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Barrier Lyapunov Functions-based Adaptive Control for Nonlinear Pure-
feedback Systems with Time-varying Full State Constraints
Chunxiao Wang, Yuqiang Wu*, and Jiangbo Yu

Abstract: This paper studies the problem of controller design for pure-feedback nonlinear systems with asymmetric
time-varying full state constraints. The mean value theorem is employed to transform a pure-feedback system into
a strict-feedback structure with non-affine terms. For the transformed system, a time-varying asymmetric Barrier
Lyapunov Function (ABLF) with the error variables is employed to ensure the time-varying constraints satisfaction.
By allowing the barriers to vary with the desired trajectory in time, the initial condition requirements are relaxed
efficiently. The presented control scheme can guarantee that all signals in the closed-loop system are ultimately
bounded. It is also proved that the tracking error converges to an adjustable neighborhood of the origin even in the
presence of disturbance. The performance of the ABLF-based control are illustrated through two examples.

Keywords: ABLF, backstepping, full state constraints, nonlinear pure-feedback system, time-varying.

1. INTRODUCTION

Constraints occurring in various engineering systems
are sources of instability and often cause undesirable per-
formance. Driven by practical requirements and theoret-
ical challenges, the research of constrained problem such
as the nonlinear saturation, physical stoppages, as well
as performance and safety specifications has become an
important research topic [1–6]. Many fruitful results on
constraint-handling methods have been generated, such as
the model predictive control [2, 6], the set invariance no-
tions [7, 8] and reference governors [9, 10]. Additionally,
Barrier Lyapunov Function (BLF) has been employed to
handle constraints for systems in the Brunovsky form [11],
strict-feedback form [12–16] and pure-feedback form [17,
18]. The basic difference between BLF and the traditional
Lyapunov function lies in the fact that the value of BLF
approaches infinity whenever its arguments tend to some
limits.

There have been extensive research efforts in strict-
feedback nonlinear systems such as [12–16] and [19–26].
Several versions of the BLF-based control design for non-
linear systems have been studied. The work in [12] pre-
sented control designs for strict-feedback nonlinear sys-
tems with a constant output constraint. [13,14] further ex-
tend the results to strict-feedback nonlinear systems with

Manuscript received May 26, 2016; revised December 5, 2016 and February 7, 2017; accepted March 28, 2017. Recommended by Associate
Editor Hyo-Sung Ahn under the direction of Editor Jessie(Ju H.) Park. This work is supported by National Natural Science Foundation
(NNSF) of China under Grant 61673243, 61273091, 61303198 and 61304008, the Project of Taishan Scholar of Shandong Province of
China, the PhD Programs Foundation of Ministry of Education of China under Grant 20123705110002.

Chunxiao Wang is with the Institute of Automation, Qufu Normal University, Shandong Province, 276862, China, and he is also with the
School of Science, Shandong Jianzhu University, Shandong Province, 250101, China (e-mail: xiao2166@126.com ). Yuqiang Wu is with
the Institute of Automation, Qufu Normal University, Shandong Province, 276862, China (e-mail: yu_qiang_wu@126.com). Jiangbo Yu are
with the School of Science, Shandong Jianzhu University, Shandong Province, 250101, China (e-mail: jbyu2002@163.com).
* Corresponding author.

time-varying output constraint. For the strict-feedback
nonlinear systems with state constraints have been stud-
ied in [19–22]. Both the problem of output constraint and
state constraints mentioned in the above works were tack-
led by using BLF. However, the approach on state con-
straints reported in above mentioned works limits its ap-
plication to a class of strict-feedback nonlinear systems.
The pure-feedback system represents a more general class
of triangular systems which have no affine appearance of
the variables to be used as virtual controls. For the pure-
feedback system with state constraints a good tracking
performance was achieved in [17] without violating the
constant states constraints. Note that the method of [17]
can not solve the problem of asymmetric time-varying
state constraints. One more interesting work is to consider
the pure-feedback system with asymmetric time-varying
state constraints. Therefore, the main difficulty of han-
dling this class of system is to deal with time-varying full
state constrained unknown non-affine nonlinearities.

Motivated by the above observations, in this paper, we
employ the time-varying ABLF-based adaptive control to
handle a pure-feedback system with time-varying full state
constraints. The main contributions of this paper are sum-
marized as follows:

1) The mean value theorem is employed to transform
the pure-feedback system into the strict-feedback structure
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with non-affine terms. For the transformed system, a time-
varying ABLF-based backstepping design is proposed to
prevent the violation of the full state constraints.

2) By constructing a new ABLF, the control scheme
is able to handle the state constraints that are both time-
varying and asymmetric. The cases of symmetric state
constraints considered in [17] and [20] are some special
cases of our scheme.

3) A new adaptive controller is designed to handle
parametric uncertainties. Furthermore, the time-varying
ABLF is used, the states can start from anywhere within
the initial states constrained space. As a result, the de-
sign scheme can add flexibility of controller and relax the
restriction on initial conditions.

The rest of the paper is organized as follows. In Section
2, some mathematical preliminaries and statement of the
problem are provided. The BLF-based control design for
uncertain system is developed, and addresses robustness
to disturbance in Section 3. Two simulation examples are
given in Section 4 to illustrate the obtained results. Section
5 concludes this paper.

2. PROBLEM STATEMENT

Consider the following class of pure-feedback nonlin-
ear systems with time-varying full state constraints

ẋi(t) = fi(x̄i+1(t)), i = 1,2, · · · ,n−1,

ẋn(t) = fn(x̄n(t),u(t)),

y(t) = x1(t), (1)

where x̄i(t) = (x1(t),x2(t), · · · ,xi(t))T ∈ Ri, i = 1,2, · · · ,n,
u ∈ R and y ∈ R are the states, control input and output, re-
spectively. fi(x̄i+1(t))(i = 1, · · · ,n−1) and fn(x̄n(t),u(t))
are uncertain nonlinear smooth functions. According to
the mean value theorem in [27], there must exist variables
x0

i+1 and u0 such that

fi(x̄i+1) = fi(x̄i,0)+gi(x̄i,x0
i+1)xi+1,

fn(x̄n,u) = fn(x̄n,0)+gn(x̄n,u0)u, (2)

where x0
i+1 is some point between zero and xi+1, u0 is some

point between zero and u, gi(x̄i+1) = ∂ fi(x̄i+1)/∂xi+1,
gn(x̄n,u) = ∂ fn(x̄n,u)/∂u. Inspired by [17], we assume
that the uncertain terms satisfy: fi(x̄i,0) = θ T

i hi(x̄i) with
θi ∈ Rm is uncertain constant vector and hi : Ri → Rm is
known continuous function vector.

Furthermore, in this paper all the states x(t) are re-
quired to be constrained in a set as x(t)∈ Ωx, where Ωx :=
{x∈Rn,kci

(t)< xi(t)< k̄ci(t), i= 1,2, · · · ,n,∀t > 0}⊂Rn,
kci

(t) : R+ → R and k̄ci(t) : R+ → R.

Remark 1: The state constraints kci
(t) < xi(t) < k̄ci(t)

considered in this paper are based on the worst-case sce-
nario. The designed constraint functions can be speci-
fied according to the requirements of practical problem.

The constraints kci
(t), k̄ci(t) should be guaranteed to sat-

isfy kci
(t) < αi−1(t) < k̄ci(t), i = 1, · · · ,n, in which αi−1

are the virtual stabilizing functions to be designed.

The control objective of this paper is to design an adap-
tive state feedback control law u(t) to ensure that the sys-
tem output y(t) tracks the reference signal yd(t). At the
same time, we need guarantee that the time-varying full
state constraints are not violated and all closed-loop sig-
nals are bounded. Towards this end, we make the follow-
ing assumptions on system (1).

Assumption 1: The functions gi(·) are bounded, i.e.,
there exist the constants ḡi ≥ g

i
> 0 such that g

i
≤ |gi(·)| ≤

ḡi. Without loss of generality, in this paper, we assume
that g

i
≤ gi(·)≤ ḡi(i = 1, · · · ,n).

Assumption 2: There exist functions Ȳ0(t) : R+ → R+

and Y 0(t) : R+ → R+ satisfy Ȳ0(t) < k̄c1(t) and Y 0(t) >
kc1

(t),∀t ≥ 0. Furthermore, there exist positive con-
stants Yi, i = 1, · · · ,n, such that the reference signal yd(t)
and its time derivatives satisfy Y 0(t) ≤ yd(t) ≤ Ȳ0(t) and
|y(i)d (t)| ≤ Yi, ∀t ≥ 0.

Assumption 3: There exist constants K̄ci ,Kci
, dci j

, d̄ci j

i, j = 1, · · · ,n, such that k̄ci(t)≤ K̄ci ,kci
(t)≥ Kci

and their
derivatives satisfy |k( j)

ci
(t)| ≤ dci j

, |k̄( j)
ci (t)| ≤ d̄ci j .

To deal with the full state constraints, we present the
following lemmas which play important roles in the com-
ing feedback design and stability analysis.

Lemma 1 [28]: For any functions ka j(t), kb j(t), let Z̄i

:= {z j(t) ∈ R : −ka j(t)< z j(t)< kb j(t), j = 1,2, . . . , i, t >
0} ⊂ Ri be open set and N := Rl × Z̄i ⊂ Rl+i. Consider the
system: η̇(t) = h(t,η(t)), where η(t) := [ω(t), z̄i(t)]T ∈
N , z̄i = [z1,z2, · · · ,zi]

T . Note that h : R+ ×N → Rl+i is
piecewise continuous with respect to t and locally Lips-
chitz about η(t). Suppose there exist continuous differ-
entiable and positive definite functions U : Rl → R+ and
Vi : Z̄i → R+ in their respective domains, such that

Vi(zi(t))→ ∞ as z j →−ka j(t) or z j → kb j(t),

γ1(∥ω(t)∥)≤U(ω(t))≤ γ2(∥ω(t)∥),

where j = 1, · · · , i, γ1 and γ2 are class K∞ functions. Let
V (η(t)) := ∑i

j=1 Vj(z j(t))+U(ω(t)) and z̄i(0) belong to
the set Z̄i. If the inequality holds

V̇ =
∂V
∂η

h ≤−cV +υ , (3)

with constants c > 0,υ > 0 and η ∈ N , then z̄i(t) remain
in the open set Z̄i,∀t ∈ [0,∞).

Lemma 2 [14]: For all |Si| < kbi(t), the following in-
equality holds

log
k2

bi
(t)

k2
bi
(t)−S2

i
≤ S2

i

k2
bi
(t)−S2

i
. (4)
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3. TIME-VARYING ABLF-BASED CONTROL

In this section, we give the time-varying ABLF-based
stability analysis for both system (1) and system with dis-
turbances.

3.1. Control design for uncertain system
Step 1: Consider the x1-subsystem. Denote S1 = x1−yd

and S2 = x2 −α1, where α1 is a virtual control, then

Ṡ1(t) =θ T
1 h1(x1(t))+g1(x1(t),x0

2(t))(S2(t)

+α1(t))− ẏd(t).

Since the state constraints are time-varying and asymmet-
ric, we choose an ABLF as follows:

V1 =
1−q(S1)

2p
log(

k2p
a1
(t)

k2p
a1 (t)−S2p

1 (t)
)

+
q(S1)

2p
log(

k2p
b1
(t)

k2p
b1
(t)−S2p

1 (t)
)+

1
2

ϑ̃ 2
1 (t), (5)

where 2p ≥ n, ϑ̃1(t) = ϑ̂1(t)−ϑ1 and ϑ̂1(t) > 0 is the
estimation of ϑ1 = ∥θ1∥2. The time-varying barriers are
given by ka1(t) := yd(t)− kc1

(t),kb1(t) := k̄c1(t)− yd(t),
and

q(•) :=
{

1, if •> 0,
0, if •< 0.

(6)

Remark 2: The aim of p which is chosen as 2p ≥ n is
to ensure the differentiability of αi for i = 1, · · · ,n−1.

Remark 3: The selection of q(•) in (6) is to ensure
that the Lyapunov function in (5) can handle the case of
asymmetric time-varying state constraints. Clearly the
Lyapunov function in (5) can also handle both the cases
of symmetric time-varying state constraints and the static
constraints. Hence, the Lyapunov function in (5) is more
general compared with that in [17] and [20].

Throughout this paper, for ease of notation, when on
confusion arise the time and state dependence will be
omitted unless otherwise stated. Due to Assumptions
2-3, there exist positive constants Kb1

, K̄b1 , Ka1
and K̄a1

such that Ka1
≤ ka1(t) ≤ K̄a1 ,Kb1

≤ kb1(t) ≤ K̄b1 . De-
fine a set Ωs := {S = (S1, · · · ,Sn)

T ⊂ Rn,−kai(t)< Si(t)<
kbi(t), i = 1,2, · · · ,n,∀t > 0}, in which Si,kai(t),kbi(t) for
i = 2, · · · ,n will be specified later on and Kai

≤ kai(t) ≤
K̄ai ,Kbi

≤ kbi(t)≤ K̄bi .
In the set Ωs, V1 is piecewise smooth and con-

tinuously differentiable in terms with the fact that
limS1→0+(dV1/dS1) = limS1→0−(dV1/dS1) = 0. Thus V1

is a valid Lyapunov function. The time derivative of V1 is
given by

V̇1 =S2p−1
1 Ks1 [θ

T
1 h1 +g1(S2 +α1)− ẏd (7)

+(1−q(S1))
k̇a1(t)
ka1(t)

S1 +q(S1)
k̇b1(t)
kb1(t)

S1]+ ϑ̃1
˙̂ϑ1,

where

Ksi =
1−q(Si)

k2p
ai (t)−S2p

i

+
q(Si)

k2p
bi
(t)−S2p

i

, i = 1, · · · ,n. (8)

Design the adaptive law for ϑ̂1 as well as the stabilising
function α1 in the form of

˙̂ϑ1 =− ϑ̂1 +
g

1
K2

s1
S4p−2

1 h2
1

2δ 2
1

, (9)

α1 =− (K1 + k̄1(t))S1 −Ks1 S2p−1
1

(ẏd)
2

2

− Ks1 S2p−1
1 h2

1ϑ̂1

2δ 2
1

, (10)

where K1,δ1 are positive design parameters and the time-
varying gain is given by

k̄1(t) =
1
g

1

√
(1−q(S1))(

k̇a1

ka1

)2 +q(S1)(
k̇b1

kb1

)2 +β . (11)

Note that β is a positive constant, then it guarantees that
the time derivatives of α1 are bounded even when k̇a1 and
k̇b1 are both zero.

In view of S1 = x1 − yd , from the formation of α1 in
(10), we know that α1 is a continuously differentiable
function of x1,yd , ẏd , ka1 , k̇a1 ,kb1 , k̇b1 and ϑ̂1. From As-
sumption 2-3, yd , k̄c1(t),kc1

(t) and their derivatives are all
bounded. Since ka1(t) = yd(t)− kc1

(t),kb1(t) = k̄c1(t)−
yd(t), so ka1 , k̇a1 , kb1 and k̇b1 are bounded. For the last
term of (9) is bounded, then ϑ̂1 is bounded which can be
verified by Lemma C.5 in [29]. Because of the bounded-
ness of x1,yd , ẏd , ka1 , k̇a1 ,kb1 , k̇b1 and ϑ̂1, we conclude that
α1 is bounded and express it as |α1(t)| ≤ ᾱ1 .

Let ς1 = [ka1 ,kb1 ]
T , one has

α̇1 =
∂α1

∂x1
(θ T

1 h1 +g1x2)+
1

∑
j=0

∂α1

∂y( j)
d

y( j+1)
d

+
1

∑
j=0

∂α1

∂ς ( j)
1

ς ( j+1)
1 +

∂α1

∂ ϑ̂1

˙̂ϑ1. (12)

The boundedness of α̇1 also can be verified. Using the
Young’s inequality, we have

S2p−1
1 Ks1 θ T

1 h1 ≤
g

1
K2

s1
S4p−2

1 ϑ1h2
1

2δ 2
1

+
δ 2

1

2g
1

,

Ks1 g1S2p−1
1 S2 ≤

g
2
K2

s1
S4p−2

1 S2
2

2
+

ḡ2
1

2g
2

,

−Ks1 S2p−1
1 ẏd ≤

g
1
K2

s1
S4p−2

1 (ẏd)
2

2
+

1
2g

1

.

Consider α1 in (10), the following inequality holds

Ks1 g1S2p−1
1 α1 ≤− (K1 + k̄1(t))g1

Ks1 S2p
1
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−
g

1
K2

s1
S4p−2

1 (ẏd)
2

2
−

g
1
K2

s1
h2

1S4p−2
1 ϑ̂1

2δ 2
1

.

Substituting (9)and (10) into (7) and using the above four
inequalities, we have

V̇1 ≤ ϑ̃1[
˙̂ϑ1 −

g
1
K2

s1
S4p−2

1 h2
1

2δ 2
1

]−K1g
1
Ks1 S2p

1

+
g

2
K2

s1
S4p−2

1 S2
2

2
+

δ 2
1

2g
1

+
ḡ2

1

2g
2

+
1

2g
1

. (13)

For the term of ϑ̃1[
˙̂ϑ1 −

g
1
K2

s1
S4p−2

1 h2
1

2δ 2
1

], with the help of (9), it
can be dealt with as follows:

ϑ̃1[
˙̂ϑ1 −

g
1
K2

s1
S4p−2

1 h2
1

2δ 2
1

]≤−1
2

ϑ̃ 2
1 +

1
2

ϑ 2
1 . (14)

Then,

V̇1 ≤−K1g
1
Ks1 S2p

1 − 1
2

ϑ̃ 2
1 +µc1 +

g
2
K2

s1
S4p−2

1 S2
2

2
,

(15)

where µc1 =
δ 2

1 +1
2g

1
+ 1

2 ϑ 2
1 +

ḡ2
1

2g
2
. It is noted that the last term

of inequality (15) can be canceled in the subsequent step.
Step iii (2 ≤ i ≤ n − 1): Denote Si+1 = xi+1 − αi and

ςl = [kal ,kbl ]
T . The time derivative of Si is

Ṡi(t) =θ T
i hi(x̄i(t))+gi(x̄i(t),x0

i+1(t))(Si+1(t)+αi)

− α̇i−1(t).

with

α̇i−1 =
i−1

∑
j=1

∂αi−1

∂x j
(θ T

j h j +g jx j+1)+
i−1

∑
j=0

∂αi−1

∂y( j)
d

y( j+1)
d

+
i−1

∑
l=1

i−1

∑
j=0

∂αi−1

∂ς ( j)
l

ς ( j+1)
l +

i−1

∑
j=1

∂αi−1

∂ ϑ̂ j

˙̂ϑ j. (16)

Choose the Lyapunov function

Vi =Vi−1 +
1−q(Si)

2p
log(

k2p
ai
(t)

k2p
ai (t)−S2p

i

)

+
q(Si)

2p
log(

k2p
bi
(t)

k2p
bi
(t)−S2p

i

)+
1
2

ϑ̃ 2
i , (17)

with kai(t) := αi−1(t)− kci
(t), kbi(t) := k̄ci(t)− αi−1(t),

ϑ̃i = ϑ̂i − ϑi and ϑ̂i is the estimation of ϑi =
max1≤ j≤i{∥θ j∥2}. As the analysis in Step 1, there also
exist a positive constant ᾱi−1 such that |αi−1| ≤ ᾱi−1. The
time derivative of Vi is given by

V̇i =V̇i−1 +S2p−1
i Ksi [θ

T
i hi +gi(Si+1 +αi)

− k̃i(
i−1

∑
j=1

∂αi−1

∂x j
(θ T

j h j +g jx j+1)+
i−1

∑
j=0

∂αi−1

∂y( j)
d

y( j+1)
d

+
i−1

∑
l=1

i−1

∑
j=0

∂αi−1

∂ς ( j)
l

ς ( j+1)
l +

i−1

∑
j=1

∂αi−1

∂ ϑ̂ j

˙̂ϑ j)

− (1−q(Si))
k̇ci

(t)
kai(t)

Si +q(Si)
˙̄kci(t)
kbi(t)

Si]+ ϑ̃i
˙̂ϑi,

(18)

with k̃i = 1− (1−q(Si))Si
kai

+ q(Si)Si
kbi

. Similar with Step 1, the
ith virtual controller αi is designed as

αi =− (Ki + k̄i(t))Si −Ksi k̃
2
i S2p−1

i
ψi

2

− Ksi S
2p−1
i ϑ̂i

2δ 2
i

γi −
K2

si−1
S4p−2

i−1

2Ksi S
2p−3
i

, (19)

where Ki,δi are positive constants and

k̄i(t) =
1
g

i

√
(1−q(Si))(

k̇ci

kai

)2 +q(Si)(
˙̄kci

kbi

)2 +β ,

(20)

γi = ∥hi(x̄i)∥2 +∥k̃i∥2
i−1

∑
j=1

∥∂αi−1

∂x j
h j∥2, (21)

ψi =
i−1

∑
j=1

(
∂αi−1

∂x j
x j+1)

2 +
i−1

∑
j=0

(
∂αi−1

∂y( j)
d

yd
( j+1))2

+
i−1

∑
l=0

i−1

∑
j=0

(
∂αi−1

∂ς ( j)
l

ς ( j+1)
l )2 +

i−1

∑
j=1

(
∂αi−1

∂ ϑ̂ j

˙̂ϑ j)
2. (22)

Remark 4: In Step i, we have defined k̄i(t) for i =
2, · · ·n − 1 as (20), it is different from k̄1(t) denoted in
the first step. Since kai = αi−1 − kci

, kbi = k̄ci − αi−1,
then k̇ai = α̇i−1 − k̇ci

, k̇bi =
˙̄kci − α̇i−1. While the term

∑i−1
j=1

∂αi−1
∂x j

(θ T
j h j) in α̇i−1 is uncertain, then it is not able

to be used in virtual controller. So we separate it from the
time-varied gain and define k̄i(t) as (20).

The adaptation law for ϑ̂i is given as

˙̂ϑi =−ϑ̂i +
g

i
K2

Si
S4p−2

i γi(x̄i)

2δ 2
i

. (23)

Similar to (14) and using (23), we have

ϑ̃i[
˙̂ϑi −

g
i
K2

si
S4p−2

i γi(x̄i)

2δ 2
i

]≤−1
2

ϑ̃ 2
i +

1
2

ϑ 2
i . (24)

Substitute (19) and (23) into (18), with the help of Young’s
inequality as previous steps, it can be further shown that

V̇i ≤−
i

∑
j=1

K jg j
Ks j S

2p
j − 1

2

i

∑
j=1

ϑ̃ 2
j

+
i

∑
j=1

µc j +
g

i+1
K2

si
S4p−2

i S2
i+1

2
, (25)
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where µci =
iδ 2

i +i2+i−1
2g

i
+ 1

2g
i
∑i−1

j=1 ḡ2
j +

1
2 ϑ 2

i +
ḡ2

i
2g

i+1
.

Step n. As denoted in Step n−1, Sn = xn −αn−1, then

Ṡn(t) = θ T
n hn(t)+gn(x̄n,u0(t))u(t)− α̇n−1(t). (26)

Define the Lyapunov function candidate

Vn =Vn−1 +
1−q(Sn)

2p
log(

k2p
an
(t)

k2p
an (t)−S2p

n
)

+
q(Sn)

2p
log(

k2p
bn
(t)

k2p
bn
(t)−S2p

n
)+

1
2

ϑ̃ 2
n , (27)

where kan(t) :=αn−1(t)−kcn
(t), kbn(t) := k̄cn(t)−αn−1(t),

ϑn = max1≤ j≤n{∥θ j∥2}, ϑ̃n = ϑ̂n − ϑn. Computing the
time derivative of (27), we have

V̇n =V̇n−1 +S2p−1
n Ksn [θ

T
n hn +gnu

− k̃n(
n−1

∑
j=1

∂αn−1

∂x j
(θ T

j h j +g jx j+1)+
n−1

∑
j=0

∂αn−1

∂y( j)
d

y( j+1)
d

+
n−1

∑
l=1

n−1

∑
j=0

∂αn−1

∂ς ( j)
l

ς ( j+1)
l +

n−1

∑
j=1

∂αn−1

∂ ϑ̂ j

˙̂ϑ j)

− (1−q(Sn))
k̇cn

(t)
kan(t)

Sn +q(Sn)
˙̄kcn(t)
kbn(t)

Sn]+ ϑ̃n
˙̂ϑn,

(28)

in which

k̃n = 1− (1−q(Sn))Sn

kan(t)
+

q(Sn)Sn

kbn(t)
. (29)

The actual controller and the adaption law are chosen as

u(t) =−(Kn + k̄n(t))Sn −Ksn k̃2
nS2p−1

n
ψn

2

− Ksn S2p−1
n ϑ̂n(t)
2δ 2

n
γn −

K2
sn−1

S4p−2
n−1

2Ksn S2p−3
n

, (30)

˙̂ϑn(t) =−ϑ̂n(t)+
g

n
K2

sn
S4p−2

n γn(x̄n)

2δ 2
n

, (31)

where Kn,δn are positive constants and

γn = ∥hn(x̄n)∥2 +∥k̃n∥2
n−1

∑
j=1

∥∂αn−1

∂x j
h j∥2,

ψn =
n−1

∑
j=1

(
∂αn−1

∂x j
x j+1)

2 +
n−1

∑
j=0

(
∂αn−1

∂y( j)
d

y( j+1)
d )2

+
n−1

∑
l=1

n−1

∑
j=0

(
∂αn−1

∂ς ( j)
l

ς ( j+1)
l )2 +

n−1

∑
j=1

(
∂αn−1

∂ ϑ̂ j

˙̂ϑ j)
2.

Using the Young’s inequality as previous steps it can be
verified that

V̇n ≤−
n

∑
j=1

K jg j
Ks j S

2p
j − 1

2

n

∑
j=1

ϑ̃ 2
j +

n

∑
j=1

µc j , (32)

with µcn = nδ 2
n +n2+n−1

2g
n

+ 1
2g

n
∑n−1

j=1 ḡ2
j +

1
2 ϑ 2

i . This com-
pletes the controller design procedure.

We state the main results in the following Theorem 1.

Theorem 1: Suppose the investigated system (1) sat-
isfies Assumptions 1-3. The virtual controllers αi(i =
1,2, · · · ,n− 1) in (10) and (19), the actual controller u in
(30), and the adaptation law in (9), (23) and (31) are con-
structed on the set Ωs. Chosen appropriate positive design
parameters Ki,δi, i = 1, · · · ,n and given S(0) ∈ Ωs, the re-
sulting closed-loop system has the following properties:

(i) The error signals Si(t), i = 1, · · · ,n can converge to a
bounded set: −Dsi

≤ Si(t)≤ D̄si , where the bounds Dsi
=

K̄ai

2p
√

1− e−
2pc
ρ , D̄si = K̄bi

2p
√

1− e−
2pc
ρ , ρ = min{2pK̄i(i =

1, · · · ,n),1};
(ii) The full state constraints are not violated;
(iii) Signals in the closed-loop system are all bounded.

Proof: (i) Denote a change of gain parameters: K̄i =
Kigi

,c = ∑n
i=1 µci , then the inequality of (32) can be ex-

pressed as

V̇n ≤−
n

∑
i=1

K̄iKsi S
2p
i − 1

2

n

∑
i=1

ϑ̃ 2
i + c. (33)

From Lemma 2 and (33), the following inequality holds

V̇n ≤−
n

∑
i=1

K̄i[(1−q(Si)) log
k2p

ai
(t)

k2p
ai (t)−S2p

i

+q(Si) log
k2p

bi
(t)

k2p
bi
(t)−S2p

i

]− 1
2

n

∑
i=1

ϑ̃ 2
i + c. (34)

Since ρ = min{2pK̄i(i = 1, · · · ,n),1}, it yields

V̇n ≤−ρVn + c. (35)

For S(0) ∈ Ωs, then from Lemma 1 we get that S(t) ∈
Ωs,∀t > 0.

Multiplying both sides of (35) by eρt , (35) can be
rewritten as d(eρtVn)

dt ≤ ceρt . Then integrating it over [0, t] ,
it has

Vn(t)≤ (Vn(0)−
c
ρ
)e−ρt +

c
ρ
. (36)

Then, it is easy to obtain

(1−q(Si))
k2p

ai

k2p
ai −S2p

i

+q(Si)
k2p

bi

k2p
bi
−S2p

i

≤ e2p[(Vn(0)− c
ρ )e

−ρt+ c
ρ ].

Since −kai(t)≤ Si ≤ kbi(t) , we have k2p
ai
(t)−S2p

i > 0 and
k2p

bi
(t)− S2p

i > 0. When Si > 0, q = 1. Multiplying both
the sides by k2p

bi
(t)−S2p

i > 0 and applying manipulations,
the following inequality holds

k2p
bi

k2p
bi
−S2p

i

≤ e2p[(Vn(0)− c
ρ )e

−ρt+ c
ρ ]. (37)
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Then,

Si(t)≤ kbi(t)
2p
√

1− e−2p[(Vn(0)− c
ρ )e

−ρt+ c
ρ ]. (38)

As t → ∞, Si ≤ K̄bi

2p
√

1− e−
2pc
ρ . Similarly, when Si ≤ 0,

q = 0, we obtain Si ≥ −K̄ai

2p
√

1− e−
2pc
ρ . It could be con-

cluded as −K̄ai

2p
√

1− e−
2pc
ρ ≤ Si ≤ K̄bi

2p
√

1− e−
2pc
ρ .

Remark 5: For getting the bounds of the error Si as
small as possible, we should provide small c and large ρ
by selecting suitable parameters δi for i = 1, · · ·n and β .
More precisely, we should let δi be as small as possible
and β as large as possible.

(ii) Since x1 = S1 + yd and S1 ∈ Ωs which has been
proved in (i), then kc1

(t) ≤ x1 ≤ k̄c1(t) where kc1
(t) =

yd(t)− ka1(t), k̄c1(t) = kb1(t) + yd(t). Because xi = Si +
αi−1, i = 2, · · · ,n, Si ∈ Ωs, we can also prove that kci

(t)≤
xi ≤ k̄ci(t) where kci

(t) = αi−1(t)− kai(t) and k̄ci(t) =
kbi(t) +αi−1(t) for i = 2, · · · ,n. Thus we conclude that
the full state constraints are not violated.

(iii)The error signals Si(t) and the states xi(t), i =
1, · · · ,n are all bounded, as shown in (i) and (ii). In
Section 3 we have proved α1 and α̇1 are bounded, by
signal chasing, we can progressively get that αi, α̇i, i =
2, · · · ,n− 1, ϑ̂n are bounded. Then with the help of As-
sumption 2-3 we derive u(t) is bounded. Since S1 and yd

are bounded, y is also bounded. Thus, we have all the
closed-loop signals are bounded. □

3.2. Control design for system with disturbances
We also can modify the proposed control to handle sys-

tem with bounded disturbances. Consider the plant (1)
with disturbances

ẋi(t) = fi(x̄i+1(t))+di(t), i = 1,2, · · · ,n−1,

ẋn(t) = fn(x̄n(t),u(t))+dn(t),

y(t) = x1(t), (39)

where |di(t)| ≤ Di. Note that Di, i = 1, · · · ,n are constant
disturbance bounds.

Based on the stabilizing function and controller we pro-
posed in Subsection 3.1, we augment them with compen-
sation terms as follows:

α1,d = α1 −
D̂1

ḡ1
tanh(

η1

λ1
),

αi,d = αi + α̇i−1,d − α̇i−1 −
D̂i

ḡi
tanh(

ηi

λi
), (40)

ud = u+ α̇n−1,d − α̇n−1 −
D̂n

ḡn
tanh(

ηn

λn
).

The adaptive estimates D̂i of the disturbance bounds is de-
signed as

˙̂Di = ωi(ηi tanh(
ηi

λi
)−σD̂i), (41)

where ηi = Ksi S
2p−1
i and λi,ωi,σ are positive constants.

Theorem 2: Consider the system with bounded distur-
bances (39) satisfies Assumptions 1-3. The augmented
control in (40) and adaptive law for disturbance bounds
in (41) are constructed on the set Ωs. If S0 ∈ Ωs, then the
full state constraints are not violated and all the signals in
the closed-loop system are bounded.

Proof: Construct the Lyapunov function as Vd =Vn +

∑n
i=1

D̃2
i

2ωi
, where Vn is defined in (27). Computing the time

derivative of Vd , we have

V̇d ≤−
n

∑
j=1

K jg j
Ks j S

2p
j − 1

2

n

∑
j=1

ϑ̃ 2
j +

n

∑
j=1

µc j

+
n

∑
i=1

Di(|ηi|−ηi tanh(
ηi

λi
))

+
n

∑
i=1

D̃i(ω−1
i

˙̂Di −ηi tanh(
ηi

λi
)). (42)

Using the identity |ηi|−ηi tanh(ηi
λi
)≤ 0.2785λi, it yields

V̇d ≤−ρ1Vd + c1, (43)

where ρ1 = min{ρ,σωi} and c1 = c+∑n
i=1 Di(σDi/2+

0.2785λi) are positive constants. Then, the rest of the
proof process are the same with Theorem 1 and we omit-
ted it here. We conclude that the full state constraints are
not violated and all the signals in the closed-loop system
are bounded. □

4. SIMULATION

To verify the effectiveness of the proposed ABLF-based
control, in this section we provide two simulation exam-
ples. One is a three dimensional numerical nonlinear sys-
tem with time-varying full state constraints, and the other
is a single-link robot with constraints.

Example 1: Consider the following nonlinear systems

ẋ1(t) = 0.1x2
1(t)+ x2(t),

ẋ2(t) = 0.1x1(t)x2(t)−0.2x1(t)+(1+ x2
1(t))x3(t),

ẋ3(t) = 0.1x1(t)x3(t)+0.2u(t),

y(t) = x1(t) (44)

with θ1 = 0.1, θ2 = [0.1,−0.2]T , θ3 = 0.1, g1(x1) =
1, g2(x̄2) = 1 + x2

1(t) and g3(x̄3) = 0.2. The objec-
tive of y(t) is to track the desired trajectory yd(t) =
0.5 ∗ sin(t). The asymmetric time-varying full state con-
straints are kc1

(t) ≤ x1(t) ≤ k̄c1(t), kc2
(t) ≤ x2(t) ≤ k̄c2(t)

and kc3
(t) ≤ x3(t) ≤ k̄c3(t) in which k̄c1(t) = 0.6+ sin(t),

kc1
(t) = −0.6+ sin(t), k̄c2(t) = 0.8+ 0.8cos(t), kc2

(t) =
−1−0.5sin(t), k̄c3(t) = 1+0.2cos(t) and kc3

(t) = −1+
0.2cos(t). The initial values of the states are x1(0) =
0.5,x2(0) =−0.2,x3(0) = 0.1.



2720 Chunxiao Wang, Yuqiang Wu, and Jiangbo Yu

Based on the design procedure in Section 3, we choose
ABLF for system (44) as follows:

V3 =
3

∑
i=1

(
1−q(Si)

2
log(

k4
ai
(t)

k4
ai
(t)−S4

i
)

+
q(Si)

2
log(

k4
bi
(t)

k4
bi
(t)−S4

i
))+

3

∑
i=1

1
2

ϑ̃ 2
i , (45)

with ka1(t)= yd(t)−kc1
(t), kb1(t)= k̄c1(t)−yd(t), ka2(t)=

α1(t)− kc2
(t), kb2(t) = k̄c2(t)− α1(t), ka3(t) = α2(t)−

kc3
(t) and kb3(t) = k̄c3(t)−α2(t). The virtual and actual

controllers are designed as

α1 =−(K1 + k̄1(t))S1 −Ks1 S3
1
(ẏd)

2

2
− Ks1 S3

1γ1ϑ̂1

2δ 2
1

,

α2 =−(K2 + k̄2(t))S2 −Ks2 k̃2
2S3

2
ψ2

2
− Ks2 S3

2γ2ϑ̂2

2δ 2
2

−
K2

s1
S6

1

2Ks2 S2
,

u =−(K3 + k̄3(t))S3 −Ks3 k̃2
3S3

3
ψ3

2
− Ks3 S3

3γ3ϑ̂3

2δ 2
3

−
K2

s2
S6

2

2Ks3 S3
,

in which Ki,δi(i = 1,2,3) are positive constants and all
the other variables have been defined in Section 3. The
adaption laws are given as

˙̂ϑi =−ϑ̂i +
g

i
K2

si
S3

i γi

2δ 2
i

, i = 1,2,3, (46)

with the initial adaptive laws ϑ̂1(0) = 0.01, ϑ̂2(0) = 0.02
and ϑ̂3(0) = 0.01.

The simulation parameters are selected as K1 = 1.5,
K2 = 5, K3 = 2, δ1 = δ2 = δ3 = 0.01 and β = 50. Figs.1-
3 illustrate the simulation results. Fig. 1 shows that the
system output tracking performance y coincides with the
desired trajectory yd(t). As a result a good tracking per-
formance is achieved. Fig. 2 shows the trajectories of the
states x1,x2 and x3 respectively. From this figure we can
see that the asymmetric time-varying full state constraints
are not violated all the time. In accordance with Fig. 3, it
is observed that the control input signal u is bounded and
the peaks in the initial control input are due to the system
uncertainties.

Example 2: Consider a single-link robot [17] whose
dynamic equations are

Mq̈+
1
2

mgl sinq = u, y = q, (47)

where q is the angle, u the input torque, M the moment
of inertia, g the acceleration due to gravity, m and l the
mass and the length of the link. The manipulator angle

0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 time(sec)

o
u

tp
u

t 
tr

a
c
k
in

g

 

 

y

y
d

Fig. 1. The trajectories of y and yd .
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Fig. 2. The trajectories of x1,x2 and x3.
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and angle velocity are constrained. The robot parameters
are m= 1, l = 1,M = 0.5 and g= 9.8 as in [17]. To be con-
sistent with the notion of this article, the above dynamics
(47) can be rewritten in the form

ẋ1 = x2,

ẋ2 =
1
M
(u− 1

2
mgl sinx1),

y = x1, (48)

where x1 = q, x2 = q̇. The states are constrained in
Ωx = {kc1

(t) < x1(t) < k̄c1(t),kc2
(t) < x2(t) < k̄c2(t)},

where; kc1
(t) = −0.8 − 0.2sin(0.5t), k̄c1(t) = 0.8 +

0.2cos(0.5t), kc2
(t) = −1 − 0.5sin(0.5t), and k̄c2(t) =
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Fig. 4. The trajectories of y and yd .
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Fig. 5. The trajectories of control signal u .
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Fig. 6. The state trajectories of x1 and x2 with their con-
straints.

1.2 + 0.4cos(0.5t). The initial values of the states
are x1(0) = 0.2, x2(0) = 0.1, the reference signal is
yd(t) = 0.3sin(2t)+0.6cos(0.5t).

Based on the design parameters K1 = 1.5, K2 = 1.5,
δ1 = δ2 = 0.1 and β = 10, the simulation plots are shown
in Figs. 4-6.

Remark 6: In this example, we use the same robot
model with [17]. [17] has proved that all the signals in
the closed-loop system are uniformly bounded. Moreover,
a good tracking performance is achieved in [17] without
violating the constant states constraints. Note that the
method of [17] can not solve the problem of asymmetric
time-varying state constraints. Compared with [17], we

can solve the problem of not only the symmetric constant
state constraints but also the asymmetric time-varying
state constraints. It is worth mentioning that the refer-
ence signal in our example is multiple-frequency, com-
pared with which in [17] only is a simple harmonic signal.

5. CONCLUSIONS

In this paper, a time-varying ABLF-based adaptive con-
trol has been developed for a class of nonlinear pure-
feedback systems with asymmetric time-varying full state
constraints. By employing the mean value theorem, the
system is transformed into a strict-feedback structure with
non-affine terms. Based on the transformed uncertain sys-
tem, a modified backstepping design is constructed with
the help of ABLF. The proposed control approach not
only can guarantee that the time-varying full state con-
straints are not violated and all the closed loop signals re-
main bounded but also can deal with the unknown func-
tions non-affine terms. It is shown that the tracking per-
formance is propitious without violation of any state con-
straints. It could be concluded that the ABLF-based adap-
tive control is an effective method to deal with the prob-
lem of time-varying full state constraints. Two simulation
examples demonstrate the effectiveness of the proposed
method.
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