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Pinning Control of Complex Network Synchronization: A Recurrent Neu-
ral Network Approach
Edgar N. Sanchez*, David I. Rodriguez-Castellanos, Guanrong Chen, and Riemann Ruiz-Cruz

Abstract: Using recurrent high order neural networks for identification, a new scheme for pinning control of com-
plex networks with changing unknown coupling strengths is proposed for achieving synchronization. The robust
behavior of the control system is investigated via simulations.
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1. INTRODUCTION

Complex dynamical networks have received a great
deal of attention since the publication of the seminal arti-
cles ( [1], [2] and [3]). Complex systems and networks are
used to model and analyze processes and phenomena con-
sisting of interacting elements named nodes, and to con-
trol their global and/or individual behaviors ( [4], [5] and
[6]). Their possible applications are in diverse fields, from
biological and chemical systems to electronic circuits and
social networks [5]. The models used to describe complex
networks in the continuous-time settings are derived from
graph theory and other frameworks such as the Kuramoto
model of linear coupling oscillators [7]. Models have been
developed with different structures and coupling charac-
teristics like the small-world model [1], the E-R random
graph model [8] and the scale-free model [9].

Synchronization is a process wherein many identical or
different systems adjust a given property of their motions
throughout to a suitable coupling strength configuration,
or forced by an external input [10, 11]. The emergence
of collective and synchronized dynamics in a large net-
work of coupled units has been investigated since the be-
ginning of the 1990 in different contexts and in various
fields, ranging from biology and ecology to semiconduc-
tor lasers to electronic circuits [5]. There are many events
where synchronization is a desirable feature; examples in-
clude identical oscillators in cardiac peacemaker cells or
waves propagation in the brain [2]. Results have demon-
strated that synchronization takes place only if some struc-
tural and coupling conditions are fulfilled. One example
is the master stability function [12]; another is the Wu-
Chua conjecture, which correlates the coupling strength
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with the structural Laplacian matrix [13]. To guarantee
synchronization, efficient control techniques may be ap-
plied [6].

The basic idea of pinning control is to utilize the net-
work structure to contribute to its regulation; to this end
a local control action is applied to a small number of
nodes [14, 15]. How many and which nodes to select
is still the key problem. Comparations between random
and specific pinning have been investigated, for differ-
ent topologies ([16], [12] and [13]). Measures like de-
gree distribution, clustering coefficient, average shortest
path length, efficiency, betweness, coreness and asorativ-
ity have been used to characterize the importance of nodes
and their neighborhoods. In order to find the best selection
of pinned nodes to guarantee a desired behavior for the
whole network [5], in this work we focus on the degrees
of the nodes.

Most studies focus on stabilization control, where
weights or coupling strengths between nodes are consid-
ered as an equal and fixed value for all links; other stud-
ies consider the coupling strengths as adaptive variables
[13, 17]. On the other hand, the coupling strengths for
a real network could be unknown, and might change over
time. The change of the coupling strengths has been rarely
studied. Consequently, the problem presented in this pa-
per is the design of a robust control law which guaran-
tees stability for nonlinear systems coupled by a complex
network in the presence of non-modeled dynamics of the
nodes with changes in coupling strengths.

Adaptive neural control schemes could offer a solution
for the problem described above. Artificial neural net-
works have become an useful tool for control engineering
thanks to their applicability on modeling, state estimation
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and control of nonlinear systems ( [18] and [19]). Using
neural networks, control algorithms can be developed to
be robust against uncertainties, modeling errors and pa-
rameter changes. Neural networks consist of a number of
interconnected processing elements (neurons). The way in
which the neurons are interconnected determines its struc-
ture [19].

Since the publication of [20], there has been continu-
ously increasing interest in applying neural networks to
identification and control of nonlinear systems. Lately,
the use of recurrent neural networks is being developed,
which allows more efficient modeling [18,21]. Three rep-
resentative books ([22], [19] and [23]) have reviewed the
applications of recurrent neural networks to nonlinear sys-
tem identification and control. In particular, while [22]
uses off-line learning, [19] analyzes adaptive identifica-
tion and control by means of on-line learning, where sta-
bility of the closed-loop system is established based on
the Lyapunov methodology. In [19], trajectory tracking
is reduced to a linear model-following problem, with ap-
plication to DC electric motors. In [23], analysis of re-
current neural networks for identification, estimation and
control is developed, with applications to chaos, robotics
and chemical processes control.

Chaotic attractors have been used to demonstrate the ef-
fectiveness of pinning control schemes in simulations and
implementations due to their special characteristics [?].
Different techniques have been proposed to achieve chaos
control [24]; including for instance, linear state space
feedback [25], Lyapunov methods [26], adaptive control
[27], linear matrix inequalities [28] and bang-bang con-
trol [29], among others. Most of the chaos control meth-
ods have the disadvantage of requiring the system param-
eters to be known; artificial neural networks provide as
a solution to this problem. In this paper, we propose an
identification and control scheme based on recurrent high
order neural networks (RHONN) for pinning control of
weighted complex networks with unknown node dynam-
ics. The paper is organized as follows: in Section 2, pre-
liminaries are given; Section 3 presents a neural network
identification scheme for pinned nodes in a complex net-
work and a control scheme for stabilizing control of the
complex network, followed by a simulation study in Sec-
tion 4. Finally, conclusions are drawn in Section 5. A
preliminary version of this paper was presented earlier in
a conference [30].

2. FUNDAMENTALS

2.1. Preliminaries
Throughout this paper, R, Rn, RN×N stand for spaces

of real numbers, n-dimensional vectors and N × N-
dimensional matrices; ∥ · ∥ denotes the Euclidean norm;
In stands for the n×n identity matrix.

Definition 1 [12]: The Kronecker product of two ma-

trices A and B is

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 ,

where if A is an n×m matrix and B is a p×q matrix, then
A⊗B is an np×mq matrix.

Definition 2 [12]: The product A⊗ f (xi, t) is defined
by

A⊗ f (xi, t) = a11 f (x1, t)+a12 f (x2, t)+ · · ·+a1m f (xm, t)
...

an1 f (x1, t)+an2 f (x2, t)+ · · ·+anm f (xm, t)

 ,

where if A is an n×m matrix and f is a p× 1 function,
then A⊗ f (xi, t) is a np×1 vector.

Definition 3 [12]: Matrix A is reducible if there ex-
ists a permutation matrix P such that PAPT is of the form
(B C

0 D), where B and D are square matrices. Matrix A is
irreducible if it is not reducible.

Lemma 1 [12]: If Q is a real symmetric matrix the set
ϒ consisting of all matrices with zero row sums, which
have only nonpositive off-diagonal elements, then Q is
positive semi-definite and has a zero eigenvalue associated
with the eigenvector (1,1, . . . ,1). Furthermore, Q can be
decomposed as Q = MT M, where M is a matrix in a class
of matrices such that its row i consists of all zeros except
one entry βi and one entry −βi for some nonzero βi. Fur-
thermore, if Q is irreducible, then the zero eigenvalue has
multiplicity 1.

Definition 4 [12]: A function ξ : Rn ×R→ Rn is uni-
formly increasing if there exists θ > 0 such that for all x,
y, t,

(x− y)T P(ξ (x, t)−ξ (y, t))≥ θ∥x− y∥2. (1)

Definition 5 [12]: Given a square matrix V , a function
ξ : Rn ×R → Rn is V -uniformly increasing if V ξ is uni-
formly increasing.

Definition 6 [12]: A function ξ : Rn ×R→ Rn is (V -
uniformly) decreasing if −ξ is (V -uniformly) increasing.

Corollary 1 [31]: Let x= 0 be an equilibrium point for
a nonlinear system of the form ẋ = f (x, t). Let V : Rn →R
be a continuously differentiable, radially unbounded, pos-
itive definite function, such that V̇ (x) ≤ 0 for all x ∈ Rn.
Let S = {x ∈ Rn | V̇ (x) = 0} and suppose that no solu-
tion can stay permanently in S, except the trivial solution.
Then, the origin is globally asymptotically stable.

2.2. Complex networks
This subsection is taken from ([12] and [13]).
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In general, a complex network with N identical linearly
and diffusively coupled nodes, with each node being an
n-dimensional dynamical system can be described as fol-
lows:

ẋi = f (xi)+
N

∑
j=1, j ̸=i

ci jai jΓ(x j −xi) i = 1,2, . . . ,N, (2)

where xi = (x1,x2, ...,xn)
T ∈Rn is the state vector of node

i, the constant ci j > 0 represents the coupling strength
between node i and node j, Γ = (γpq) ∈ Rn×n is a ma-
trix linking coupled variables, and if some pairs (p,q),
1 ≤ p,q ≤ n, has γpq ̸= 0, it means two coupled nodes are
linked through their pth and qth state variables, respec-
tively.

In network (2), the coupling matrix A = (ai j) ∈ RN×N

represents the structural configuration of the network,
which is assumed in this paper to be a scale-free network
described by the BA model [12]. If there is a connection
between node i and node j (i ̸= j), then ai j = a ji = 1; oth-
erwise, ai j = a ji = 0 (i ̸= j). The degree ki of node i is
defined to be the number of its outreaching connections,
and ∑N

j=1, j ̸=i ai j = ∑N
j=1, j ̸=i a ji = ki for i = 1,2, ...,N. Let

the diagonal elements of A be aii = −ki, i = 1,2, . . . ,N.
Then, the coupling matrix A is symmetric and the matrix
−A is in ϒ. Let ϒi be the subset consisting of all irre-
ducible matrices in ϒ.

Assume the network is connected in the sense of having
no isolated clusters. Then, the symmetric coupling matrix
A is irreducible. From Lemma 1, zero is an eigenvalue of
−A with multiplicity 1, and other eigenvalues of −A are
strictly positive.

Let xs(t) be a solution of an isolated node of the net-
work, which is assumed to exist and to be unique, satisfy-
ing

ẋs = f (xs), (3)

where xs is an homogeneous equilibrium point.
The objective is to obtain a pinning control scheme

which synchronize the entire network (2) to xs on the man-
ifold

x1 = x2 = . . .= xN = xs f (xs) = 0. (4)

To achieve (4), the pinning control strategy is applied on
a small fraction δ (0 < δ ≪ 1) of the nodes in network
(2). Suppose that nodes i1, i2, . . . , il are selected, where
l = [δN] stands for the smaller but nearest integer to the
real number δN. This controlled network is described as

ẋi = f (xi, t)−
N

∑
j=1

gi jΓx j +ui i = 1,2, . . . l (5)

ẋi = f (xi, t)−
N

∑
j=1

gi jΓx j i = l +1, . . . ,N, (6)

where gi j =−ci jai j, and the coupling strength cii satisfies

ciiaii +
N

∑
j=1, j ̸=i

ci jai j = 0. (7)

Without loss of generality, we rearrange the order of nodes
in the network such that the pinned nodes i = 1,2, ...l, are
the first l nodes in the rearranged network.

The following local linear negative feedback control
law is used:

ui =−ciidiΓ(xi − xs), (8)

where the feedback gain di > 0, i = 1,2, . . . , l.
Define the following matrices:

D′ = diag(c11d1,c22d2, ...clldl ,0, ...,0) ∈ RN×N , (9)

D = diag(d1,d2, ...dl ,0, ...,0) ∈ RN×N . (10)

Substituting (8) into ((5) and (6)), one can re-arrange the
controlled network and write it by using the Kronecker
product as

Ẋ = IN ⊗ [ f (xi, t)]− [(G+D′)⊗Γ]X +(D′⊗Γ)X̄ , (11)

where X̄ = (xT
s ,x

T
s , . . . ,x

T
s )

T , and the elements gi j of the
symmetric irreducible matrix G = (gi j) ∈ RN×N are de-
fined as gi j =−ci jai j.

It is easy to see that G is positive semi-definite, and
G + D′ is positive definite with the minimal eigenvalue
σmin(G+D′)> 0.

Theorem 1 [12]: Assume that f (xi) is Lipschitz con-
tinuous in x with a Lipschitz constant L f

c > 0. If Γ is sym-
metric and positive definite, then the controlled network
(5 and 6) is globally stable about the homogenous state xs,
provided that (L f

c )
σmin(Γ) > 0 such that

σmin(G+D′)>
(L f

c )

σmin(Γ)
, (12)

where σmin(Γ) and σmin(G+D′) are the minimal eigenval-
ues of matrices Γ and G+D′, respectively.

Theorem 2 [12]: Assume that the node ẋi = f (xi) is
chaotic for all i = 1,2, . . . ,N, with the maximum posi-
tive Lyapunov exponent hmax > 0. If ci j = c, di = cd and
Γ = Im, then the controlled network (11) is locally asymp-
totically stable on the homogenous state xs, provided that

c >
hmax

σmin(−A+diag(d, . . . ,d,0, . . . ,0)
, (13)

where σmin stands for the minimal eigenvalue of the ma-
trix.
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2.3. Recurrent higher-order neural networks
In a recurrent neural network, the outputs of a neuron

are feedback to the same neuron or some neurons in the
preceding layers. Signals flow in forward and backward
directions [32]. Artificial recurrent neural networks are
mostly based on the Hopfield model [33].

In [34], Recurrent Higher-Order Neural Networks
(RHONN) are defined as

χ̇i =−λiχi +
L

∑
j=1

wij ∏
j∈Ik

yδj(κ)
j , i = 1,2, ...,n, (14)

where χi is the ith neuron state, L is the number of higher-
order connections, {I1, I2, ..., IL} is a collection of non-
ordered subsets of {1,2, ...,m+n}, λi > 0, wij are the ad-
justable weights of the neural network, δj(κ) are nonneg-
ative integers, and y is a vector defined by

y =[y1, ...,yn,yn+1, ...,yn+m]
T

=[S(χi1), ...,S(χin),S(ui1), ...,S(uim)] (15)

with ui = [ui1,ui2, ...,uim] being the input to the neural
network and with a smooth sigmoid function S(χi) =

1
1+e−β χ + ε , in which β is a positive constant and ε is a
small positive real number, so, S(χi) ∈ [ε,ε + 1]. As can
be seen, (15) includes higher-order terms.

By defining a vector

z(χi,ui) =[z1(χi,ui), ...,zL(χi,ui)]
T

=[Πj∈I1 yδj(1)
j ,Πj∈I2 yδj(2)

j , ...,Πj∈IL yδj(L)
j ]T .

(16)

Equation (14) ROHNN can be written as

χ̇i =−λiχi +wT
i z(χi,ui), i = 1, ...,n, (17)

where wi = [wi,1,wi,2...wi,L]
T . In this paper, consider

y =[y1, ...,yn]
T = [S(χi1), ...,S(χin)]. (18)

If the RHONN is affine in the control, then reformulat-
ing (17) in a matrix form yields

χ̇i = Λχi +Wiz(χi)+Wigui (19)

where χi ∈Rn, Wi ∈Rn×L, Wig ∈Rn×n, z(χi)∈RL, ui ∈Rn,
and Λ =−λ In with λ > 0.

3. THE IDENTIFICATION AND CONTROL
SCHEME

In this section, an adaptive control scheme (Fig. 1) is
proposed. It is composed by a recurrent neural identifier
and a controller for the pinned nodes in the complex net-
work, where the former is used to build an on-line model
for the unknown plant and the later to force the unknown
node dynamics to converge to an equilibrium point.

Fig. 1. Control diagram.

3.1. Neural Identifier
In this subsection, a neural network identifier for un-

known pinned nodes is designed. Without losts of gen-
erality, proceed with only one pinned node according to
[35]. The weight adaptation law is taken from ( [19] and
[34]). Under the assumption that all the states are avail-
able for measurement and use, a recurrent neural network
is designed for on-line identification of the unknown ith
node system (i = 1,2, ..., l).

Consider the unknown nonlinear plant for the ith pinned
node as

ẋi =Fi(xi,ui) = f (xi, t)−
N

∑
j=1

gi jΓx j(t)+ui

≜f̂(xi, t)+ ĝ1(xi, t)d + ĝ2(xi, t)ui (20)

in accordance with [32].
Taking into account that f (xi) is unknown, with xi avail-

able for measurement, one can model (20) by a recurrent
neural network as in (19).

Assumption 1 [12]: For the given nonlinear f (x),
there is a matrix T such that f (x)+T x is V -uniformly de-
creasing for some symmetric and positive definite matrix
V .

Now, we propose the following recurrent neural net-
work in a Series-Parallel structure:

χ̇i = Λχi +Wiz(xi)+ωier +ui, (21)

where Wi are the values of the on-line estimated network
weights, which minimize the modeling error ωier.

Assumption 2 [32]: For every bounded state xi and for
every bounded wi j ∈Wi, the system (21) is bounded.

Assumption 3 [32]: The given node dynamics can be
completely described, without any modelling error, by the
neural network of the form

ẋi = Λxi +W ∗
i z(xi)+ui, (22)

where W ∗
i are the constant weights to be determined and

all other elements are as defined above.
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Then, we define the identification error as ei = χi − xi,
whose dynamics satisfy

ėi = χ̇i − ẋi,

ėi = Λei +W̃iz(xi)+ωier, (23)

W̃i =Wi −W ∗
i .

Select the weight adaptation law as in [19], namely,

tr
{

˙̃W T
i W̃i

}
=−γeT

i W̃iz(xi), (24)

which has elements as

ẇi,j =−γeT
ii W̃iz(xi), i = 1,2, ...,n, j = 1,2, ...,L.

With this adaptation law, the modeling error ω̇er =−ρωer

with ρ > 0 will converge to zero. For the respective sta-
bility analysis on (23), we refer the reader to [32].

3.2. Stabilization
In this subsection, an adaptive neural control law is de-

signed for pinned nodes to stabilize its trajectory onto the
homogeneous state xs as defined in (4). The problem of
regulation by pinning control for a complex network can
be solved even by pinning only one node [35], which is
also applied here, by pinning just the node with the great-
est degree. The structure of the control law is derived from
the one presented in [12], so that a local robust feedback
controller is obtained.

Dynamics of the pinned nodes so selected is identifi-
cated by a RHONN. A robust controller is used on such
identifier implementation, which guarantees stabilization
of the error between the plant and the desired equilibrium
point xs.

Theorem 3: The unknown pinned network ((5) and
(6)), whose changing coupling strengths c remain above
the limit given by (13), can become locally asymptotically
stable at the homogeneous state xs under the control law

ui =−cdΓ(χi − xs) i = 1,2, . . . , l, (25)

where χi are the identificated states of the pinned node by
a RHONN in the form of (21), and d > 0 are the feedback
gains.

Proof: It is required to stabilize the errors between the
ROHNN states and the desired equilibrium point (3). To
apply the Lyapunov methodology [31] define the stabiliza-
tion error for pinned nodes as xei = xi − xs, i = 1,2, ..., l,
and obtain its derivative from (21) and (5) as follows:

ẋei =ẋi − ẋs ≜ χ̇i +ωier − ẋs

=Λχi +Wiz(xi)+ωier +ui − f (xs). (26)

This can be rewritten as

ẋei(t) =Λxei +Wiz(xi)+α(xs)+ωier +ui

= f̂ (xei,ei,Wi)+ωier + ĝ2(xei,ei,Wi)ui, (27)

where f̂ (xei,ei,Wi)=Λxei+Wiz(xi)+α(xs), ĝ2(xei,ei,Wi)=
In and α(xs) = Λxs − f (xs) .

Note that (xei,W̃i,ei) = (0,0,0) is an equilibrium point
for (27) without disturbances. Now, consider the next Lya-
punov function candidate

V =
1
2
∥ ei ∥2 +

1
2
∥ xei ∥2 +

1
2γ

tr
{

W̃ T
i W̃i

}
, γ > 0, (28)

where ei and W̃i are defined in (23). Its time derivative
along the trajectories of (27), with the control law (25), is

V̇ =−λ ∥ ei ∥2 +eT
i W̃iz(xi)+

1
γ

tr
{

˙̃W T
i W̃i

}
−λ ∥ xei ∥2 +xT

eiWiz(xi)+ xT
ei(α(xs)+ωier)

− cdxT
eiΓ(χi − xs). (29)

Replacing the weight adaptation law (24) in (29),
and taking into account the property of −xT Γx ≤
−σmin(Γ)∥x∥2 where σmin(Γ) is the minimum eigenvalue
of matrix Γ, and then reordering terms, one obtains

V̇ ≤−λ ∥ ei ∥2 +eT
i W̃iz(xi)− eT

i W̃iz(xi)

− (λ + cdσmin(Γ)) ∥ xei ∥2 +xT
eiWiz(xi) (30)

+ xT
ei(α(xs,ei)+ωier).

After eliminating the term eT
i W̃iz(xi), one has

V̇ ≤−λ ∥ ei ∥2 −(λ + cdσmin(Γ)) ∥ xei ∥2

+ xT
eiWiz(xi)+ xT

ei(αs(xs)+ωier). (31)

In the fourth term of (31), xs is a constant; consequently,
αs(xs) is bounded. It follows that the part of this term,
which includes the uncertain term ωier, is also bounded
from above and is vanishing because ω̇er =−ρωer. There-
fore, the last two terms in (31) are bounded. Finally, by
selecting d adequately in the second term, V̇ is negative
definite, even when c change but remain above the thresh-
old define in (13). It follows from the Barbalat’s Lemma
[31] and Corollary 1 that the pinned nodes are asymptoti-
cally stables at xs.

Next, the stability of non-pinned nodes dynamics (6) is
analyzed.

First, write ((5) and (6)) as in (11). Since ci j = c and
D′ = diag[cd,cd, . . . ,cd,0, . . . ,0], one has σmin(G+D′) =
cσmin[(−A+D)]> 0 by definition (recall that −A is a pos-
itive semi-definite matrix in Wi). Then, determine a d > 0
such that (12) and (13) are fulfilled. Finally, by Theorem
2, the entire controlled dynamical network ((5) and (6)) is
locally stable at the homogeneous state xs.

The neural network absorbs variations of the coupling
strengths, so that a proper adjustment can be accomplished
on the control law.
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Fig. 2. State time evolution under the proportional control
scheme.
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Fig. 3. State time evolution under the proposed control
scheme.

4. SIMULATION EXAMPLES

Consider a 50-node scale free network with degree dis-
tribution ∆(ki) ≈ k−2

i . Each node is selected as a chaotic
Chen system [12] defined by

ẋ1 = â(x2 − x1),

ẋ2 = (ĉ− â)x1 − x1x3 + ĉx2,

ẋ3 = x1x2 − b̂x3. (32)

The parameters in (32) are selected as â = 35, b̂ = 3
and ĉ = 28, so that an unstable equilibrium point exists
at xs = [7.9373,7.9373,21]. This equilibrium point is se-
lected as the homogeneous stationary state, at which the
complex network is going to be synchronized. The max-
imum positive Lyapunov exponent is hie ≈ 2.01745 [12].
The Γ matrix is taken as I3. In the implementation of the
RHONN, set z(xi) ∈ R10 in (17).
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Fig. 4. Node state vs. identified state for Node 1.
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Fig. 5. Identification error for Node 1.

Two control algorithms are compared: the proportional
control scheme presented in [12] and the neural network
scheme proposed in this paper. Just one node is pinned,
which selected as the one with the highest degree. For
both control schemes, coupling strengths c at node con-
nections are set initially higher than the minimum value
required by (13). Then, the control law is incepted. Once
the complex network is stabilized, the coupling strengths
are changed to lower values, but still above their minimum
values required by (13).

For both control algorithms, the simulation is carried
out as follows:

Initially, from t = 0 to t = 5, the systems at the nodes
run without any connection, i.e. c = 0. At t = 5 the
coupling strengths are set to c = 30, so that the complex
network is connected according to a predefined scale-free
distribution. Subsequently, at t = 5.2 the control law is
incepted. After stabilization is achieved, starting at t = 9,
the coupling strengths change from c = 30 to c = 23. For
both controllers d = 1000 and cmin ≈ 21.55.
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Fig. 6. Weights evolution for Node 1 with identification.

Fig. 7. Control signals for the proportional control
scheme.
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Fig. 8. Control signals for the proposed control scheme.

Fig. 2 and Fig. 3 show that the states of the entire
network have been regulated to xs. In Fig. 2, the net-

work loses its regulation when the coupling strengths are
changed at t = 9; in Fig. 3, with the robust control law
(25), the network evolution stays at the stabilization state.

In Fig. 4, real state vs identified state of Node 1 are
presented, followed by the identification error for Node
1 in Fig. 5. Fig. 6 shows the evolution of the neural-
network weights in the identification of Node 1. Fig. 7
and Fig. 8 display the control signals for both controllers.
The network maintains synchronization with the proposed
control scheme.

5. CONCLUSIONS

This paper develops a new pinning control scheme for
complex networks, from a recurrent higher-order neural
network approach. It is based on a neural identifier and a
proportional controller. By means of this novel scheme, it
is possible to stabilize a complex network even in the pres-
ence of varying coupling strengths, with a robust property.
Simulation results illustrate the applicability and effective-
ness of the proposed scheme.
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