B1], [A2|B2], · · · , [Anc |Bnc ]}, (4)

where Co{·} denotes the convex hull and [A j|B j], j =
1,2, · · · ,nc, are vertices of the convex hull. This implies
that there exist nc nonnegative coefficients α j(k) such that

[A(p(k))|B(p(k))] =
nc

∑
j=1

α j(k)[A j|B j], (5)

where
nc

∑
j=1

α j(k) = 1, 0 ≤ α j(k)≤ 1. (6)

It is assumed that p(k) is measurable at each time in-
stant k [9, 11]. Therefore, the current system matrices
[A(p(k))|B(p(k))] are accurately obtained. However, the
subsequent ones, [A(p(k+ i))|B(p(k+ i))], i ≥ 1 are un-
certain, but are known as varying inside a prescribed poly-
tope Ω. It is also assumed that the LPV system (1)-(2) has
a control input constraint that should be fulfilled at k ≥ 0
such as

u(k) ∈Uc, Uc := {u ∈ Rnu : |uℓ(k)|< uℓ,max, k ≥ 0},
(7)

where uℓ,max, ℓ = 1,2, · · · ,nu, denotes the given peak
bound on the ℓth entry of a control input u(k) ∈ Rnu .

2.2. Stability issue: An output-feedback MPC algo-
rithm by Park et al. [11]

Let uk+i|k denote the future control input for time step
k+ i estimated at time instant k. Then, the robust output-
feedback MPC scheme is described by

Optimization Problem for MPC Algorithm:

min
uk|k , Y (k), Q(k), X(k)

γ(k), (8)

where γ(k) is a suitable nonnegative variable to be mini-
mized, subject to the following constraint conditions (C1)-
(C5):

(C1) The prediction model used to estimate the future state
behavior of the system (1): For i ≥ 1,

ẑk+1+i|k = A(p(k+ i))ẑk+i|k +B(p(k+ i))uk+i|k, (9)

where ẑk+i|k ∈ Rnx denotes the predicted value of x(k +
i) of the system (1) at time instant k, and ẑk+1|k := x̂(k+
1). Here, x̂(k + 1) is calculated using the state observer
introduced later. We also set ẑk|k := x̂(k). For the future
control input uk+i|k ∈ Rnu estimated at time instant k, the
following control sequence U∞

0 is adopted:

U∞
0 (k) = [uk|k, U∞

1 (k)], (10)
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with

U∞
1 (k) := {uk+i|k ∈ Rnu : uk+i|k = F(k)ẑk+i|k, i ≥ 1},

(11)

where uk|k is the first control implemented on the plant (1);
i.e., u(k) = uk|k whereas the future control sequence uk+i|k,
i ≥ 1, is calculated using the feedback gain F(k), which is
determined as F(k) := Y (k)Q−1(k) at each time instant k.

(C2) The robust state observer used to estimate the uncer-
tain states of the system (1):

x̂(k+1) = A(p(k))x̂(k)+B(p(k))u(k)

+Lp(y(k)−Cx̂(k)), (12)

where x̂(k) ∈ Rnx denotes the estimate of x(k). It is as-
sumed that the initial estimate x̂0 := x̂(0) is given. Further,
the output y(k) in (2) is assumed to be exactly measur-
able at all time instants k ≥ 0. Note that since one knows
the current system matrices [A(p(k))|B(p(k))], the output
y(k), and the state estimate x̂(k) at the current time in-
stant k, x̂(t +1) can be calculated based on (12), whereas
x̂(t + i), i ≥ 2, is uncertain. In (12), Lp denotes the ob-
server gain and is determined in terms of LMI with regard
to off-line processing; i.e., Lp := P−1

e Ye with Pe ≻ 0 and Ye

satisfying[
ρ2Pe −Le ∗
PeA j −YeC Pe

]
> 0, j = 1,2, · · · ,nc, (13)

where ρ (0 < ρ < 1) is the decay rate and Le is a suit-
able weighting matrix, which are set by the designer in
advance. Note that the above Lp guarantees the stabil-
ity of error dynamics e(k + 1) = (A(p(k))− LpC)e(k),
e(k) := x(k)− x̂(k), for any [A(p(k))|B(p(k))] ∈Ω. Thus,
the estimated state x̂(k) converges to the system state x(k);
i.e., x̂(k)→ x(k) as k → ∞.

(C3) The stability condition related on a quadratic
function V (ẑk+i|k) = ẑT

k+i|kP(k)ẑk+i|k where P(k) :=
γ(k)Q−1(k)≻ 0: For j = 1,2, · · · ,nc,

Q(k) ∗ ∗ ∗
A jQ(k)+B jY (k) Q(k) ∗ ∗

L
1
2 Q(k) 0 γ(k)I ∗

R
1
2 Y (k) 0 0 γ(k)I

> 0,

(14)

where L ≻ 0 and R ≻ 0 are suitable weighting matrices.
Note that (14) guarantees the following inequality condi-
tion at each step k:

V (ẑk+1+i|k)−V (ẑk+i|k)

<−(ẑT
k+i|kLẑk+i|k+uT

k+i|kRuk+i|k). (15)

(C4) The constraint of the system’s performance:
1 ∗ ∗ ∗

T (k) Q(k) ∗ ∗
L

1
2 x̂(k) 0 γ(k)I ∗

R
1
2 u(k) 0 0 γ(k)I

> 0, (16)

where T (k) := A(p(k))x̂(k) + B(p(k))u(k) + Lp(y(k) −
Cx̂(k)), which is derived from the following condition:

ẑT
k|kLẑk|k +uT

k|kRuk|k + ẑT
k+1|kP(k)ẑk+1|k < γ(k). (17)

The proofs and details for (C3)-(C4) can be found in Park
et al. [11].

(C5) The input constraints: For ℓ= 1,2, · · · ,nu,[
uℓ(k) −uℓ,max

−uℓ,max −uℓ(k)

]
< 0, (18)[

X(k) ∗
Y T (k) Q(k)

]
> 0 with Xℓℓ ≤ u2

ℓ,max. (19)

If a symmetric matrix X(k) satisfying (18)-(19) exists,
then the input constraint, |uℓ,k+i|k| < uℓ,max, is guaranteed,
which was proved in Park et al. [11].

It is important to note that, in finding u(k) via the min-
imization problem (8) subject to constraints (C1)-(C5),
Park et al. [11] introduced an auxiliary condition, γ(k) <
γ(k − 1), to guarantee the robust stability (see condition
(18) in Park et al. [11]). However, this additional condi-
tion undermines the recursive feasibility of the optimiza-
tion problem as recently proved by Su and Tan [12]. Con-
sequently, the intended closed-loop robust stability may
not be guaranteed, which could be fatally counterproduc-
tive.

In order to overcome the difficulties involved with
guaranteeing the system stability, we utilize the termi-
nal output-feedback control scheme, which is combined
with the aforementioned on-line quasi-min-max output-
feedback MPC method.

3. OUTPUT-FEEDBACK MPC COMBINED WITH
TERMINAL OUTPUT-FEEDBACK ROBUST

CONTROL

As described in the previous section, Park et al.’s
quasi-min-max output-feedback MPC formulation [11]
can cause a closed-loop instability problem due to infea-
sibility. In order to overcome such a problem, we propose
a two-stage control strategy in this section. This strategy
consists of a modified quasi-min-max MPC scheme and a
novel terminal output-feedback robust control technique.
Note that our MPC scheme does not adopt auxiliary con-
ditions on the cost values as in Park et al.’ scheme (i.e., the
conditions (18) and (19) in Park et al. [11] are excluded.).
A detailed off-line design method to determine a termi-
nal output-feedback gain, which is used when the system
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states are in the robustly invariant ellipsoidal set, is de-
scribed later.

It is first assumed that a given initial state estimate x̂0 of
x(0) satisfies

e0 := x(0)− x̂0 ∈Λ(0), (20)

with

Λ(k) := {e(k) ∈ Rnx | eT (k)Pee(k)≤ ρ2kemax}, (21)

where emax is given. Note that e(k + i), ∀i ≥ 0, satisfies
e(k+ i)∈Λ(k+ i)⊆Λ(k). This fact can easily be verified
from (20)-(21) and the following quadratic condition:

E(e(k+1+i))−ρ2E(e(k+i))<−eT (k+ i)Lee(k+i),

E(e(k)) := eT (k)Pee(k), (22)

which was introduced to derive an LMI condition (13) for
the design of a stable state observer (see Park et al. [11]).

Next, the following terminal set X f is introduced to
guarantee the robust stability of the closed-loop LPV sys-
tem subject to input constraint:

X f := {x̂(k) ∈ Rnx | x̂T (k)P−1
f x̂(k)≤ 1}, (23)

where Pf =PT
f ≻ 0 is set by the designer in advance. In the

following, we derive LMIs to determine a terminal feed-
back gain K f in u(k) = K f x̂(k), which guarantees that for
∀x̂(k) ∈ X f and ∀e(k) ∈ Λ(k), the next state x̂(k+ 1) of
(12) satisfies x̂(k + 1) ∈ X f without violating the given
constraint on the control input (7).

Theorem 1: For some constant N ≥ 0, suppose that
there exist τ f1 , τ f2 , ηℓ (ℓ= 1,2) and K f satisfying 0≤ τ f1 <
1, τ f2 ≥ 0, ηℓ ≥ 0 and

S f :=

 τ f1 P−1
f ∗ ∗

0 τ f2 Pe ∗
−(A j +B jK f )

T −(LpC)T P−1
f

≥ 0,

(24)

τ f1 + τ f2 ρ2Nemax ≤ 1, (25)[
ηℓP−1

f ∗
−gT

ℓ K f 2h−ηℓ

]
≥ 0, (26)

where h := [u1,max,u2,max, · · · ,unu,max]
T , g1 := I ∈ Rnu×nu ,

g2 := −I ∈ Rnu×nu and j = 1,2, · · · ,nc. Then, if x̂(kN) ∈
X f for kN ≥ N, the control u(k) = K f x̂(k) guarantees the
following properties: For k ≥ kN and ∀i ≥ 0,

(i) A(p(k+ i))+B(p(k+ i))K f is Hurwitz,

(ii) x̂(k+ i) ∈X f ,

(iii) u(k+ i) ∈Uc.

Proof: In order to prove Theorem 1, the following lem-
mas will be used (for details and proofs, refer to [13] and
[14]).

Lemma 1: Let S0,S1, · · · ,Sm be quadratic functions of
the variable χ ∈ Rn:

Si(χ) := χT Hiχ +2ζ T
i χ +ξi, (27)

where i = 1,2, · · · ,m and Hi = HT
i . Then, if there exist

τ1 ≥ 0, τ2 ≥ 0, · · · , τm ≥ 0 such that for all χ

S0(χ)−
m

∑
i=1

τiSi(χ)≤ 0, (28)

then S0(χ) ≤ 0 for all χ such that Si(χ) ≤ 0 where i =
1,2, · · · ,m. If m = 1 and there is some χ0 such that
S1(χ0)< 0, then the above condition is necessary and suf-
ficient.

The above lemma denotes the S-procedure for quadratic
functions. The following result describes how to represent
LMIs from quadratic form constraints.

Lemma 2: Given a quadratic function defined by
S(χ) := χT Hχ + 2ζ T χ + ξ , the quadratic constraint
S(χ) ≤ 0 is satisfied for all χ , if and only if the follow-
ing condition is satisfied:[

H ζ
ζ T ξ

]
≤ 0. (29)

Based on the above results, Theorem 1 will be proved.
First, (i) will be proved. Pre- and post-multiplying S f in
(24) by [I 0 I] and its transpose implies that[

−τ f1 P−1
f (A j +B jK f )

T

∗ −P−1
f

]
≤ 0. (30)

A Schur complement technique shows that (30) is equiva-
lent to

(A j +B jK f )
T P−1

f (A j +B jK f )− τ f1 P−1
f ≤ 0. (31)

Then, it follows from 0 ≤ τ f1 < 1 and Pf ≻ 0 that

(A j +B jK f )
T P−1

f (A j +B jK f )−P−1
f < 0. (32)

Because (32) is satisfied and [A(p(k))|B(p(k))] ∈ Ω, it
holds that

(A(p(k))+B(p(k))K f )
T P−1

f (A(p(k))+B(p(k))K f )

−P−1
f < 0. (33)

Thus, the matrix P−1
f can be seen as a solution to

the discrete Lyapunov equation proving that A(p(k)) +
B(p(k))K f is Hurwitz.

Next, we will prove (ii). Under the control u = K f x̂, we
obtain from (12) that

x̂(k+1) = (A(p(k))+B(p(k))K f )x̂(k)+LpCe(k).
(34)
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Therefore, the requirement such as x̂(k+1)∈X f is equiv-
alent to

S0 :=
[

x̂(k)
e(k)

]T [
(A(p(k))+B(p(k))K f )

T

(LpC)T

]
P−1

f ×

[
(A(p(k))+B(p(k))K f ) LpC

][x̂(k)
e(k)

]
−1 ≤ 0.

(35)

On the other hand, the conditions such as x̂(k) ∈X f and
e(k) ∈ Λ(k) can be expressed as quadratic functions of
the vector variable [x̂T (k) eT (k)]T . The requirement that
x̂(k) ∈X f is equivalent to

S1 :=
[

x̂(k)
e(k)

]T [I
0

]
P−1

f

[
I 0

][x̂(k)
e(k)

]
−1 ≤ 0. (36)

Note that it holds from (21) that

E(e(k)) = eT (k)Pee(k)< ρ2Nemax, (37)

where k ≥ N. Hence, the requirement that e(k) ∈Λ(k)⊆
Λ(N) for k ≥ N is equivalent to

S2 :=
[

x̂(k)
e(k)

]T [0
I

]
Pe
[
0 I

][x̂(k)
e(k)

]
−ρ2Nemax ≤ 0.

(38)

Therefore, from the S-procedure technique in Lemma 1,
the requirement such that S0 ≤ 0 in (35) holds for all
x̂(k) ∈X f and e(k) ∈ Λ(k) is equivalent to the existence
of 0 ≤ τ f1 < 1 and τ f2 ≥ 0 satisfying

S0 − τ f1 S1 − τ f2 S2 ≤ 0. (39)

Then, it follows from (39) that[
x̂(k)
e(k)

]T
([

(A(p(k))+B(p(k))K f )
T

(LpC)T

]
P−1

f ×

[
(A(p(k))+B(p(k))K f ) LpC

]
+

[
−τ f1 P−1

f 0
0 −τ f2 Pe

])

×
[

x̂(k)
e(k)

]
−1+ τ f1 + τ f2 ρ2Nemax ≤ 0. (40)

Hence, from Lemma 2, the condition (40) can be written
as negative semidefinite matrix constraints as follows:[

−τ f1 P−1
f 0

0 −τ f2 Pe

]
−
[
(A(p(k))+B(p(k))K f )

T

(LpC)T

]
× (−P−1

f )
[
(A(p(k))+B(p(k))K f ) LpC

]
≤ 0,

(41)

τ f1 + τ f2 ρ2Nemax ≤ 1. (42)

By using Schur complement, it is possible to represent the
inequality (41) in the following form:−τ f1 P−1

f 0 (A(p(k))+B(p(k))K f )
T

∗ −τ f2 Pe (LpC)T

∗ ∗ −P−1
f

≤ 0.

(43)

Since the inequality in (43) is affine in [A(p(k))|B(p(k))],
it is satisfied for all [A(p(k))|B(p(k))] ∈Ω, if and only if
there exist auxiliary variables 0 ≤ τ f1 < 1, τ f2 ≥ 0 and a
design variable K f satisfying−τ f1 P−1

f 0 (A j +B jK f )
T

∗ −τ f2 Pe (LpC)T

∗ ∗ −P−1
f

≤ 0, (44)

which proves (ii).
In the following, (iii) will be proved. First, the follow-

ing hyperplane constraints on the control input can be de-
rived from (7):

gT
ℓ u(k)≤ h, ℓ= 1,2, k ≥ 0. (45)

Substituting u(k) = K f x̂(k) for k ≥ N into (45), we have

2gT
ℓ K f x̂(k)−2h ≤ 0, ℓ= 1,2, k ≥ N. (46)

By using the S-procedure technique in Lemma 1, the con-
dition (46) is satisfied for all x̂(k)∈X f , if and only if there
exists ηℓ ≥ 0, ℓ= 1,2, satisfying

2gT
ℓ K f x̂(k)−2h−ηℓ(x̂T (k)P−1

f x̂(k)−1)≤ 0. (47)

Then, (47) can be rewritten as

x̂T (k)(−ηℓP−1
f )x̂(k)+2gT

ℓ K f x̂(k)+ηℓ−2h ≤ 0.
(48)

Based on Lemma 2, (48) is expressed as a positive
semidefinite matrix constraint as shown in (26). □

Note that Theorem 1 implies that X f is a robustly in-
variant set under the control law u = K f x̂. Based on the
above results, the two-stage control mechanism compris-
ing quasi-min-max output-feedback MPC and terminal
output-feedback robust control can be described as fol-
lows:

Output-feedback MPC algorithm with terminal
output-feedback robust control technique:

Step 0: Find Lp presented in (C2) of Section 2.2 and K f in
Theorem 1, respectively.

Step 1: Initialize k = 0.

Step 2:. If x̂(k) ∈ X f for k ≥ N, apply the control input
u(k) = K f x̂(k) to the plant and then, go to Step 4. Other-
wise, go to Step 3.

Step 3: Solve the optimization problem for MPC in Sec-
tion 2.2 based on x̂(k), y(k), and p(k) to calculate

uk+i|k =

{
uk|k, i = 0
F(k)ẑk+i|k, i ≥ 1.

(49)

Then, apply the control input u(k) = uk|k to the plant.
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Step 4: Calculate x̂(k+ 1) in (12) based on the measure-
ment y(k) the control input u(k), and p(k).

Step 5: Set k = k+1 and go to Step 2.

Note that the above two-stage control mechanism in-
volves the system states to be first controlled via the MPC
method to be driven into a prescribed terminal set X f , and
then, the terminal output-feedback robust control method
guaranteeing the input constraints is applied to make such
states converge to the origin.

The proposed control scheme can guarantee the robust
stability of the output-feedback LPV systems subject to
input constraints, which are thoroughly analyzed in the
following. Here, the feasibility means that there exists u,
which satisfies the constraints (C1)-(C5) of the optimiza-
tion problem (8) with a finite value of γ . The following
lemma concerning feasibility is a key result to prove the
stability.

Lemma 3: Suppose that the optimization problem for
MPC given in Section 2.2 is feasible at the current time in-
stant k. Let u∗

k+i|k denote the optimal solution determined
at time instant k. Then, the control input

uk+i|k+1 = u∗k+i|k, i ≥ 1, (50)

is one of the feasible solutions of the optimization problem
for MPC at the next time instant k+1.

Proof: Feasibility at time instant k+1 requires that the
control input in (50) guarantees |uℓ,k+i|k+1| ≤ uℓ,max, ℓ =
1,2, · · · ,nu. Note that when (19) is satisfied at time instant
k, uk+i|k, i ≥ 1, is a feasible solution satisfying the above
constraint on the control input. Therefore, it is clear that
the condition (18) is satisfied by uk+i|k+1 = u∗

k+i|k, i ≥ 1, at
time instant k+1. □

Lemma 3 states that if the optimization problem for
MPC is feasible at the time instant k, then it is also fea-
sible at the next time instant. The following theorem de-
scribes the stability property of the proposed two-stage
control scheme, which is analyzed based on Theorem 1
and Lemma 3. Note that the terminal feedback gain K f is
determined off-line.

Theorem 2: Suppose that the optimization problem
for MPC given in Section 2.2 is feasible at k = 0, i.e.,
there exists u minimizing (8) subject to (C1)-(C5) at k = 0.
Then, the proposed MPC method guarantees the following
properties:

(i) The optimization problem for MPC is feasible at time
instant k ≥ 1.

(ii) The state x(k) of the real system (1) converges to the
origin as k → ∞.

Proof: First, (i) will be proved by induction. The opti-
mization problem is feasible at k = 0 by assumption. We

assume now that it is feasible at each time instant k = i
(i = 1,2, · · · ,N −2). Then, since Lemma 3 shows that the
control input of (50) is feasible at k = i+1, (i) is proved.
Next, (ii) will be proved. As mentioned in Section 2.2,
the developed state observer guarantees that x̂(k) → x(k)
as k → ∞, which implies that e(k) → 0 as k → ∞. On
the other hand, it follows from (12) and u(k) = K f x̂(k) for
∀x̂(t) ∈X f that

x̂(k+1) = (A(p(k))+B(p(k))K f )x̂(k)+LpCe(k).
(51)

Note that since e(k) → 0 as k → ∞ and A(p(k)) +
B(p(k))K f is Hurwitz as shown in Theorem 1, it holds
that x̂(k) → 0 as k → ∞. Based on the above results, we
can see that x(k) → 0 as k → ∞ is guaranteed under the
proposed two-stage output-feedback control algorithm. □

In the following section, a numerical example is pre-
sented to demonstrate the effectiveness of the proposed
scheme.

4. NUMERICAL EXAMPLE

Consider the LPV system described as (1)-(2) with

A(p(k)) =
[

1 0.1
0 1−0.1β (k)

]
, B(p(k)) =

[
0

0.1κ

]
,

(52)

C = [1 0] and κ = 0.787, which is a discretized angu-
lar positioning system reported in Kothare et al. [7] and
Wan and Kothare [15]. The initial states of the above
real system and the state observer are x0 = (0.05,0)T and
x̂0 = (0.01,−0.05)T , respectively. We assume that the un-
certain parameter β (k) belongs to the set β (k)∈ [0.1, 10].
Thus, the above LPV system belongs to the following
polytope formed by the two local discrete models

Ω=Co {[A1|B], [A2|B]}, (53)

where

A1 =

[
1 0.1
0 0.99

]
, A2 =

[
1 0.1
0 0

]
. (54)

The input constraint is given as |u(k)| ≤ 0.2, which should
be fulfilled at all time instants k ≥ 0.

Based on the design scheme of state observer using a
decay rate of ρ =

√
0.9 and the weighting matrix Le =

diag(0.01,0.01), the observer gain Lp is determined as
Lp = (0.8632, 0.4030)T . Next, a terminal feedback gain
K f will be determined. We first introduce the following
terminal ellipsoidal set:

X f := {x̂ ∈ R2| x̂T P−1
f x̂ ≤ 1.0×10−5}, (55)

with Pf = diag(1,1). Using the above variables, the feed-
back gain is determined based on Theorem 2 as K f =
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Fig. 2. Time plot of control input u(t).

−(0.0314, 0.036) for N = 30. Then, the proposed MPC
technique was implemented with R = 0.005 and L =
diag(1,0.1). The time-varying parameter β (k) is shown
in Fig. 1.

In Fig. 2, the solid line shows the applied control in-
put u(k) and the dashed lines shows the upper and lower
bounds on the control. It is evident that the control input
u(k) obtained by the proposed control method satisfies the
given constraint. The real state xi(k) and estimated state
x̂i(k) are plotted in Fig. 3 by the solid line and the dashed
line, respectively. This figure shows that the proposed ro-
bust state observer works well. The trajectory of the out-
put y(k) converging to zero as k → ∞ is shown in Fig. 4,
which verifies the feasibility and stability of the proposed
output-feedback MPC algorithm combined with the termi-
nal output-feedback robust control technique.

5. CONCLUSION

We presented a novel quasi-min-max output-feedback
MPC algorithm combined with terminal output-feedback
robust control technique for LPV systems subject to input
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Fig. 4. Time plot of output y(t).

constraints. The proposed control scheme overcomes the
critical issue in Park et al.’s output-feedback MPC scheme
[11] that the closed-loop robust stability may not be guar-
anteed theoretically. In our two-stage control mechanism,
the system states are first controlled via the MPC method
to be driven into a prescribed neighborhood of the ori-
gin, and then the terminal output-feedback robust con-
trol method guaranteeing the input constraints is applied
to make such states converge to the origin. The robust sta-
bility of the output-feedback LPV systems subject to input
constraints was confirmed in a rigorous manner. In addi-
tion, the effectiveness of the proposed control method was
verified through a numerical experiment.
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