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Adaptive Neural Network Tracking of a Class of Switched Nonlinear Sys-
tems with Time-varying Output Constraints
Seung Woo Lee, Hyoung Oh Kim, and Sung Jin Yoo*

Abstract: An approximation-based adaptive design problem for output-constrained tracking of a class of switched
pure-feedback nonlinear systems is investigated under arbitrary switchings. All switched nonlinearities are assumed
to be unknown. Contrary to the existing control results for uncertain switched pure-feedback nonlinear systems
where the number of the used function approximators should be equal to the order of the systems, an adaptive
control scheme based on only two neural networks is designed by using a system transformation and the common
Lyapunov function method, regardless of the order of the system. In the proposed controller, the output constraints
are used to establish designable time-varying bounds on the tracking performance. The stability and the constraint
satisfaction of the resulting closed-loop system are shown in the sense of Lyapunov stability criterion. Finally,
simulation examples are provided to illustrate the effectiveness of the proposed methodology.
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1. INTRODUCTION

In the last decades, several theoretical research efforts
in the control design and stability analysis of switched
nonlinear systems have appeared due to many practi-
cal hybrid applications such as chemical processes, au-
tomotive systems, and manufacturing processes, switch-
ing power systems, and so on (see [1–4] and references
therein). In particular, the arbitrary switching effect on
systems with nonlinearities unmatched in the control input
has been regarded as an important and practical problem.
To deal with this problem, some control methods [5–9]
have been presented by combining the common Lyapunov
function and the backstepping technique [10]. However,
these results commonly assumed that the system model
was perfectly known, that is, model uncertainties were
not considered. Recently, adaptive control problems in
the presence of uncertain switched nonlinearities in strict-
feedback [11,12] or pure-feedback form [13,14] have been
investigated by using online function approximators such
as neural networks or fuzzy logic systems. Despite these
efforts, the existing approaches [11–13] required the func-
tion approximators equal to the order of systems. Thus, as
the order of systems increases, the number of the func-
tion approximators increases. It makes the structure of the
control system complex.
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The output-constrained control is a significant and chal-
lenging issue in the nonlinear control field because physi-
cal limitations of systems or control performance bounds
can be described as output constraints. The control meth-
ods for nonlinear systems with static output constraints
have been presented in [15–20] where the barrier Lya-
punov function approach was used to design a stable con-
troller with the constraint satisfaction. Furthermore, the
time-varying output-constrained control problem was ad-
dressed for nonlinear affine or non-affine systems [21,22].
Recently, a transformation method was reported to treat
non-affine nonlinear systems with time-varying output
constraints [23].

It should be mentioned that the aforementioned results
have three limitations: (L1) the existing work [23] deals
with the time-varying output constrained problem using
the transformation method, but non-switched systems are
only considered; (L2) switched systems considered in
[8, 9, 12] include only static constraints and affine non-
linearities; (L3) the existing approximation-based adap-
tive control approaches [11–13] for systems with switched
nonlinearities unmatched in the control input depend on
the function approximators equal to the order of systems
which lead to the complexity of the controller. These lim-
itations are strong motivations of this paper.

The purpose of this study is to present an adaptive
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approximation design approach for time-varying output-
constrained tracking of a class of switched non-affine non-
linear systems under arbitrary switching. Switched non-
affine nonlinearities are unmatched in the control input
and unknown. An adaptive control scheme based on a
system transformation is designed by using only two neu-
ral network approximators regardless of the order of the
switched system. The main contribution of this paper is
to relax the aforementioned limitations (L1)–(L3) of the
existing results. From the common Lyapunov function
method, it is proved that all the signals of the controlled
closed-loop system are uniformly ultimately bounded and
the output signal is regulated within preassigned time-
varying constraints even at the moments that arbitrary
switchings occur.

The rest of the paper is outlined as follows. The output-
constrained tracking control problem is formulated in Sec-
tion II. The approximation-based adaptive control design
is presented in Section III. Simulation studies are given in
Section IV. Finally, we conclude in Section V.

Notations: The symbol Rn denotes the n-dimensional
Euclidean space. ∥ · ∥ stands for a Euclidian norm.

(k
n

)
=

n!/(k!(n− k)!) means binomial coefficients.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following non-affine nonlinear switched
systems

ẋi = fi,σ(t)(x̄i,xi+1), i = 1, . . . ,n−1,
ẋn = fn,σ(t)(x̄n,uσ(t)),
y = x1,

(1)

where x̄i = [x1,x2, . . . ,xi]
⊤ ∈Ri, i = 1, . . . ,n, are state vari-

able vectors, y is the system output, and σ(t) : [0,+∞)→
M = {1,2, . . . ,m} is the switching signal. For any j ∈ M
and i= 1, . . . ,n, u j ∈R is a control input of the jth subsys-
tem and fi, j(·) : Ri+1 → R are unknown continuous non-
linear functions of the jth subsystem.

Problem 1: Consider (1). Our problem is to design a
common neural network controller uσ(t) ≜ u for system (1)
so that the output y satisfies y(t)< y(t)< ȳ(t) for all t ≥ 0
under the desired signal yd satisfying y(t) < yd(t) < ȳ(t)
where y(t) and ȳ(t) denote the lower and upper bound-
ing functions for the output constraint functions (i.e, the
tracking error y(t)− yd(t) is bounded as y(t)− yd(t) <
y(t)− yd(t) < ȳ(t)− yd(t) even at the moment that arbi-
trary switching occurs).

Assumption 1 [23]: Let gi, j(x̄i,xi+1) =
∂ fi, j(x̄i,xi+1)

∂xi+1
for

i = 1, . . . ,n, ∀ j ∈ M, and xi+1 = u. Then, gi, j ̸= 0 are un-
known, but their signs are known. Furthermore, there exist
constants g

i, j
> 0 and ḡi, j > 0 such that g

i, j
< |gi, j| < ḡi, j

for (x̄i,xi+1) ∈ Γi+1 and ∀ j ∈ M where Γi+1 ∈ Ri+1 is a

compact set. Without loss of generality, the signs of gi, j

are assumed to be positive.

Assumption 2: The desired signal yd is continuous,
differentiable up to the nth order, and y(i)d , i = 0, . . . ,n,
are available, and bounded as |y(i)d | ≤ ȳi,d with constants
ȳi,d > 0.

Remark 1: The existing works [8, 9, 11–13] for
switched nonlinear systems cannot provide any solution
on Problem 1.

3. APPROXIMATION-BASED SIMPLE
ADAPTIVE CONTROL SCHEME

3.1. Function approximation technique
The online function approximator is utilized to estimate

unknown nonlinear functions derived from the design pro-
cedure of the proposed adaptive control scheme. In this
paper, the linearly parameterized neural network is em-
ployed to approximate any continuous real-valued func-
tion H(Z) over a compact set ΓZ as follows [25]:

H(Z) =W⊤S(Z)+ ε(Z), (2)

where Z is the input vector, W = [w1, . . . ,wl ]
⊤ ∈ Rl with

the node number l > 1 is the optimal weighting vector
defined as W = argminŴ [supZ∈ΩZ

|H(Z)− Ŵ⊤S(Z)|]; Ŵ
is an estimate of W , S(Z) = [s1(Z), . . . ,sl(Z)]⊤; si(Z),
i = 1, . . . , l, are the basis functions chosen as the hyper-
bolic tangent function, and ε represents the reconstruction
error. It is assumed that the optimal weight vector W and
the approximation error ε are bounded as ∥W∥ ≤ W̄ and
|ε| ≤ ε̄ , respectively, where W̄ and ε̄ are unknown positive
constants [25].

3.2. System transformation
For the simple control design, the input and output

transformations reported in [23] for non-switched systems
are applied to the switched system (1) as follows:

u̇ =−au+ v, (3)

ξ1 = T−1(y, ȳ,y), (4)

where a > 0 is a constant, u denotes a common con-
trol input, v is a transformed common control input, ξ1

is a transformed output, and T (·) is a smooth invertible
and strictly increasing function satisfying ∂T (·)/∂ξ1 > 0,
limξ1→−∞ T (ξ1, ȳ,y) = y, and limξ1→∞ T (ξ1, ȳ,y) = ȳ. To
represent the output constraint y < y < ȳ in the inequality
form as the equation form, the function T (·) is defined as

T (ξ1, ȳ,y) =
ȳ− y

2
tanh(ξ1)+

ȳ+ y
2

. (5)

From (5), equation (4) becomes

ξ1 = tanh−1
(

2y− ȳ− y
ȳ− y

)
. (6)



Adaptive Neural Network Tracking of a Class of Switched Nonlinear Systems with Time-varying Output ... 1427

From (6), notice that if ξ1 is bounded, it holds that y(t)<
y(t) < ȳ(t) for all t ≥ 0. Thus, our control problem is
restated as follows: Design the common controller v us-
ing only two neural network approximators such that ξ1

is uniformly bounded in the presence of output constraints
and unknown switched pure-feedback nonlinearities.

For the controller design, we will introduce the two
state transformations. Firstly, consider the following
transformation

s1 = y = x1 ≜ b1, j(x1),

s2 = ṡ1 = f1, j(x1,x2)≜ b2, j(x̄2),

si+1 = ṡi = ∑i
k=1

∂bi, j(x̄i)
∂xk

fk, j(x̄k,xk+1)

≜ bi+1, j(x̄i+1),

(7)

where i = 2, . . . ,n and j ∈ M. Using (7), the switched
system (1) with (3) can be converted into the following
form

ṡi = si+1, i = 1, . . . ,n,
ṡn+1 = f j(x̄n,u)+g j(x̄n,u)v,
y = s1,

(8)

where

f j(x̄n,u) =
n−1

∑
k=1

∂bn+1, j(x̄n,u)
∂xk

fk, j(x̄k,xk+1)

+
∂bn+1, j(x̄n,u)

∂xn
fn, j(x̄n,u)

−
∂bn+1, j(x̄n,u)

∂u
au,

g j(x̄n,u) =
∂bn+1, j(x̄n,u)

∂u
. (9)

From Assumption 1, owing to

∂b2, j(x̄2)

∂x2
= g1, j(x1,x2),

∂bi+1, j(x̄i+1)

∂xi+1
=

∂bi, j(x̄i)

∂xi

∂ fi, j(x̄i,xi+1)

∂xi+1

=
i

∏
k=1

gk, j(x̄k,xk+1),

there exist unknown constants g
j
= ∏n

k=1 g
k, j

and ḡ j =

∏n
k=1 ḡk, j such that g

j
< g j(x̄n,u)≤ ḡ j for ∀ j ∈ M.

Secondly, consider the transformed state variables ξ1 =

T−1, ξ2 = ξ̇1, . . . , ξn+1 = ξ (n)
1 . Then, their time derivatives

using (1), (3), (4), and (8) are given by

ξ̇ = Aξ +B[α f j(x̄n,u)+αg j(x̄n,u)v+ψ(Zψ)],

ξ1 =C⊤ξ , (10)

where j = 1, . . . ,m, α = ∂T−1/∂y = 2/[(1 −

tanh2(ξ1))(ȳ − y)], A =

[
0 In×n

0 0

]
∈ R(n+1)×(n+1),

B = [0, . . . ,0,1]⊤ ∈ Rn+1, C = [1,0, . . . ,0]⊤ ∈ Rn+1, and

ψ(Zψ) =
n

∑
l=1

(
n
l

)[
∂T−1

∂y

](l)
y(n−l+1)

+
n

∑
l=0

(
n
l

)[
∂T−1

∂ ȳ

](l)
ȳ(n−l+1)

+
n

∑
l=0

(
n
l

)[
∂T−1

∂y

](l)
y(n−l+1) (11)

with Zψ = [x̄⊤n , ȳ, . . . , ȳ
(n+1),y, . . . ,y(n+1)]⊤. Notice that the

transformation between ξ ≜ [ξ1, . . . ,ξn+1] and x̄n+1 is a
smooth map and a diffeomorphism [23] and thus (10) is
a reasonable transformation. In addition, it is guaranteed
that α ̸= 0 from the property | tanh(ξ1)|< 1.

3.3. Adaptive neural network estimator
The transformed state variables ξ2, . . . , ξn+1 in (10) are

unavailable owing to the unknown function terms fi, j and
gi, j. Thus, to estimate these transformed state variables,
a common adaptive estimator using one neural network
approximator is presented as

˙̂ξ = Aξ̂ +KŴ⊤
o So(Zo)+Lξ̃1,

ξ̂1 =C⊤ξ̂ ,
(12)

˙̂Wo = λo(So(Zo)ξ̃1 −σoŴo), (13)

where ξ̂ = [ξ̂1, . . . , ξ̂n+1] is the estimate vector of ξ , L =
[l1, . . . , ln+1]

⊤ is the design vector to make the matrix Ā =

A−LC⊤ strictly Hurwitz, ξ̃1 = ξ1 − ξ̂1, λo > 0 and σo > 0
are the design constants, Zo = [u,v,Z⊤

ψ ]
⊤ is the input vec-

tor of the neural network approximator Ŵ⊤
o So(Zo); Ŵo is

an estimate of the optimal weighting vector Wo and So de-
notes the basis function of the neural network approxima-
tor, and K is selected as K = P−1C with the positive defi-
nite matrix P=P⊤ satisfying Ā⊤P+PĀ+κPP≤−Q with
a design constant κ > 0 and a positive definite matrix Q.
Notice that the solution P satisfying Ā⊤P+PĀ+κPP ≤
−Q always exists for a stable Ā [24].

Remark 2: The proposed adaptive observer (12) is
commonly used for all subsystems regardless of arbitrary
switchings and the adaptive law (13) only requires an out-
put information of state variables.

3.4. Adaptive neural network controller
For the control design, we define the error surface θ as

θ = ξ (n)
1 +χn−1ξ (n−1)

1 + · · ·+χ1ξ̇1 +χ0ξ1

= χ⊤ξ , (14)

where χ = [χ0, . . . ,χn−1,1]⊤ is chosen so that the polyno-
mial sn + χn−1sn−1 + · · ·+ χ1s+ χ0 is Hurwitz. Then, the
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time derivative of θ is given by

θ̇ = α f j(x̄n,u)+αg j(x̄n,u)v+ψ(Zψ)

+
n

∑
k=1

χk−1ξ (k)
1 . (15)

A common adaptive neural network controller for
switched system (10) is proposed as

v =
1
α
(−kcθ̂ −Ŵ⊤

c Sc(Zc)), (16)

˙̂Wc = λc(Sc(Zc)θ̂ −σc|θ̂ |Ŵc), (17)

where θ̂ = χ⊤ξ̂ , kc > 0, λc > 0, and σc > 0 are design
constants, Zc = [u,Z⊤

ψ ]
⊤ is the input vector of the neural

network approximator Ŵ⊤
c Sc(Zc); Ŵc is an estimate of the

optimal weighting vector Wc and Sc denotes the basis func-
tion of the neural network approximator.

Lemma 1: For the adaptive law (17), there exists a
compact set Ωw = {Ŵc|∥Ŵc∥ ≤ S̄c/σc}, where ∥Sc(Zc)∥ ≤
S̄c with S̄c > 0, such that Ŵc(t) ∈ Ωw for all t ≥ 0 provided
that Ŵc(0) ∈ Ωw.

Proof: Define VW = (1/(2λc))Ŵ 2
c . Its time derivative

is

V̇W = Ŵc

(
Sc(Zc)θ̂ −σc|θ̂ |Ŵc

)
≤−|θ̂ |∥Ŵc∥

(
− S̄c +σc∥Ŵc∥

)
.

Here, V̇W < 0 when ∥Ŵc∥ > S̄c/σc. Thus Ŵc(t) ∈ Ωw for
all t ≥ 0 if Ŵc(0) ∈ Ωw. □

Remark 3: We would like to emphasize that
(i) The common adaptive control approaches using

function approximators were presented for switched non-
linear systems without constraints [11, 13] or with static
output constraints [12]. The function approximators equal
to the order of the systems should be employed to im-
plement the controller reported in [11–13]. However,
the proposed common adaptive control scheme (i.e., (12)
and (16)) requires only two neural network approxima-
tors. Besides, the time-varying output constraint problem
is treated in this paper.

(ii) In [23], the system transformation method was em-
ployed to design the adaptive control scheme for non-
switched nonlinear systems. However, this paper consid-
ers an adaptive tracking problem in the presence of arbi-
trarily switched non-affine nonlinearities and time-varying
output constraints

4. STABILITY ANALYSIS

The stability analysis of the proposed control scheme
using only two neural networks is shown in the follow-
ing procedure. Firstly, we consider the Lyapunov function

candidate Vo as

Vo = ξ̃⊤Pξ̃ +
1
λo

W̃⊤
o W̃o, (18)

where ξ̃ = ξ − ξ̂ and W̃o =Wo −Ŵo.
Taking its time derivative and using K = P−1C and ξ̃1 =
ξ̃⊤C, we have

V̇o =ξ̃⊤(Ā⊤P+PĀ)ξ̃ − 2
λo

W̃⊤
o

˙̂Wo

+2ξ̃⊤P(Bh j
o −KŴ⊤

o So)

=ξ̃⊤(Ā⊤P+PĀ)ξ̃ − 2
λo

W̃⊤
o

˙̂Wo

+2ξ̃⊤P(Bh j
o −Kh j

o +Kh j
o)−2ξ̃⊤PKŴ⊤

o So

=ξ̃⊤(Ā⊤P+PĀ)ξ̃ − 2
λo

W̃⊤
o

˙̂Wo

+2[ξ̃1 + ξ̃⊤P(B−K)]h j
o −2ξ̃1Ŵ⊤

o So (19)

for any j ∈ M where h j
o = α f j(x̄n,u) + αg j(x̄n,u)v +

ψ(Zψ). Similar to [13], there exists a continuous function
Ho(Zo) satisfying the following condition

[ξ̃1 + ξ̃⊤P(B−K)]h j
o

≤ [ξ̃1 + ξ̃⊤P(B−K)]Ho(Zo), ∀ j ∈ M. (20)

From the function approximation property of neural net-
works, the unknown nonlinear function Ho(Zo) can be ap-
proximated over the compact set ΓZo as follows:

Ho(Zo) =W⊤
o So(Zo)+ εo(Zo), (21)

where Wo is the optimal weighting vector satisfying
∥Wo∥ ≤ W̄o with a constant W̄o and εo denotes the recon-
struction error satisfying |εo| ≤ ε̄o with a constant ε̄o > 0.
Using (13), (19), (20), and (21) and the following inequal-
ity

[ξ̃1 + ξ̃⊤P(B−K)](W⊤
o So + εo)

≤ξ̃1(W⊤
o So + εo)

+
1
2

ξ̃⊤PPξ̃ +
1
2
∥B−K∥2|W⊤

o So + εo|2

yields

V̇o ≤ξ̃⊤(Ā⊤P+PĀ)ξ̃ −2W̃⊤
o (Soξ̃1 −σoŴo)

+2ξ̃1(W⊤
o So + εo)+ ξ̃⊤PPξ̃

+∥B−K∥2|W⊤
o So + εo|2 −2ξ̃1Ŵ⊤

o So

≤ξ̃⊤(Ā⊤P+PĀ)ξ̃ −σo∥W̃o∥2 +σo∥Wo∥2

+ ξ̃⊤PPξ̃ +∥B−K∥2|W⊤
o So + εo|2

+2ξ̃1εo. (22)

Secondly, we consider the Lyapunov function candidate
Vc as Vc = (1/(2g))θ 2 with g = min j=1,...,m{g

j
}, and its
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time derivative along (15) is

V̇c = θ
g j(x̄n,u)

g
(h j

c +αv), (23)

where h j
c = [α f j(x̄n,u)+ψ(Zψ)+∑n

k=1 χk−1ξ (k)
1 ]/g j(x̄n,u).

Similar to [13], there exists a continuous function Hc(Zc)
satisfying the following condition

θg j(x̄n,u)h j
c/g

≤ θg j(x̄n,u)Hc(Zc)/g, ∀ j ∈ M. (24)

Applying the function approximation property of neural
networks, we get

Hc(Zc) =W⊤
c Sc(Zc)+ εc(Zc), (25)

where Wc is the optimal weighting vector satisfying
∥Wc∥ ≤ W̄c with a constant W̄c and εc denotes the recon-
struction error satisfying |εc| ≤ ε̄c with a constant ε̄c > 0.
Using (16), (23), (24), and (25), it is obtained that

V̇c ≤ θ
g j(x̄n,u)

g
(−kcθ̂ +W̃⊤

c Sc + εc)

= θ
g j(x̄n,u)

g
[−kcθ + kc(θ − θ̂)+W̃⊤

c Sc + εc]

≤−kcθ 2 + kc
g j(x̄n,u)

g
θ χ⊤ξ̃ +θ

g j(x̄n,u)
g

ι , (26)

where ι = W̃⊤
c Sc + εc.

Finally, we consider the total Lyapunov function can-
didate as V = Vo +Vc. Substituting (19) and (26) into
V̇ = V̇o +V̇c, we have

V̇ ≤ ξ̃⊤(Ā⊤P+PĀ)ξ̃ −σo∥W̃o∥2 + ξ̃⊤PPξ̃

+∥B−K∥2|W⊤
o So + εo|2 − kcθ 2 +σo∥Wo∥2

+ kc
g j(x̄n,u)

g
θ χ⊤ξ̃ +θ

g j(x̄n,u)
g

ι +2ξ̃1εo. (27)

Then, from Lemma 1, we have

θ
g j(x̄n,u)

g
ι ≤ 1

2
θ 2 +

1
2

ḡ2(∥Wc −Ŵc∥S̄c + ε̄c)
2/g2

≤ 1
2

θ 2 +
1
2

ῑ2, (28)

kc
g j(x̄n,u)

g
θ χ⊤ξ̃ +2ξ̃1εo

≤ 1
2

θ 2 +(κ −1)ξ̃⊤PPξ̃ + ε̄2
o , (29)

∥B−K∥2|W⊤
o So + εo|2

≤ ∥B−K∥2(W̄oS̄o + ε̄o)
2, (30)

where ῑ = ḡ((S̄c/σc +W̄c)S̄c + ε̄c)/g; ḡ = max j=1,...,m{ḡ j}
and these exists a design constant κ > 0 such that

(1/2)k2
c(ḡ/g)2ξ̃⊤χχ⊤ξ̃ + ξ̃⊤ξ̃ ≤ (κ − 1)ξ̃⊤PPξ̃ . Utiliz-

ing (28), (29), and (30) and choosing kc = k∗c + 1, (27)
becomes

V̇ ≤ ξ̃⊤(Ā⊤P+PĀ)ξ̃ −σo∥W̃o∥2 + ξ̃⊤PPξ̃
+∥B−K∥2(W̄oS̄o + ε̄o)

2 − k∗cθ 2

+(κ −1)ξ̃⊤PPξ̃ + ε̄2
o +

1
2

ῑ2 +σo∥Wo∥2

≤−ξ̃⊤Qξ̃ −σo∥W̃o∥2 − k∗cθ 2

+∥B−K∥2(W̄oS̄o + ε̄o)
2 + ε̄2

o +
1
2

ῑ2 +σo∥Wo∥2

≤−γV +∆, (31)

where γ = min{λmin(Q)/λmax(P),2gk∗c ,σoλo}; λmin(Q)
denotes the minimum eigenvalue of Q and λmax(P) de-
notes the maximum eigenvalue of P, and ∆ = σoW̄ 2

o +
(1/2)ῑ2 + ∥B − K∥2(W̄oS̄o + ε̄o)

2 + ε̄2
o . Then, we get

V (t) ≤ e−γtV (0) + ∆
γ (1 − e−γt). Using (1/2)θ 2 ≤ V (t),

we have

θ 2(t)≤ 2e−γtV (0)+
2∆
γ
(1− e−γt). (32)

As time increases, the error surface θ exponentially con-
verges to the compact set G = {θ ||θ | ≤

√
2∆/γ}. Thus,

ξ1 is bounded. In addition, from (6), the boundedness of
ξ1 ensures y(t) < y(t) < ȳ(t) for all t ≥ 0, which leads to
y(t)− yd(t)< y(t)− yd(t)< ȳ(t)− yd(t).

Based on the stability analysis for the proposed adaptive
control scheme, the main result of this paper is presented
in the following theorem.

Theorem 1: Consider the uncertain switched non-
affine nonlinear systems (1) with time-varying output con-
straints and arbitrary switchings. Under Assumptions 1–
2, the proposed output-constrained tracking scheme using
only two neural networks guarantees that

(i) all the signals of the closed-loop system are bounded
and the output constraints are not violated,

(ii) the tracking error y(t)−yd(t) satisfies y(t)−yd(t)<
y(t)− yd(t)< ȳ(t)− yd(t) for ∀t ≥ 0,
regardless of unknown non-affine nonlinearities un-
matched in the control input.

5. SIMULATION STUDIES

5.1. Example 1
Consider the uncertain switched pure-feedback nonlin-

ear system (1) with n = 3, σ(t) : [0,∞) → M = {1,2,3},
f1,1 = 0.05cosx1+x2, f1,2 = 0.2x1+x2, f1,3 = 0.1sinx1+

x2, f2,1 = (1 − 2x1x2)/(1 + 2x2
1) + x3 + 0.1tanhx3,

f2,2 = (1− exp(x1x2))/(1+ exp(x1x2))+ x3 + 0.05sinx3,
f2,3 = (1 − 3x2

1)/(1 + 3x2
1) + x3 + 0.07cosx3, f3,1 =

0.2 × 3−x2
2x4

3 + (0.9 + 0.05exp(−x2
1))u + 0.2cosu, f3,2 =

0.2exp(−x4
2x6

3) + (0.9 + 0.05exp(−x2
1))u + 0.1sinu and

f3,3 = 0.3× 2−x4
2x4

3 +(1.1+ 0.05exp(−x2
1))u+ 0.3tanhu.
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Fig. 1. Switching signal σ for example 1.

(a)

(b)

Fig. 2. Tracking result and error for example 1 (a) Track-
ing result (b) Tracking error y− yd .

The desired signal yd is defined as yd = cos(2t)+ sin(2t).
The initial conditions of the state variables are set to

x1(0) = 2 and x2(0) = x3(0) = 0. The lower and upper
bounds of constraints are given by y =−1.05exp(−2t)−
0.05 + yd and ȳ = 1.12exp(−1.5t) + 0.06 + yd , respec-
tively. Two neural network approximators with 30 hidden
nodes and their basis functions chosen as the hyperbolic
tangent function are employed for this simulation. The
adaptive control scheme is given by (12), (3), and (16)
where ξ̂ = [ξ̂1, ξ̂2, ξ̂3, ξ̂4]

⊤, L = [3 × 102,9 × 104,8 ×
106,5 × 108]⊤, K = [0.4698,66.0563,5037.4,115292]⊤,
and θ̂ = [χ0,χ1,χ2,1]ξ̂ with χ0 = 10, χ1 = 40, χ2 = 80,
a = 3, and kc = 10. The adaptive laws for Ŵo and
Ŵc are given by (13) and (17) with λo = λc = 0.1 and
σo = σc = 0.001. Fig. 1 illustrates the switching signal on
non-affine nonlinearities. The tracking result and error are
shown in Figs. 2(a) and 2(b), respectively. The L2 norms
of weights ∥Ŵo∥ and ∥Ŵc∥ of neural networks, and the
control input u are shown in Fig. 3. From these figures,
we can see that the system output y remains within the
predefined output constraints for all t ≥ 0 in the presence
of the arbitrarily switched unknown non-affine nonlinear-
ities.

5.2. Example 2
In this example, we consider the electromechanical sys-

tem as a practical example. Its dynamics is given by
[26, 27]

Dq̈+Eq̇+N sin(q) = τ,
L̄τ̇ +Rτ = u−Kmq̇,

(33)

where D = J/Kτ + ml2
0/(3Kτ) + 2M0R2

0/(5Kτ), N =
ml0G/(2Kτ) + M0l0G/Kτ , and E = E0/Kτ . J is the ro-
tor inertia, m is the link mass, M0 is the load mass, l0 is the
link length, R0 is the radius of the load, G is the gravity
coefficient, E0 is the coefficient of viscous friction at the
joint, q is the angular motor position (and hence the po-
sition of the load), τ is the motor armature current, Kτ is
the coefficient which characterizes the electromechanical
conversion of armature current to torque, L̄ is the armature
inductance, R is the armature resistance, Km is the back-
emf coefficient, and u is the input control voltage. Their
values are chosen as J = 1.625 Kg ·m2, m = 0.506 Kg,
R0 = 0.023 m, M0 = 0.434 Kg, l0 = 0.305 m, E0 =
16.25×10−3 N ·m · s/rad, L̄ = 25.0×10−3 H, R = 5.0 Ω,
and Kτ = Km = 0.90 N ·m/A.

Defining x1 = q, x2 = q̇, and x3 = τ , the electromechan-
ical system (33) can be viewed as a non-affine nonlinear
system in the following form

ẋ1 = f1(x1,x2)+ x2,
ẋ2 = f2(x1,x2,x3)+ x3,
ẋ3 = f3(x1,x2,x3,u)+u,
y = x1,

(34)

where f1(x1,x2) = 0, f2 = −N
D sin(x1)− E

D x2 +
1
D x3 − x3,

and f3(x1,x2,x3,u) = −Km
L x2 − R

L x3 +
u
L − u are unknown
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(a)

(b)

Fig. 3. (a) ∥Ŵo∥ and ∥Ŵc∥ for example 1 (b) Control input
u for example 1.

Fig. 4. Switching signal σ for example 2.

function. To describe system (34) as a switched nonlin-

(a)

(b)

Fig. 5. Tracking result and error for example 2 (a) Track-
ing result (b) Tracking error y− yd .

ear system, the load mass and armature resistance are as-
sumed to be switched according to the load change (i.e.,
M0,σ(t) and Rσ(t)). Then, system (34) is represented by a
switched non-affine nonlinear system with n = 3, σ(t) :
[0,∞)→ M = {1,2,3}, M0,1 = 0.434 Kg and R1 = 5.0 Ω
at σ(t) = 1, M0,2 = 0.658 Kg and R2 = 6.5 Ω at σ(t) = 2,
and M0,3 = 0.821 Kg and R3 = 8.0 Ω at σ(t) = 3. The
desired signal yd is given by yd = cos(t)+ sin(2t). The
initial conditions of the state variables are set to x1(0) = 2
and x2(0) = x3(0) = 0. The lower and upper bounds of
output constraints are given by y = −1.1exp(−1.2t)−
0.15+yd and ȳ = 1.16exp(−1.1t)+0.16+yd . The adap-
tive control scheme is given by (12), (3), and (16) where
ξ̂ = [ξ̂1, ξ̂2, ξ̂3, ξ̂4]

⊤, L = [3 × 102,5 × 104,2 × 106,1 ×
108]⊤, K = [0.3659,34.8262,1758.4,43028]T , and θ̂ =

[χ0,χ1,χ2,1]ξ̂ with χ0 = 120, χ1 = 180, χ2 = 20, a = 1,
and kc = 3. The design parameters for the adaptive laws
(13) and (17) are set to λo = λc = 1.5 and σo = σc = 0.01.
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(a)

(b)

Fig. 6. (a) ∥Ŵo∥ and ∥Ŵc∥ for example 2 (b) Control input
u for example 2.

Fig. 4 shows the switching signal for this simulation.
The tracking result and error are displayed in Figs. 5(a)
and 5(b), respectively. Figs. 6(a) and 6(b) show the
norm of weights of neural networks and the control in-
put, respectively. These figures reveal that the system out-
put y evolves within preassigned time-varying output con-
straints for all t ≥ 0.

6. CONCLUSION

This paper has investigated an adaptive approximation-
based output-constrained tracking problem of uncertain
switched pure-feedback systems with arbitrary switch-
ings. The output constraints have been utilized as the con-
trol performance bounds. From the system transformation
and the common Lyapunov function method, an adaptive
output-constrained control scheme using only two neural
networks has been designed regardless of the order of the

systems. We have shown that the stability of the con-
trolled closed-loop system and the constraint satisfaction
have been analyzed in the Lyapunov sense. Finally, simu-
lation examples have successfully verified the theoretical
result.
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