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Stability and Asynchronous Stabilization for a Class of Discrete-time
Switched Nonlinear Systems with Stable and Unstable Subsystems
Qunxian Zheng*, Hongbin Zhang, and Dianhao Zheng

Abstract: The stability analysis and asynchronous stabilization problems for a class of discrete-time switched
nonlinear systems with stable and unstable subsystems are investigated in this paper. The Takagi-Sugeno (T-S) fuzzy
model is used to represent each nonlinear subsystem. Through using the T-S fuzzy model, the studied systems are
modeled into the switched T-S fuzzy systems. By using the switching fuzzy-basis-dependent Lyapunov functions
(FLFs) approach and mode-dependent average dwell time (MDADT) technique, the stability conditions for the
open-loop switched T-S fuzzy systems with unstable subsystems and asynchronous stabilization conditions for
the closed-loop switched T-S fuzzy systems with unstable subsystems are obtained. Both the stability results and
asynchronous stabilization results are derived in terms of linear matrix inequalities (LMIs). Finally two numerical
examples are provided to illustrate the effectiveness of the results obtained.

Keywords: Discrete-time switched nonlinear systems, mode-dependent average dwell time, switching fuzzy-basis-
dependent Lyapunov functions, Takagi-Sugeno fuzzy model, unstable subsystems.

1. INTRODUCTION

During the past decades, the switched systems at-
tracted considerable attention because of many physical
or man-made systems possessing switching features [1].
A typical switched system is composed of a finite num-
ber of continuous-time or discrete-time subsystems and
a switching signal. The stability analysis problem is the
main concern in the study of switched systems [1–9].
So far, two stability issues have been addressed, i.e.,
the stability under arbitrary switching and stability un-
der constrained switching. As one typical example of
constrained switching, the mode-dependent average dwell
time (MDADT) method is proposed in [10], which can
relax the conservativeness of the results obtained by the
average dwell time logic [11]. As we know, switched sys-
tems with unstable subsystems are inevitably encountered
in many real plants. Recently, some efforts have been
made to study the switched linear systems with unstable
subsystems [12–15].

In recent years, the switched nonlinear systems have at-
tracted more and more attention. Due to the nonlinearity,
it is difficult to analyze the switched nonlinear systems
directly. The T-S fuzzy model is proven to be an effec-
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tive tool in approximating most complex nonlinear sys-
tems [16], which utilizes local linear system description
for each rule. The last several decades have witnessed
more and more applications of T-S fuzzy model [17–29].
Furthermore, the T-S fuzzy model has been extended to
study switched nonlinear systems [30–32].

It is noted that the results based on a common quadratic
Lyapunov function (QLF) might be conservative since a
common Lyapunov matrix should be found for all subsys-
tems. To relax the conservativeness, the basis-dependent
Lyapunov functions have received a great deal of atten-
tion in the stability analysis and controller synthesis for
discrete-time systems [33–36]. In this paper, the switch-
ing fuzzy-basis-dependent Lyapunov functions (FLFs) are
used by using the switching information and structural in-
formation of membership function in the rule base. The
candidate Lyapunov function is switching according to the
system switching among serval FLFs.

In practice, when the switched system is switching
among the subsystems, the matched controller or filter
of each subsystem can not be operating immediately. It
inevitably takes some time to identify the system model
and apply the matched controller or filter. Therefore asyn-
chronous behaviors generally exist. The asynchronous be-
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haviors usually bring unsatisfactory performance or even
make the system out of control. Recently, several work
have explored the effect of asynchronous behaviors on the
control of switched systems [31, 32].

The novelty of our work can be summarized as fol-
lows: The stability analysis and asynchronous stabiliza-
tion problems for a class of switched nonlinear systems
with unstable subsystems are investigated. Especially, our
paper is the first work to study the asynchronous stabiliza-
tion problem for switched systems. Furthermore, the re-
sults obtained in our work can also be reduced to study the
stability analysis and asynchronous stabilization problems
for switched linear systems.

The rest of this paper is organized as follows. Section
2 gives preliminaries and problem formulation. The main
results are given in Section 3. Two numerical examples
are provided in Section 4. Finally, some conclusions are
given in Section 5.

Notations: The notations h̃pl and hpm represent hpl(k+
1) and hpm(k), respectively. The notation ∥ · ∥ refers to
the Euclidean vector norm. The superscript “T ” stands
for matrix transpose. The symbol “∗" in a matrix stands
for the transposed elements in the symmetric positions.
We use P > 0(≥ 0,< 0,≤ 0) to denote a positive definite
(semi-positive definite, negative definite, semi-negative
definite) matrix P. Rn denotes the n−dimensional Eu-
clidean space. C1 denotes the space of continuously dif-
ferentiable functions. A continuous function α : [0,∞) →
[0,∞) is said to be of class K if it is strictly increasing and
α(0) = 0. If α is also unbounded, then it is said to be of
class K∞. A function β : [0,∞)× [0,∞)→ [0,∞) is said to
be of class KL if β (·, t) is of class K for each fixed t ≥ 0
and β (s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.
If not explicitly stated, matrices are assumed to have com-
patible dimensions.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following discrete-time switched nonlin-
ear system

x(k+1) = fσ(k)(x(k),u(k)), x(k0) = x0, (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the con-
trol input vector. σ(k) is a piecewise constant function
of time, which is called the switching signal and takes its
value in a finite set I = {1, . . . ,N} where N is the num-
ber of subsystems. For a switching sequence 0 < k1 <
k2 · · ·< ki < ki+1 < · · · ,σ(k) is continuous from right ev-
erywhere. Let k−i represent the previous instant of dis-
crete instant ki. When k ∈ [ki,ki+1), we say that the σ(ki)
subsystem is activated. fσ(k)(·) are nonlinear functions.
Here, we consider fσ(k)(·) can be either stable or unsta-
ble. Without loss of generality, we suppose that there are

g(1 ≤ g ≤ N) stable subsystems and N − g unstable sub-
systems. For brevity, we denote S ≜ {1,2, · · · ,g},U ≜
{g+ 1,g+ 2, · · · ,N}. S and U are the sets of stable sub-
systems and unstable subsystems, respectively.

In this paper, each nonlinear subsystem is represented
by the following T-S fuzzy model.

Rule m for subsystem p: IF zp
m1(k) is Mp

m1 and · · · and
zp

m j(k) is Mp
m j, THEN

x(k+1) = Apmx(k)+Bpmu(k), (2)

where zp
mh are the premise variables, and Mp

mh are the fuzzy
sets (h = 1,2, · · · , j). Apm and Bpm are constant matrix.

By using “fuzzy blending”, the final output of the p sub-
system is inferred as follows:

x(k+1) =
r

∑
m=1

hpm [Apmx(k)+Bpmu(k)] (3)

with wpm(k) = ∏ j
h=1 Mp

mh(z
p
mh(k)), hpm =

wpm(k)
∑r

m=1 wpm(k)
, and

Mp
mh(z

p
mh(k)) is the grade of membership of zp

mh(k) in Mp
mh,

m ∈ Rp, Rp = {1,2, · · · ,r} and r is the number of IF-
THEN rules. It is assumed that wpm(k) ≥ 0 for all k ≥ 0.
Then, the normalized membership function hpm satisfies

hpm ≥ 0,
r

∑
m=1

hpm = 1. (4)

In view of asynchronous behaviors, the controller u(k)
is divided into two parts ū(k) and û(k), where ū(k) denotes
the unmatched controller, and û(k) represents the matched
controller. For the fuzzy model (3), the following fuzzy
controller can be constructed:

ū(k) =
r
∑

n=1
hqnKqnx(k), k ∈ [ki, k̄i)

û(k) =
r
∑

n=1
hpnKpnx(k), k ∈ [k̄i,ki+1],

(5)

where the notation k̄i (ki ≤ k̄i < ki+1) denotes the starting-
operating instant of the matched controller, Kqn and Kpn

are constant matrices. Substituting (5) into (3), we obtain
the following closed-loop switched T-S fuzzy system:{

x(k+1) = Āp(k)x(k), ∀k ∈ [ki, k̄i)

x(k+1) = Âp(k)x(k), ∀k ∈ [k̄i,ki+1),
(6)

where the Āp(k) and Âp(k) are defined as follows:

Āp(k) =
r

∑
m=1

r

∑
n=1

hpmhqnĀpmn

=
r

∑
m=1

r

∑
n=1

hpmhqn(Apm +BpmKqn),

Âp(k) =
r

∑
m=1

r

∑
n=1

hpmhpnÂpmn
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=
r

∑
m=1

r

∑
n=1

hpmhpn(Apm +BpmKpn).

In the end, some definitions and lemmas are presented,
which are helpful to obtain the main results of our work.

Definition 1 [1]: The switched system (1) with u(k)≡ 0
is globally uniformly asymptotically stable (GUAS) if
there exists a class KL function β such that for all switch-
ing signals σ(k) and all initial conditions x(k0), the solu-
tions of (1) satisfy the following inequality

∥x(k)∥≤ β (∥x(k0)∥,k),∀k ≥ k0. (7)

Definition 2 [10]: For any k2 > k1 ≥ 0, p ∈ I, let
Nσp(k2,k1) denote the switching numbers of the pth sub-
system activated over the interval [k1,k2 ], Tp(k2,k1) de-
note the total running time of the pth subsystem over the
interval [k1,k2 ], and N0p denote the mode-dependent chat-
ter bounds. We say that σ(k) has a MDADT τap if there
exist two positive numbers N0p and τap > 0 such that the
following inequality holds

Nσp(k2,k1)≤ N0p +Tp(k2,k1)/τap. (8)

Lemma 1 [35]: Given two matrices A ∈ Rm×n,B ∈
Rm×n, and matrix P > 0 ∈ Rm×m, then

AT PB+BT PA ≤ AT PA+BT PB. (9)

3. MAIN RESULTS

3.1. Stability analysis
Lemma 2 [14]: Consider the switched nonlinear sys-

tem (1) with u(k) ≡ 0, and let ςp > −1, µp > 1 be given
constants. Suppose that there exist C1 functions Vp(x(k)) :
Rn → R, and class K∞ functions κ1,κ2, ∀p ∈ I, such that

κ1(∥x(k)∥)≤Vp(x(k))≤ κ2(∥x(k)∥), (10)

∆Vp(x(k))≤ ςpVp(x(k)), (11)

and ∀
(
σ(ki) = p,σ(k−i ) = q

)
∈ I ×I, p ̸= q, such that

Vp(x(ki))≤ µpVq(x(k−i )), (12)

then the system (1) with u(k)≡ 0 is GUAS with marginal
γ∗ for any switching signal satisfying

τap ≥− ln µp

ln(1+ ςp)
, (−1 < ςp < 0, p ∈ S),

τap ≥ τ∗
ap, (ςp > 0, ∀τ∗

ap > 0, p ∈ U),
T−

T+
>

lnγ+− lnγ∗

lnγ∗− lnγ−
, (0 < γ− < γ∗ < 1),

(13)

where T− =∑g
p=1 Tp(k,k0) and T+ =∑N

p=g+1 Tp(k,k0) cor-
respond to the total running time of stable and unsta-

ble subsystems, respectively, γ− = max
p∈S

(µ
1

τap
p ς p), γ+ =

max
p∈U

(µ
1

τap
p ς p) and ς σ(ki)

= 1+ ςσ(ki).

Remark 1: Lemma 2 shows if the ratio of running
time of stable subsystems and unstable subsystems is no
less than a certain lower-bound, the discrete-time switched
system with unstable subsystems can still be stable.

Without control input, the open-loop switched T-S
fuzzy system for (6) is listed as follow:

x(k+1) =
r

∑
m=1

hpm(k)Apmx(k), ∀k ∈ [ki,ki+1). (14)

The stability conditions for the system (14) with unstable
subsystems can be summarized in the following theorem.

Theorem 1: Consider the switched T-S fuzzy system
(14), and let ςp >−1, µp > 1 be given constants. If there
exist matrices Ppm > 0,∀(p,q) ∈ I ×I, p ̸= q, such that[

(1+ ςp)Ppm AT
pmPpl

∗ Ppl

]
> 0, m, l ∈ Rp, (15)

Ppl ≤ µpPqm, (16)

then the system (14) is GUAS with marginal γ∗ for any
switching signal satisfying (13).

Proof: Choose switching FLFs as follows:

Vp(k) = xT (k)Pp(k)x(k), (17)

where Pp(k) = ∑r
m=1 hpmPpm.

∀k ∈ [ki,ki+1 ), along the system (14), we can obtain

∆Vp(x(k))− ςpVp(x(k))

= xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

hpmhpn

[
AT

pmPplApn − (1+ ςp)Ppm
] }}

x(k) (18)

= xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

h2
pm

[
AT

pmPplApm − (1+ ςp)Ppm
]

+
r

∑
m=1

r

∑
m<n

hpmhpn ×
[
AT

pmPplApn +AT
pnPplApm

− (1+ ςp)Ppm −(1+ ςp)Ppn]}}x(k).

By Lemma 1, from (18), we can further obtain

∆Vp(x(k))− ςpVp(x(k))

≤ xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

h2
pm

[
AT

pmPplApm − (1+ ςp)Ppm
]

+
r

∑
m=1

r

∑
m<n

hpmhpn
[
AT

pmPplApm +AT
pnPplApn (19)

− (1+ ςp)Ppm −(1+ ςp)Ppn]}}x(k).

By (15) and Schur complement theorem, (19) implies

∆Vp(x(k))≤ ςpVp(x(k)). (20)
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From (16), it is not difficult to get

Vp(ki)≤ µpVq(k−i ). (21)

By Lemma 2, we can conclude that the system (14) is
GUAS with marginal γ∗ for any switching signal satisfy-
ing (13). The proof of Theorem 1 is ended. □

Remark 2: By setting Ppm = Pp, the switching FLFs
will be reduced to the QLFs. So the results in Theorem 1
might have less conservativeness than those results based
on the QLFs method.

Remark 3: If the nonlinearity is removed from our
work, and setting Ppm = Pp, the results shown in Theo-
rem 1 of our work will be reduced to Theorem 1 of [14].
Therefore we can conclude that our work can include The-
orem 1 of [14] as a special case.

3.2. Asynchronous controller design
In this subsection, let T (ki,ki+1) represent the length

of the running time interval of each subsystem. It can
be seen from (6) that the T (ki,ki+1) can be divided into
two parts: T↑(ki,ki+1) and T↓(ki,ki+1). T↑(ki,ki+1) repre-
sents the running time of the subsystem subject to the un-
matched controller. T↓(ki,ki+1) denotes the running time
of the subsystem subject to the matched controller. In
view of asynchronous switching, the generic scheme of
control for switched systems includes two parts: I) the
mode activation sensor estimating the active subsystems;
II) the subsystem controller for each activated subsystem,
which is shown in Fig. 1.

Lemma 3: Consider the close-loop switched non-
linear system (1), and let µp > 1, ςp > −1, ςc > 0
be given constants. Suppose that there exist C1 func-
tions Vp(x(k)) : Rn → R, and class K∞ functions κ1,κ2,
∀
(
σ(ki) = p,σ(k−i ) = q

)
∈ I ×I, p ̸= q satisfying

κ1(∥x(k)∥)≤Vp(x(k))≤ κ2(∥x(k)∥), (22)

∆Vp(x(k))≤
{

ςcVp(x(k)),k ∈ T↑(ki,ki+1)
ςpVp(x(k)),k ∈ T↓(ki,ki+1),

(23)

and

Vp(x(ki))≤ µpVq(x(k−i )), (24)

then the closed-loop system (1) is GUAS with marginal γ∗
for any switching signal satisfying

τap ≥− ln µp

ln(1+ςp)
,(−1 < ςp < 0, p ∈ S),

τap ≥ τ∗
ap,(ςp > 0, ∀τ∗

ap > 0, p ∈ U),
T− > T+α +Tcβ ,(0 < γ− < γ∗ < 1),

(25)

where T− = ∑g
p=1 Tp(k,k0) and T+ = ∑N

p=g+1 Tp(k,k0) de-
note the total running time of stable and unstable subsys-
tems in the synchronous state, respectively, Tc represents
the total time of the system in the asynchronous state,

Fig. 1. A generic scheme of controller for switched sys-
tems.

γ− =max
p∈S

(µ
1

τap
p ς p), γ+ =max

p∈U
(µ

1
τap
p ς p), α = lnγ+−lnγ∗

lnγ∗−lnγ− , β =

lnς c−lnγ∗
lnγ∗−lnγ− , ς c = (1+ ςc) and ς p = (1+ ςp).

Proof: ∀k ∈ [ki,ki+1 ), supposing k0 = 0, by (23) and
(24), we can obtain

Vσ(k)(x(k))

≤ ς (k−ki−Ti)
σ(ki)

ςc
TiVσ(ki)(x(ki))

≤ µσ(ki)
ς (k−ki−Ti)

σ(ki)
ςc

TiVσ(ki−1)(x(ki))

≤ µσ(ki)
ς (k−ki−Ti)

σ(ki)
ςc

Ti ς (ki−ki−1−Ti−1)
σ(ki−1)

ςc
Ti−1Vσ(ki−1)(x(ki−1)) (26)

≤ ·· ·

≤
i

∏
s=1

µσ(ks)ς
(k−ki−Ti)
σ(ki)

· · ·ς (k1−k0−T0)
σ(k0)

ςc
(Ti+Ti−1+···+T0)Vσ(0)(x(0)).

Since there are g stable subsystems and N −g unstable
subsystems. By Definition 2 and from (26), we can obtain

Vσ(k)(x(k))

≤
g

∏
p=1

µNσp (k,0)
p

N

∏
p=g+1

µNσp (k,0)
p

g

∏
p=1

ς Tp(k,0)
p

N

∏
p=g+1

ς Tp(k,0)
p ς Tc(k,0)

c Vσ(0)(x(0))

≤
g

∏
p=1

µ
(

N0p+
Tp(k,0)

τap

)
p

N

∏
p=g+1

µ
(

N0p+
Tp(k,0)

τap

)
p (27)

g

∏
p=1

ς Tp(k,0)
p

N

∏
p=g+1

ς Tp(k,0)
p ς Tc(k,0)

c Vσ(0)(x(0))

= K
g

∏
p=1

(
µ

1
τap
p ς p

)Tp(k,0)

N

∏
p=g+1

(
µ

1
τap
p ς p

)Tp(k,0)

ς Tc(k,0)
c Vσ(0)(x(0)),

where K = exp
{

∑N
p=1 N0p ln µp

}
. From (27), for p ∈ S , if

supposing

µ
1

τap
p ς p < 1, (28)
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we can conclude Vσ(k)(x(k))→ 0 as k →∞. The inequality
(28) is equivalent to

τap ≥− ln µp

ln(1+ ςp)
. (29)

By letting γ− = max
p∈S

(µ
1

τap
p ς p), γ+ = max

p∈U
(µ

1
τap
p ς p), T− =

∑g
p=1 Tp(k,k0), T+ = ∑N

p=g+1 Tp(k,k0), (27) implies

Vσ(k)(k)≤ KγT−
− γT+

+ ςc
TcVσ(0)(x(0))

≤ Kγ∗(k−k0)Vσ(0)(x(0)) (30)

= Kγ∗(k−k0)Vσ(0)(x(0)).

By Definition 1 and (22), we conclude that Vσ(k)(x(k))→
0 as k → ∞ with marginal γ∗ as long as the MDADT satis-
fies (25). The proof of Lemma 3 is completed. □

Remark 4: In Lemma 3, we consider the close-loop
switched system with stable and unstable subsystems. The
reason for this is that not all subsystems can be stabilized
by a controller. For example, in some cases, the controller
gain can not be too big, namely, some strong unstable sub-
systems can not be stabilized by constrained controllers.
Therefore, it is reasonable for us to consider the closed-
loop switched systems containing unstable subsystems.

Theorem 2: Consider the switched T-S fuzzy system
(6), and let µp > 1, ςp >−1, ςc > 0 be given constants. If
there exist symmetric matrices Ppm > 0, Qpm, Wp and Xpm,
∀(p,q) ∈ I ×I, p ̸= q, m,n, l ∈ Rp, such that

Ppm ≤ µpPql , (31)[
(1+ ςc)(Wq +W T

q −Qpm) Ω̄pmn

∗ Qpl

]
> 0, (32)

m ≤ n, l ∈ Rp,[
(1+ ςp)(Wp +W T

p −Qpm) Ω̂pmn

∗ Qpl

]
> 0, (33)

m ≤ n, l ∈ Rp

where

Ω̄pmn =
W T

q AT
pm +W T

q AT
pn +XT

qnBT
pm +XT

qmBT
pn

2
,

Ω̂pmn =
W T

p AT
pm +W T

p AT
pn +XT

pnBT
pm +XT

pmBT
pn

2
,

then the system (6) is GUAS with marginal γ∗ for any
switching signal satisfying (25), and the controller gains
are given by

Kpn = XpnW−1
p . (34)

Proof: I) By the system (6) and switching FLFs (17),
considering k ∈ T↑(ki,ki+1), we can obtain

∆Vp(x(k))− ςcVp(x(k))

= xT (k)
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

r

∑
u=1

r

∑
v=1

hpmhpn

hpuhpv
[
ĀT

pmnPplĀpuv − (1+ ςc)Ppm
]}

x(k)

=
1
4

xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

r

∑
u=1

r

∑
v=1

hpmhpn

hpuhpv
[
(Āpmn + Āpnm)

T Ppl(Āpuv + Āpvu) (35)

−4(1+ ςc)Ppm]}}x(k)

=
1
8

xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

r

∑
u=1

r

∑
v=1

hpmhpnhpu

hpv
[
(Āpmn + Āpnm)

T Ppl(Āpuv + Āpvu)

+(Āpuv + Āpvu)
T Ppl(Āpmn + Āpnm)

−8(1+ ςc)Ppm]}}x(k).

According to Lemma 1, we can further obtain

∆Vp(x(k))− ςcVp(x(k))

≤ 1
8

xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

r

∑
u=1

r

∑
v=1

hpmhpnhpu

hpv
[
(Āpmn + Āpnm)

T Ppl(Āpmn + Āpnm)

+(Āpuv + Āpvu)
T Ppl(Āpuv + Āpvu)

−8(1+ ςc)Ppm]}}x(k)

=
1
4

xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

r

∑
n=1

hpmhpn[
(Āpmn + Āpnm)

T Ppl(Āpmn + Āpnm) (36)

−4(1+ ςc)Ppm]}}x

= xT (k)

{
r

∑
l=1

h̃pl

{
r

∑
m=1

h2
pm

[
ĀT

pmmPplĀpmm

−(1+ ςc)Ppm]+2
r

∑
m=1

r

∑
m<n

hpmhpn[(
Āpmn + Āpnm

2

)T

Ppl

(
Āpmn + Āpnm

2

)
−(1+ ςc)Ppm

]}}
x(k).

By Schur complement, from (32), we can obtain

Ω̄pmnQ−1
pl Ω̄T

pmn < (1+ ςc)(Wq +W T
q −Qpm). (37)

The inequality (Qpm −Wq)
T Q−1

pm(Qpm −Wq) ≥ 0 implies
that −W T

q Q−1
pmWq ≤ Qpm − (Wq +W T

q ). Then it follows
from (37) that

Ω̄pmnQ−1
pl Ω̄T

pmn < (1+ ςc)W T
q Q−1

pmWq. (38)

By pre-multiplying W−T
q and post-multiplying W−1

q , (38)
can be transformed into(

Āpmn + Āpnm

2

)T

Q−1
pl

(
Āpmn + Āpnm

2

)



Stability and Asynchronous Stabilization for a Class of Discrete-time Switched Nonlinear Systems with Stable ... 991

< (1+ ςc)Q−1
pm. (39)

Letting Q−1
pm = Ppm, from (36) and (39), we can get

∆Vp(x(k))≤ ςcVp(x(k)). (40)

II) Similarly, for k ∈ T↓(ki,ki+1), by (33) and Lemma 1,
we can obtain

∆Vp(x(k))≤ ςpVp(x(k)). (41)

From (31), it is not difficult to get

Vp(ki)≤ µpVq(k−i ). (42)

By Lemma 3, we can conclude that the system (6) is
GUAS with marginal γ∗ for any switching signal satisfy-
ing (25). The proof is completed. □

Remark 5: All parameters (µp, ςp and ςc) of Theo-
rem 2 have their physical meaning. Specifically speaking,
the parameter −1 < ςp < 0 denotes the decline rate of the
Lyapunov function, which corresponds to the convergence
rate of the stable subsystem in the synchronous state. The
parameter ςp > 0 represents the increasing rate of the Lya-
punov function, which corresponds to the divergence rate
of the unstable subsystem in the synchronous state. The
parameter ςc > 0 denotes the increasing rate of the Lya-
punov function, which corresponds to the divergence rate
of the switched system in the asynchronous state. The pa-
rameter µp ≥ 1 denotes the increasing rate bound from the
q subsystem to the p subsystem. In practice, these parame-
ters can be designed according to the system performance
requirements. By designing the value of these parameters,
we can make the systems reach the desired performance.

Remark 6: In our results, in order to reduce the fuzzy
approximation error, much more fuzzy rules should be
used, which will cause to greater computational complex-
ity.

Remark 7: By setting Ppm = Pp, the corresponding
asynchronous stabilization conditions based on the QLFs
method can be obtained. So the results in Theorem 2
might have less conservativeness than those results based
on the QLFs method.

4. NUMERICAL EXAMPLE

Example 1 (Stability analysis): Consider the open-loop
switched T-S fuzzy system (14) consisting of two subsys-
tems, and each subsystem has two fuzzy rules, where

A11 =

[
0.5 0.05

−0.02 0.6

]
, A12 =

[
0.65 −0.02
−0.03 0.5

]
,

A21 =

[
1.3 0.15
0.2 1.2

]
, A22 =

[
1.2 0.18

0.03 1.15

]
.

Fig. 2. State response of subsystem 1 and subsystem 2.

Fig. 3. State response of the open-loop switched T-S fuzzy
system with τa1 = 2.556, τa2 = 2.125 and γ∗ = 0.9.

The fuzzy membership functions are taken as

h11 = 1− 1
1+ exp(−2x1/(0.5−0.2π))

,

h12 = 1−h11,

h21 = sin2(x2 +2), h22 = 1−h21.

The premise variables for the subsystem 1 and 2 are x1

and x2, respectively. The state response of the subsystem
1 and subsystem 2 is shown in Fig. 2. As shown in Fig. 2
that the subsystem 1 is stable while the subsystem 2 is
unstable.

The initial condition is assumed to be x(0) = [4,1.5]T ,
and the parameters are given as ς1 = −0.57,ς2 =
1.05,µ1 = 1.1,µ2 = 1.2. By (13), we can obtain
τa1 ≥ 0.1129. The MDADT of the unstable subsystem
2 can be an arbitrary positive integer. Moreover, the ratio
of running time of the stable subsystem 1 and the un-
stable subsystem 2 should be more than a lower bound.
Here we choose τa1 = 2.556, τa2 = 2.125 and γ∗ = 0.9.
From (13), we can calculate γ− = 0.4463, γ+ = 2.2337
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and T−/T+ > 1.296. The state response of the system
(14) is shown in Fig. 3, where the switching signal with
MDADT τa1 = 2.556, τa2 = 2.125 and T−/T+ = 1.3529
which satisfy the conditions specified by (13).

Example 2: (Asynchronous stabilization) Consider the
following discrete-time closed-loop switched T-S fuzy
system with two subsystems, and each subsystem also has
two fuzzy rules, where

A11 =

[
2.5 0.05
0.05 1.1

]
, A12 =

[
2 0
0 1.1

]
,

A21 =

[
0.7 −0.1
0.21 1.2

]
, A22 =

[
0.8 0.11

0.41 1.3

]
,

B11 =

[
0.9
0

]
, B12 =

[
0.8
0

]
,

B21 =

[
0

0.2

]
, B22 =

[
0

0.2

]
.

The fuzzy membership functions are same as in Example
1. The premise variables for the subsystem 1 and 2 are x1

and x2, respectively. The state response of the the subsys-
tem 1 and subsystem 2 is shown in Fig. 4. It is shown in
Fig. 4 that both of the two subsystems are unstable.

The parameters are given as ς1 = 0.4, ς2 = −0.3, ςc =
0.85, µ1 = 1.1, µ2 = 1.2, Tc = 2. By (25), we can cal-
culate τa2 ≥ 0.5112. The MDADT of the unstable sub-
system 1 can be an arbitrary positive integer. Moreover,
the total running time of the stable subsystem 2 and the
unstable subsystem 1 in the matched state and the total
running time in the asynchronous state should be satisfied
the constraint described by (25). In this example, we set
τa1 = 2.75, τa2 = 18.75 and γ∗ = 0.9. From (25), we can
get γ− = 0.7068, γ+ = 1.4494, α = 1.9719, β = 2.9818.

Considering the feedback matrices, a set of feasible
controller gains can be given as follows:

K11 =
[
−1.6651 −1.4052

]
,

K12 =
[
−1.6675 −1.3621

]
,

K21 =
[
−1.2857 −2.7501

]
,

K22 =
[
−2.0125 −3.2426

]
.

By assuming the initial condition to be x(0) = [3,4]T ,
and setting τa1 = 2.75, τa2 = 18.75, γ∗ = 0.9, the state
response of the closed-loop switched T-S fuzzy system
with stable subsystem and unstable subsystems is shown
in Fig. 5, where T− = 75, T+ = 11 and Tc = 14, which
satisfies T− > T+α + Tcβ . As shown in Fig. 5 although
there exist unstable subsystems and asynchronous switch-
ing which usually makes the system unstable, the closed-
loop switched T-S fuzzy system is still stable.

5. CONCLUSIONS

In this paper, the stability analysis and asynchronous
stabilization problems for a class of discrete-time

Fig. 4. State response of subsystem 1 and subsystem 2.

Fig. 5. State response of the closed-loop switched T-S
fuzzy system with τa1 = 2.75, τa2 = 18.75, and
γ∗ = 0.9.

switched nonlinear systems with stable and unstable sub-
systems are investigated. By using the T-S fuzzy model,
the studied switched nonlinear system is modelled into the
switched T-S fuzzy system. By using the switching FLFs
approach and MDADT technique, stability conditions and
asynchronous stabilization conditions are obtained for the
studied system in terms of LMIs. A set of state-feedback
fuzzy controllers are designed, which can ensure the sta-
bility of the closed-loop switched T-S fuzzy system with
asynchronous behaviors. Finally, two numerical examples
are given to demonstrate the effectiveness of our results.
The potential extension of our current work to the stabil-
ity analysis and controller synthesis for switched systems
with time-delays [37] will be a future work. Furthermore,
extending our current work to other underlying systems
under the network-based environment with time-delays,
packet dropouts will be another interesting future work
[38, 39]. It has been shown that the piecewise Lyapunov
functions method is another way to relax the conserva-
tiveness inherent in common Lyapunov function method
[18]. The T-S fuzzy affine dynamic model has much im-
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proved function approximation capabilities [19, 23]. On
the other hand, the dissipativity and l2-l∞ are also two im-
portant approaches for the control synthesis of dynamical
systems [40–43]. Therefore, it would be an interesting
and challenge work to investigate the dissipativity or l2-l∞
control problem for the T-S fuzzy affine systems with un-
stable subsystems via the piecewise Lyapunov functions
method.
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