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Exponential H∞ Control for Singular Systems with Time-varying Delay
Jiemei Zhao* and Zhonghui Hu

Abstract: This paper studies the exponential admissibility and H∞ control problems for a class of singular systems
with time-varying delay in state. Firstly, an exponential admissibility criterion is obtained based on linear matrix
inequalities (LMIs). It is worth mentioning that the derivative of the time-varying delay does not need to be smaller
than one. Based on the proposed condition, a new delay-dependent H∞ controller is also given, which guarantees
the admissibility and the H∞ performance γ . Numerical examples are given to illustrate the effectiveness of the
proposed method.
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1. INTRODUCTION

Time-delay is frequently encountered in various sys-
tems, such as economical, telecommunications, biology
systems, and other areas. Generally, time-delay is re-
garded as the main source of instability and poor perfor-
mance in a system [1–6]. Recently, much attention has
been paid to the problem of H∞ control for uncertain time-
delay systems [7, 8].

Singular systems are often referred to as implicit sys-
tems, which have a wide range of applications in many
practical systems, such as electric circuit systems, chem-
ical process, economy systems, and so on [9, 10]. How-
ever, the study of such systems is much more compli-
cated than that for standard state-space systems for two
reasons. First, the existence and uniqueness of a solution
for singular system are not always guaranteed. Second,
the system can also have undesired impulsive behavior.
Therefore, singular systems have received a lot of atten-
tion in the last few decades, especially in the field of sta-
bility and stabilization [11–18], filtering [19–21], passiv-
ity [22–24] and H∞ control [25–29]. Among them, expo-
nential stability is a valuable research topic because it has
faster convergence rate than asymptotic stability generally.
For example, in [11], the global exponential stability prob-
lem of singular systems with multiple time-varying delays
was addressed. The exponential admissibility of switched
singular systems with time-varying delays was investi-
gated in [12, 14]. In [15], exponential stability for sin-
gular systems with interval time-varying delay was stud-
ied. In [17], the exponential stabilization problem for
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singular systems with time-varying delays and nonlinear
perturbations were discussed by using sliding mode con-
trol method. Very recently, in [30, 31], some new delay-
dependent criteria for the exponential stability of singu-
lar systems with mixed interval time-varying delays were
proposed. However, these results in the above literatures
[11,12,14,15,17,20,21,24,30,31] all assumed the deriva-
tives of time-varying delays to be smaller than one, which
may restrict the applications of those results. It brings
some conservative in the process of system stability anal-
ysis. Therefore, the problem of exponential stability anal-
ysis for singular systems with time-varying delays with-
out restrictions on derivative of delays still remains open,
which motivates the present study.

In this paper, exponentially admissible and H∞ con-
troller designed problems are considered for time-varying
delay singular system. The main contributions of this pa-
per as follows:

1) A exponential admissibility criterion is proposed.
2) Based on the result proposed in 1), an H∞ controller

is proposed to ensure the time-varying delay singular sys-
tem is exponentially admissible with a disturbance atten-
uation level γ .

3) The H∞ controller will reduce the effect of the noise
or disturbance with bounded energy.

4) The proposed algorithm is generally since the deriva-
tive of the time-varying delay does not need to be smaller
than one.

Notations: Throughout this paper, Rn denotes the n-
dimensional Euclidean space, Rm×n is the set of all m×n
real matrices; The notation P > 0 (P ≥ 0) indicates that
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P is a real symmetric and positive (semi-) definite matrix.
∥x∥ refers to the Euclidean norm of the vector x; The no-
tation ∥x∥t = supt−h≤s≤tx(s), where x(t) be a continuous
function. I is the identity matrix with appropriate dimen-
sion. Matrices, if not explicitly stated, are assumed to have
compatible dimensions. The symmetric terms in a sym-
metric matrix are denoted by ∗. λM(·) and λm(·) denote
the maximum and minimum eigenvalue of the responding
matrix, respectively.

2. PROBLEM FORMULATION

Consider the following uncertain time-varying delay
singular system:

Eẋ(t) = Ax(t)+Adx(t −d(t))+Bu(t)

+Bω ω(t),

z(t) =Cx(t),

x(t) = φ(t), t ∈ [−τ,0],

(1)

where x(t) is the state vector, u(t) is the input vector, z(t)
is the controlled output vector, ω(t) is the disturbance in-
put which belongs to L2[0,∞), d(t) represents time delay
in the state satisfying

0 ≤ d(t)≤ τ, ḋ(t)≤ µ, (2)

φ(t) is a compatible vector valued initial function,
E,A,Ad ,B,Bω and C are known real constant matrices
of appropriate dimensions, rank(E) = r < n.

The nominal unforced singular time-varying delay sys-
tem of (1) can be written as

Eẋ(t) = Ax(t)+Adx(t −d (t)) . (3)

According to system (3), the following definition is in-
troduced.

Definition 1 [33]: 1) the system (3) is said to be regu-
lar if det(sE −A) is not identically zero.

2) the system (3) is said to be impulse free if it is regular
and deg(det(sE −A)) = rank(E).

3) the system (3) is said to be exponentially stable
if there exist λ (α) ≥ 1 and α > 0 such that ∥x(t)∥ ≤
λ (α)∥x(t0)∥e−αt , for all t ∈ [t0,+∞).

4) the system (3) is said to be exponentially admissible
if it is regular, impulse-free and exponentially stable.

For the system (1) and a given positive scalar γ , the H∞
performance measure is

J =
∫ ∞

0
(zT (t)z(t)− γωT (t)ω(t))dt. (4)

Definition 2 [5]: The system (1) is said to be expo-
nentially admissible with the H∞ performance γ > 0 if it
is exponentially admissible when ω(t) ≡ 0, and satisfies
J < 0 for all t ≥ 0 under the zero initial condition.

Lemma 1 [17]: Let f (t) : [t0−h,∞)→ [0,∞) be a non-
negative continuous function and satisfies

f (t)≤ k1e−α(t−t0)+ k2∥ f∥t ,

where k1 > 0,0 < k2 < 1, then there exists a scalar k >
0(k ≤ α) such that

f (t)≤
(

∥ f∥t0 +
k1

1−k2ekh

)
e−α(t−t0).

3. EXPONENTIAL ADMISSIBILITY
CRITERION

In the following, the exponential admissibility criterion
for the system (3) will be given.

Since rank(E) = r < n, there exist two nonsingular ma-
trices F and H such that

Ē = FEH =

[
Ir 0
0 0

]
,

Ā = FAH =

[
A11 A12

A21 A22

]
,

Ād = FAdH =

[
Ad,11 Ad,12

Ad,21 Ad,22

]
.

(5)

Now, let y(t) = H−1x(t), then the system

Ēẏ(t) = Āy(t)+ Ādy(t −d (t)) . (6)

is equivalent to the system (3).

Theorem 1: For given scalars τ > 0 and α > 0, the
time-varying delay singular system (3) is exponentially
admissible, if there exist matrices P > 0, Q1 > 0, Q2 > 0,
Z1 > 0, Z2 > 0, matrices G1, G2, G3, U1, U2, V and S such
that

∥A−1
22 Ad,22∥< 1, (7)

and

Ω =


Ω11 Ω12 Ω13 Ω14 ATU2

∗ Ω22 0 Ω24 Ω25

∗ ∗ Ω33 0 0
∗ ∗ ∗ Ω44 0
∗ ∗ ∗ ∗ Ω55

< 0, (8)

where

Ω11 = 2αET PE +(ET P+SRT )A

+AT (PE +RST )+ET G1 +GT
1 E

+ e2ατ(Q1 +Q2)− e−2ατ ET Z1E,

Ω12 = (ET P+SRT )Ad +ET G2 −GT
1 E +ATU1,

Ω13 = e−2ατ ET Z1E,

Ω14 = ET G3 −GT
1 ,

Ω22 =−(1−µ)Q2 −ET G2 −GT
2 E +AT

d U1 +UT
1 Ad ,
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Ω24 =−ET G3 −GT
2 ,

Ω25 =−UT
1 +AT

d U2,

Ω33 =−Q1 − e−2ατ ET Z1E,

Ω44 =−G3 −GT
3 − τZ2,

Ω55 = τ2(Z1 +Z2)+RV +V T RT −U2 −UT
2 .

and R is any matrix with full column and satisfies ET R =
0.

Proof: From (5), then R parameterized as R =

FT

[
0
Φ

]
, Φ ∈ R(n−r)×(n−r) is any nonsingular matrix.

Let

P̄ = F−T PF−1 =

[
P11 P12

P21 P22

]
,

Z̄1 = F−T Z1F−1 =

[
K11 K12

K21 K22

]
,

Ḡ1 = F−T G1H =

[
G1,11 G1,12

G1,21 G1,22

]
,

S̄ = HT S =

[
S11

S21

]
.

It follows from (8) that Ω11 < 0 and Qi > 0, i = 1,2, we
can get

Θ =(ET P+SRT )A+AT (PE +RST )+2αET PE

+ET G1 +GT
1 E − e−2ατ ET Z1E < 0.

Pre- and post-multiplying Θ by HT and H, respectively,
yields[

⋆ ⋆
⋆ AT

22ΦST
21 +S21ΦT A22

]
< 0,

where ⋆ represent irrelevant to the result of the following
discussion.

Obviously,

AT
22ΦST

21 +S21ΦT A22 < 0, (9)

and thus A22 is nonsingular. Otherwise, supposing A22

is singular, there must exist a non-zero vector ζ ∈ Rn−r

which ensures A22ζ = 0. And we can conclude that
ζ T (AT

22ΦST
21 +S21ΦT A22)ζ = 0, and this contradicts (9).

So A22 is nonsingular. That is, the singular system (3) is
regular and impulse free.

Consider the following Lyapunov function

V (t) =V1(t)+V2(t)+V3(t)+V4(t), (10)

where

V1(t) = e2αtxT (t)ET PEx(t),

V2(t) = e2ατ
∫ t

t−τ
e2αsxT (s)Q1x(s)ds,

V3(t) = e2ατ
∫ t

t−d(t)
e2αsxT (s)Q2x(s)ds,

V4(t) = τ
∫ 0

−τ

∫ t

t+θ
e2αsẋT (s)ET Z1Eẋ(s)dsdθ .

We calculate the derivation of V (t) along the solution
of system (3), then

V̇1(t) =2e2αtxT (t)ET P[αEx(t)+Eẋ(t)]

=2e2αtxT (t)ET P

× [αEx(t)+Ax(t)+Adx(t −d(t))], (11)

V̇2(t) =e2αtxT (t)e2ατ Q1x(t)

− e2αtxT (t − τ)Q1x(t − τ), (12)

V̇3(t)≤e2αtxT (t)(e2ατ Q2)x(t)

− (1−µ)e2αtxT (t −d(t))Q2x(t −d(t)), (13)

V̇4(t) =e2αt ẋT (t)ET (τ2Z1)Eẋ(t)

− τ
∫ t

t−τ
e2αsẋT (s)ET Z1Eẋ(s)

≤e2αt ẋT (t)ET (τ2Z1)Eẋ(t)

− τe2αt
∫ t

t−τ
e−2ατ ẋT (s)ET Z1Eẋ(s)ds. (14)

In fact

− τ
∫ t

t−τ
ẋT (s)ET Z1Eẋ(s)ds

≤−[
∫ t

t−τ
ẋT (s)ds]ET Z1E[

∫ t

t−τ
ẋ(s)ds]

≤
[

x(t)
x(t − τ)

]T [ −ET Z1E ET Z1E
ET Z1E −ET Z1E

]
×
[

x(t)
x(t − τ)

]
. (15)

From the Newton-Leibniz formulation x(t) − x(t −
d(t))−

∫ t
t−d(t) ẋ(s)ds = 0, the following equation is true

for the matrices G1,G2 and G3 of appropriate dimensions

2e2αt [Ex(t)−Ex(t −d(t))−
∫ t

t−d(t)
Eẋ(s)ds]T

× [G1x(t)+G2x(t −d(t))+G3

∫ t

t−d(t)
Eẋ(s)ds]

= 0. (16)

In addition, for matrices Z2 > 0 and U1,U2, we have

0 ≤e2αtτ2[ẋT (t)ET Z2Eẋ(t)

−
∫ t

t−d(t)
ẋ(s)ET Z2Eẋ(s)ds]

≤τ2e2αt ẋT (t)ET Z2Eẋ(t)
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− τe2αt [
∫ t

t−d(t)
ẋT (s)ET ds]Z2[

∫ t

t−d(t)
Eẋ(s)ds],

(17)

and

2e2αt [−Eẋ(t)+Ax(t)+Adx(t −d(t))]T

× [U1x(t −d(t))+U2Eẋ(t)] = 0.
(18)

Noting ET R = 0, we can deduce

2e2αt ẋT (t)ET R[ST x(t)+V EẋT (t)] = 0, (19)

where V and S are any matrices of appropriate dimensions.
It follows from (11)-(19) that

V̇ (t)≤ ξ T (t)Ωξ (t)

where

ξ (t) =[xT (t) xT (t −d(t)) xT (t − τ)∫ t

t−d(t)
ẋT (s)ET ds ẋT (t)ET ]T .

It follows from V̇ (t)≤ 0 that V (t)≤V (t0).
From (10) and

ẋT (s)ET Eẋ(s)

≤ 3[xT (t)AT Ax(t)+ xT (t −d(t))AT
d Adx(t −d(t))]

≤ 3[λM(AT A)+λM(AT
d Ad)]∥x∥2

t0 ,

we can easily get

V (t0)≤ ηe2αt0∥x∥2
t0 ,

where η = λM(ET PE) + τe2kτ(λM(Q1) + λM(Q2)) +
3τ3λM(Z1)[λM(AT A)+λM(AT

d Ad)].
The system (6) equivalent to the following one:

ẏ1(t) = A11y1(t)+A12y2(t)

+Ad,11y1(t −d(t))+Ad,12y2(t −d(t)),

0 = A21y1(t)+A22y2(t)

+Ad,21y1(t −d(t))+Ad,22y2(t −d(t)).
(20)

Notice that xT (t)ET PEx(t) = yT
1 (t)P11y1(t), hence,

e2αtλm(P11)∥y1(t)∥2 ≤ V (t) ≤ V (t0) ≤ ηe2αt0∥x(t0)∥2,
that is,

∥y1(t)∥ ≤
√

η
λm(P11)

∥x∥t0 e−α(t−t0). (21)

Using (21), we have

∥A21y1(t)+Ad,21y1(t −d(t))∥

≤
√

η
λm(P11)

(∥A21∥+∥Ad,21∥eατ)∥x∥t0 e−α(t−t0)

:= η̄e−α(t−t0).

Using the second equation of (20), we have

y2(t) =−A−1
22 Ad,22y2(t −d(t))

−A−1
22 [A21y1(t)+Ad,21y1(t)]. (22)

So

∥y2(t)∥=∥A−1
22 Ad,22∥∥y2(t −d(t))∥

+∥A−1
22 ∥∥A21y1(t)+Ad,21y1(t)∥

≤∥A−1
22 Ad,22∥∥y2∥t +∥A−1

22 ∥η̄e−α(t−t0),

where ∥y2∥t = sup−τ≤θ≤0∥y2(t +θ)∥.
Applying Lemma 1 and ∥A−1

22 Ad,22∥< 1, then there ex-
ists a scalar k > 0 such that

∥y2(t)∥=
[
∥y2∥t0 +

∥A−1
22 ∥η̄

1−∥A−1
22 Ad,22∥ekτ

]
e−k(t−t0). (23)

From (21) and (23), we get

∥x(t)∥= ∥Hy(t)∥≤∥H∥(∥y1(t)∥+∥y2(t)∥)≤ ρe−kt∥φ∥τ ,

where

ρ =
∥H∥

[
η∥x∥t0 +∥y2∥t0 +

∥A−1
22 ∥η̄

1−∥A−1
22 Ad,22∥ekτ

]
eαt0

∥φ∥τ
,

∥φ∥τ = sup−τ≤s≤0φ(s),

which shows that the system (3) is exponentially stable
and has the exponential decay rate k from Definition 1 (3).
From Definition 1 (4), the system (3) is exponentially ad-
missible. □

Remark 1: In [11, 12, 14, 15, 17, 30, 31], the deriva-
tives of time delays required to be smaller than one. In
this paper, we remove this limiting condition. Therefore,
Theorem 1 has less conservative.

Remark 2: The key techniques in Theorem 1 as fol-
lows: 1) In order to relax the limit of µ , some important
terms are added in Ω22 by introducing free-weighting ma-
trix method. 2) The singular system (3) is restricted sys-
tem equivalent to system (20) by the regularity and non-
impulsiveness characteristics of system (3). Then Lemma
3 is employed to get the bound of ∥y2(t)∥. This is the key
to prove the exponential admissibility.

4. HHH∞ CONTROL

Substituting the control law u(t) = Kx(t) to the sys-
tem (1), then

Eẋ(t) = (A+BK)x(t)+Adx(t −d(t))

+Bω ω(t),

z(t) =Cx(t),

x(t) = φ(t), t ∈ [−τ,0].

(24)
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Next, we will design a controller u(t) = Kx(t) to guar-
antee the closed-loop system is exponentially admissible
with a H∞ performance γ .

Theorem 2: For given scalars τ > 0, α > 0 and γ > 0,
the time-varying delay singular system (1) controlled by
u(t) = WP−1x(t) is exponentially admissible with a dis-
turbance attenuation level γ , if there exist matrices P > 0,
Q1 > 0, Q2 > 0, Z1 > 0, Z2 > 0, matrices G1, G2, G3, U1,
U2, V , W and S such that the following LMIs hold:

Ω̄ =



Ω̄11 Ω̄12 e−2ατ EZ1ET EG3 −GT
1

∗ Ω̄22 0 −EG3 −GT
2

∗ ∗ Ω̄33 0
∗ ∗ ∗ Ω44

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

AU2 (EP+SRT )CT Bω
Ω̄25 UT

1 CT 0
0 0 0
0 UT

2 CT 0
Ω55 0 0
∗ −γ2I 0
∗ ∗ −I


< 0, (25)

∥Ā−1
22 Ad,22∥< 1, (26)

where Ā22 is a block of F(A+ BK)H =

[
Ā11 Ā12

Ā21 Ā22

]
,

F,H and Ad,22 are defined as in (5), R is any matrix with
full column and satisfies ER = 0, Ω44 and Ω55 are defined
as in (8),

Ω̄11 = 2αEPET +(EP+SRT )AT +A(PET +RST )

+EW T BT +BWET +EG1 +GT
1 ET

+ e2ατ(Q1 +Q2)− e−2ατ EZ1ET ,

Ω̄12 = (EP+SRT )AT
d +EG2 −GT

1 ET +AU1 +AdU1,

Ω̄22 =−(1−µ)Q2 −EG2 −GT
2 ET ,

Ω̄25 =−UT
1 +AdU2,

Ω̄33 =−Q1 − e−2ατ EZ1ET .

Proof: For the system (1) with u(t) = 0, choose the
Lyapunov function (10), we can get the system (1) is reg-
ular, impulse free and exponentially stable by Theorem 1.

Under zero initial condition (i.e., V (0) = 0) and V (∞)≥
0 of system (1), Then

J =
∫ ∞

0

(
zT (t)z(t)− γ2ωT (t)ω(t)

)
dt

− e−2αtV̇ (∞)

≤
∫ ∞

0
ξ̄ T (t)ϒξ̄ (t)dt,

where

Ω̄ =


Ω11 +CTC Ω12 e−2ατ ET Z1E

∗ Ω22 0
∗ ∗ Ω33

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ET G3 −GT
1 ATU2 (ET P+SRT )Bω

−ET G3 −GT
2 Ω25 UT

1 Bω
0 0 0

Ω44 0 0
∗ Ω55 UT

2 Bω
∗ ∗ −γ2I

< 0,

(27)

and

ξ̄ (t) = [xT (t) xT (t − τ) xT (t −d(t))∫ t

t−d(t)
ẋT (s)ET ds ẋT (t)ET ωT (t)]T .

Since det(sE − (A + BK)) = det(sET − (A + BK)T ),
the pair (E,A + BK) is regular and impulse free if and
only if the pair (ET ,(A+ BK)T ) is regular and impulse
free. Moreover, since the solution of det(sE − (A+BK)−
e−dsAd) = 0 is the same as that of det(sET − (A+BK)T −
e−dsAT

d ) = 0 and

∥G(s)∥∞

= sup
ω∈[0,+∞)

λM{C( jωE − (A+BK)−d−d jω Ad)
−1Bω)}

is equal to

∥H(s)∥∞

= sup
ω∈[0,+∞)

λM{BT
ω( jωET − (A+BK)T −d−d jω AT

d )
−1CT}

as long as the regularity, absence of impulses, and stabil-
ity with H∞ performance are our only concern, the system
(24) is equivalent to the system

ET ẋ(t) = (A+BK)T x(t)

+AT
d x(t −d (t))+CT ω(t),

z(t) = BT
ω x(t).

(28)

Hence, replacing E,A + BK,Ad ,C and Bω in (27) by
ET ,(A + BK)T ,AT

d ,B
T
ω and CT , respectively, and setting

W = KP yields (25). □

Remark 3: Theorem 2 proposes a new version of the
bound real lemma (BRL) for the singular time-delay sys-
tems (1) with u(t) = 0.
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5. NUMERICAL EXAMPLES

In this section, three numerical examples will be pre-
sented to show the validity of the main results derived
above.

Example 1: Consider singular time-delay system (3)
with [20]

E =

[
9 3
6 2

]
,A =

[
−13.1 −13.7
−15.4 −23.8

]
,

Ad =

[
−18.6 −10.4
−25.2 −16.8

]
.

In this example, we choose µ = 0.5. Table 1 lists the
allowable upper bound of the time-delay. It is seen from
Table 1 that the stability criterion proposed here gives less
conservative results than those in [11,20,21,24,32]. Table
2 gives the allowable upper bound of the time-delay with
different α . Table 2 shows that when α increased, the
upper bound of τ decreased.

Example 2: Consider the time-varying delay singular
system (3) with the following parameters

E =

[
1 0
0 0

]
,A=

[
−0.6 0.5
0.5 −1

]
,Ad =

[
0.7 0
−3 0.2

]
,

d(t) = 1.3+ 1.2cos(t),µ = 1.2. In this case, the meth-
ods in papers [11, 12, 14, 15, 17, 30, 31] are invalid, i.e.,
the methods in these literatures are not feasible to this ex-
ample. Assume the initial state is x(t) = [0.2 − 0.75]T .
The trajectories of the state responses of system are given
in Fig. 1. From Fig. 1, we find that the corresponding
state responses converge to zeros. Table 3 gives the al-
lowable upper bounds for various α . It can be seen that
when α increase, the maximum allowable d(t) descend.
Let τ = 2,α = 0.3. Since |−1×0.2|= 0.2 < 1, the con-
dition (7) is satisfied. By using the MATLAB LMI Control
Toolbox, we can find a solution to the LMI (8) in Theorem
1 as follows:

P =

[
27.9873 0

0 85.6665

]
,

Q1 =

[
0.6208 −0.2068
−0.2068 0.3713

]
,

Q2 =

[
0.3211 −0.0409
−0.0409 0.0774

]
,

Z1 =

[
0.7475 0

0 85.6665

]
,

Z2 = 103 ×
[

0.0109 −0.4868
−0.4868 3.6510

]
.

Example 3: Consider the time-varying delay singular
system (1) with the following parameters

E =

[
1 1
0 0

]
, A =

[
−0.3 0.1
0.5 −0.8

]
,

Table 1. Delay bounds of different cases.

Methods Upper bound τ Upper bound τ
[11](α → 0), [20] 2.1121 (d1 = 1.4) 2.5852 (d1 = 2.2)

[21] 2.2314 (d1 = 1.4) 2.6777 (d1 = 2.2)
[24] 2.3372 (d1 = 1.4) 2.7494 (d1 = 2.2)

[32] (m = 9) 2.3360 (d1 = 1.4) 2.7007 (d1 = 2.2)
Theorem 1 4.2550 (α = 0.15) 2.7494 (α = 0.231)

Table 2. Delay bounds of different cases.

Methods α = 0.15 α = 0.2 α = 0.3 α = 0.6
Theorem 1 4.2550 3.1890 2.1258 1.0630

Table 3. Allowable upper bounds for various α .

Methods µ = 1.2
[11, 12, 14, 15, 17, 30, 31] -

Theorem 1 (α = 0.3) 3.2856
Theorem 1 (α = 0.6) 2.9750
Theorem 1 (α = 0.9) 2.9732

Fig. 1. State responses of the considered singular time-
delay in Example 2.

Table 4. Maximum allowed time-delay.

Methods γ = 1 γ = 1.5 γ = 2
Theorem 2 (µ = 1.3) 1.1480 1.5672 1.6008
Theorem 2 (µ = 1.5) 1.1479 1.4101 1.5010

Bω =

[
0.5
1

]
, Ad =

[
0.6 −0.1
1 0.3

]
,

B =

[
0

1.5

]
, C =

[
1
0

]T

.

Let α = 0.8 and d(t) = 0.5+ 1.5cos(t). Table 4 gives
the allowable upper bounds for various µ .
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According to Theorem 2, when τ = 2,γ = 2, the corre-
sponding state feedback controller gain

K =
[
−92.7806 −9.2106

]
.

6. CONCLUSION

In this paper, the problems of exponential admissibility
criterion and H∞ controller designed for time-varying de-
lay singular systems are investigated. Firstly, a criterion
is established, which covers more delay rate changes and
guarantees the time-varying delay singular system is to be
exponentially admissible. Based on this criterion, an H∞
control algorithm is obtained to ensure singular time-delay
system to be exponential admissibility with a disturbance
attenuation level γ . All the obtained results are formulated
in terms of strict LMIs, which are checked easily and free
of the decomposition of the given system. Numerical ex-
amples demonstrate the usefulness of the main results of
the proposed methods.

Recently, the new approaches to deal with the time de-
lay in state are provided (see [34–36]). How to improved
research technique to deal with time-delay is our next
work. The proposed method can also be enriched by re-
cent results [37–39], so extension of these results will be
investigated to hand the switched singular or time-delay
systems in future work.
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