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Decentralized Iterative Learning Control for Large-scale Interconnected
Linear Systems with Fixed Initial Shifts
Qin Fu*, Pan-Pan Gu, and Jian-Rong Wu

Abstract: This paper deals with the problem of iterative learning control for large-scale interconnected linear sys-
tems in the presence of fixed initial shifts. According to the characteristics of the systems, iterative learning control
laws are proposed for such large-scale interconnected linear systems based on the PD-type learning schemes. The
proposed controller of each subsystem only relies on local output variables without any information exchanges with
other subsystems. Using the contraction mapping method, we show that the schemes can guarantee the output of
the system converges uniformly to the corresponding output limiting trajectory over the whole time interval along
the iteration axis. Simulation examples illustrate the effectiveness of the proposed method.

Keywords: Decentralized control, fixed initial shifts, iterative learning control, large-scale interconnected linear
systems, PD-type learning schemes.

1. INTRODUCTION

Iterative learning control (ILC) has a well-established
research history as shown in [1–7]. By generating a cor-
rect control signal from the previous control execution,
it can achieve perfect tracking performance on the finite
time interval. Owing to its simplicity and effectiveness,
ILC has been found to be a good alternative in many areas
and applications, e.g., see [8] for detailed results. Nowa-
days, ILC is playing a more and more important role in
controlling repeatable processes.

In the process of ILC design, an interesting question is
how to properly set the initial value of the iterative sys-
tem at each iteration, such that the output trajectory of the
iterative system can converge to the desired reference tra-
jectory. In the early work, a common assumption about
this question is that the initial condition at each iteration
should be equal to the initial condition of the desired ref-
erence trajectory [1–4], or within its neighborhood [5–7].
In the case of perturbed initial conditions, boundedness
of the tracking error is established and the error bound is
shown to be proportional to the bound on initial condi-
tion errors [5–7]. Recently, more attention has been paid
to the performance of ILC in the presence of fixed initial
shifts, and initial rectifying action has been introduced in
learning algorithm [9–12]. For a class of partially irregu-
lar multivariable plants, paper [9] utilized initial impulse
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rectifying to eliminate the effect of the fixed initial shifts
so that a complete reference trajectory tracking over the
whole time interval was achieved. In the case of fixed
initial shifts, paper [10] first gave the output limiting tra-
jectory under the action of D-type, and furthermore, the
P-type errors were added in the D-type learning schemes,
and the obtained PD-type learning schemes were used to
get the modified output limiting trajectory, which can con-
verge asymptotically to the desired reference trajectory as
time increases. In [11], the I-type errors were added in the
PD-type learning schemes in [10], and the obtained PID-
type learning schemes can guarantee the output of the sys-
tem converges uniformly to the corresponding output lim-
iting trajectory, which also can converge asymptotically
to the desired reference trajectory as time increases. And
the two parameter matrices ( corresponding to "P" and
"I" ) can be used to adjust the output limiting trajectory
and the convergence speed when time approaches to infin-
ity. Paper [12] addressed the fixed initial shift problem in
ILC for affine nonlinear systems with system relative de-
gree, and the uniform convergence of the output trajectory
to a desired one jointed smoothly with a specified tran-
sient trajectory from the starting position was ensured in
the presence of fixed initial shifts. Paper [13] proposed a
feedback-aided PD-type learning algorithm to solve the
fixed initial shift problem for linear time-invariant sys-
tems. Up to now, because of its simplicity (corresponding
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to “PID”) and effectiveness, the PD-type learning schemes
have been the most commonly used tools to solve the
problem of fixed initial shifts [10, 12, 13].

Large-scale interconnected system is a compound sys-
tem which is composed of interconnected subsystems. In
many practical control problems, the systems have large-
scale system model, such as power system, chemical en-
gineering, large space structure, computer communication
networks and so on. Because of the reliability of imple-
mentation, real-time and economics, decentralized con-
trol has become an active branch of the large-scale system
theory [14–18], and some results for large-scale intercon-
nected linear systems have been obtained based on decen-
tralized ILC [19–21] in recent years. More recently, the
decentralized ILC design for large-scale interconnected
nonlinear systems has been also proposed in [22–24]. It
is noticed that a common assumption in [19–24] is that
the initial condition of each subsystem should be equal to
the initial condition of the corresponding desired reference
trajectory [19–22], or within its neighborhood [23, 24].
This observation motivates our present study.

Based on the work in [10, 13], this paper studies the
problem of iterative learning control algorithm of large-
scale interconnected linear systems in the presence of
fixed initial shifts. The decentralized PD-type learning al-
gorithms are proposed, and the corresponding output lim-
iting trajectory over the whole time interval under the ac-
tion of the PD-type learning schemes is given. In the pro-
cess of the decentralized ILC design, two kinds of conver-
gence conditions are proposed, one is discussed in [10,13]
and the other is not. Correspondingly, two different meth-
ods of proof are given.

In this paper, the following notational conventions are
adopted: for n-dimensional Euclidean space Rn, ∥x∥ de-
notes Euclidean norm of a vector x = [ x1 x2 · · · xn ]

T.
For a matrix A, ∥A∥ denotes its induced norm. For
a function f : [0,T ] → Rn and a real number λ > 0,
∥ f (·)∥s denotes the supreme norm defined by ∥ f (·)∥s =
sup

t∈[0,T ]
∥ f (t)∥; ∥ f (·)∥λ denotes the λ -norm defined by

∥ f (·)∥λ = sup
t∈[0,T ]

e−λ t ∥ f (t)∥. From [2] we know, ∥ f (·)∥s

and ∥ f (·)∥λ are equivalent for a finite constant λ . Thus,
convergence results can be proved using either of them.
We use I to represent the identity matrix.

2. PROBLEM DESCRIPTION

Consider the following large-scale interconnected lin-
ear system [19, 20]: ẋi(t) = Aixi(t)+Biui(t)+

N
∑

j=1, j ̸=i
Di jx j(t),

yi(t) =Cixi(t),
(1)

where i = 1,2, · · · ,N represent each subsystem, t ∈ [0,T ].
xi(t) ∈ Rni , ui(t) ∈ Rri , yi(t) ∈ Rmi represent the state, con-
trol input and output of the ith subsystem respectively,
Ai,Bi,Ci, and Di j are matrices with appropriate dimen-
sions.

It is assumed that the system (1) is repeatable over t ∈
[0,T ]. Rewrite the system (1) at each iteration as: ẋik(t) = Aixik(t)+Biuik(t)+

N
∑

j=1, j ̸=i
Di jx jk(t),

yik(t) =Cixik(t),
(2)

where the subscript k is employed to mark the iteration in-
dex. The task of the ILC is to find the appropriate learning
schemes, so that the output sequence yik(t) of the ith sub-
system has the good tracking performance. i= 1,2, · · · ,N.

Before giving our decentralized iterative learning con-
trol laws, we introduce for the large-scale system (2) the
following assumptions:

Assumption 1: For each iteration index k, the initial
value of the ith subsystem is always set to the fixed value
xi0, i.e., xik(0) = xi0, i = 1,2, · · · ,N.

Assumption 2: The matrix CiBi is full rank, i =
1,2, · · · ,N.

Lemma 1 [25]: If {ak}, k ∈ {0,1, · · · ,∞} is a sequence
of real numbers such that

|ak+1| ≤ ρ̂ |ak|+β , 0 ≤ ρ̂ < 1, β > 0,

then

limsup
k→∞

|ak| ≤
β

1− ρ̂
.

3. MAIN RESULTS

Construct the decentralized PD-type learning schemes
for the system (2) as follows:

ui(k+1)(t) = uik(t)+Γi(ėik(t)+Lieik(t)), (3)

where Γi ∈ Rri×mi and Li ∈ Rmi×mi are the learning gain
matrices, and all the eigenvalues of the matrix Li have pos-
itive real part. While eik(t) = yid(t)− yik(t) is the tracking
error of each subsystem at kth iteration, and yid(t) is the
corresponding desired reference trajectory. i= 1,2, · · · ,N.

It is assumed that there exists a u∗id(t), such that ẋ∗id(t) = Aix∗id(t)+Biu∗id(t)+
N
∑

j=1, j ̸=i
Di jx∗id(t),

y∗id(t) =Cix∗id(t),
(4)

where y∗id(t) = yid(t)− e∗i (t), e∗i (t) = e−Lit(yid(0)−Cixi0).
i = 1,2, · · · ,N.

For the system (2) that the dimension of the input is less
than or equal to the dimension of the output, i.e., ri ≤ mi,
i = 1,2, · · · ,N, we have:
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Theorem 1: Consider the system (1) satisfying (4) and
Assumptions 1-2 hold true. If there exist the gain matrices
Γi ∈ Rri×mi(i = 1,2, · · · ,N) such that

ρ = max
1≤i≤N

∥I −ΓiCiBi∥< 1, (5)

then the output yik(t) of each subsystem converges uni-
formly to the corresponding output limiting trajectory
y∗id(t) over the whole time interval [0,T ], under the ac-
tion of the learning scheme (3) , i.e., lim

k→∞
∥e∗ik∥s = 0, where

e∗ik(t) = y∗id(t)− yik(t).

Proof: From y∗id(t) = yid(t)− e−Lit(yid(0)−Cixi0), we
have

y∗id(0) =Cixi0.

It follows from the system (4) that y∗id(0) =Cix∗id(0). Thus,
it is reasonable to set the initial value as:

x∗id(0) = xi0. (6)

By definition,

eik(t) = e∗ik(t)+ e∗i (t)

= e∗ik(t)+ e−Lit(yid(0)−Cixi0). (7)

We differentiate both sides of the above expression to ob-
tain

ėik(t) = ė∗ik(t)−Lie−Lit(yid(0)−Cixi0). (8)

Form (7) and (8), we have

ėik(t)+Lieik(t)

= ė∗ik(t)−Lie−Lit(yid(0)−Cixi0)+Lieik(t)

= ė∗ik(t)−Li(eik(t)− e∗ik(t))+Lieik(t)

= ė∗ik(t)+Lie∗ik(t). (9)

Denote ∆u∗ik(t) = u∗id(t)− uik(t), ∆x∗ik(t) = x∗id(t)− xik(t),
i = 1,2, · · · ,N. From (2)-(4) and (9), we get

∆u∗
i(k+1)(t)

= u∗id(t)−ui(k+1)(t)

= u∗id(t)−uik(t)− (ui(k+1)(t)−uik(t))

= ∆u∗ik(t)−Γi(ėik(t)+Lieik(t))

= ∆u∗ik(t)−Γi(ė∗ik(t)+Lie∗ik(t))

= ∆u∗ik(t)−Γi(Ciẋ∗id(t)−Ciẋik(t)

+Li(Cix∗id(t)−Cixik(t)))

= ∆u∗ik(t)−ΓiLiCi∆x∗ik(t)

−ΓiCi

(
Ai∆x∗ik(t)+Bi∆u∗ik(t)+

N

∑
j=1, j ̸=i

Di j∆x∗jk(t)

)
= (I −ΓiCiBi)∆u∗ik(t)− (ΓiLiCi +ΓiCiAi)∆x∗ik(t)

−ΓiCi

N

∑
j=1, j ̸=i

Di j∆x∗jk(t).

Taking the λ - norm on both sides of the above expression
yields

∥∆u∗i(k+1)∥λ ≤∥I −ΓiCiBi∥∥∆u∗
ik∥λ

+ ci1 ∥∆x∗ik∥λ +
N

∑
j=1, j ̸=i

di j
∥∥∆x∗jk

∥∥
λ ,

where ci1 = ∥ΓiLiCi +ΓiCiAi∥ and di j = ∥ΓiCiDi j∥. i =
1,2, · · · ,N. Taking sum of the above expression for i from
1 to N and combining with (5), we have

N

∑
i=1

∥∆u∗i(k+1)∥λ ≤ ρ
N

∑
i=1

∥∆u∗
ik∥λ + c1

N

∑
i=1

∥∆x∗ik∥λ

+(N −1)c2

N

∑
i=1

∥∆x∗ik∥λ

= ρ
N

∑
i=1

∥∆u∗
ik∥λ + c3

N

∑
i=1

∥∆x∗ik∥λ , (10)

where c1 = max
1≤i≤N

ci1, c2 = max
1≤i, j≤N,i̸= j

di j, and c3 = c1 +

(N −1)c2.
It follows from (2) and (4) that

d(∆x∗ik(t))
dt

=Ai∆x∗ik(t)+Bi∆u∗ik(t)

+
N

∑
j=1, j ̸=i

Di j∆x∗jk(t).

Integrating both sides of the above expression over [0, t]
and combining with (6), we can obtain

∆x∗ik(t) =
∫ t

0
Ai∆x∗ik(ξ )dξ +

∫ t

0
Bi∆u∗

ik(ξ )dξ

+
N

∑
j=1, j ̸=i

∫ t

0
Di j∆x∗jk(ξ )dξ + xi0 − xik(0).

Taking Euclidean norm on both sides of the above expres-
sion yields

∥∆x∗ik(t)∥

≤ ∥Ai∥
∫ t

0
∥∆x∗ik(ξ )∥dξ +∥Bi∥

∫ t

0
∥∆u∗

ik(ξ )∥dξ

+
N

∑
j=1, j ̸=i

∥Di j∥
∫ t

0

∥∥∆x∗jk(ξ )
∥∥dξ +∥xi0 − xik(0)∥

= ∥Ai∥
∫ t

0
eλξ e−λξ ∥∆x∗ik(ξ )∥dξ

+∥Bi∥
∫ t

0
eλξ e−λξ ∥∆u∗

ik(ξ )∥dξ

+
N

∑
j=1, j ̸=i

∥Di j∥
∫ t

0
eλξ e−λξ ∥∥∆x∗jk(ξ )

∥∥dξ
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+∥xi0 − xik(0)∥

≤ eλ t −1
λ

(∥Ai∥∥∆x∗ik∥λ +∥Bi∥∥∆u∗
ik∥λ

+
N

∑
j=1, j ̸=i

∥Di j∥
∥∥∆x∗jk

∥∥
λ )+∥xi0 − xik(0)∥ .

Therefore

∥∆x∗ik∥λ = sup
t∈[0,T ]

e−λ t ∥∆x∗ik(t)∥

≤ (∥Ai∥∥∆x∗ik∥λ +∥Bi∥∥∆u∗
ik∥λ

+
N

∑
j=1, j ̸=i

∥Di j∥
∥∥∆x∗jk

∥∥
λ ) sup

t∈[0,T ]

1− e−λ t

λ

+∥xi0 − xik(0)∥ sup
t∈[0,T ]

e−λ t

=
1− e−λT

λ
(∥Ai∥∥∆x∗ik∥λ +∥Bi∥∥∆u∗

ik∥λ

+
N

∑
j=1, j ̸=i

∥Di j∥
∥∥∆x∗jk

∥∥
λ )+∥xi0 − xik(0)∥ .

Taking sum of the above expression for i from 1 to N, we
have

N

∑
i=1

∥∆x∗ik∥λ ≤ 1− e−λT

λ
(c4

N

∑
i=1

∥∆x∗ik∥λ

+ c5

N

∑
i=1

∥∆u∗
ik∥λ +(N −1)c6

N

∑
i=1

∥∆x∗ik∥λ )

+
N

∑
i=1

∥xi0 − xik(0)∥,

=
1− e−λT

λ

(
c7

N

∑
i=1

∥∆x∗ik∥λ + c5

N

∑
i=1

∥∆u∗
ik∥λ

)

+
N

∑
i=1

∥xi0 − xik(0)∥,

where c4 = max
1≤i≤N

∥Ai∥, c5 = max
1≤i≤N

∥Bi∥, c6 =

max
1≤i, j≤N,i̸= j

∥Di j∥, and c7 = c4 + (N − 1)c6. Taking λ so

that

1− e−λT

λ
c7 < 1,

we get

N

∑
i=1

∥∆x∗ik∥λ ≤c8
1− e−λT

λ

N

∑
i=1

∥∆u∗
ik∥λ

+
c8

c5

N

∑
i=1

∥xi0 − xik(0)∥, (11)

while

c8 =
c5

1− 1− e−λT

λ
c7

.

Substituting (11) into (10) results

N

∑
i=1

∥∆u∗i(k+1)∥λ ≤ρ̂
N

∑
i=1

∥∆u∗
ik∥λ

+ c9

N

∑
i=1

∥xi0 − xik(0)∥, (12)

while

ρ̂ = ρ + c3c8
1− e−λT

λ
, c9 =

c3c8

c5
.

By Assumption 1 and (12), we have

N

∑
i=1

∥∆u∗i(k+1)∥λ ≤ ρ̂
N

∑
i=1

∥∆u∗
ik∥λ . (13)

Since 0 ≤ ρ < 1 by (5), it is possible to choose λ suffi-
ciently large so that ρ̂ < 1. Then, (13) is a contraction in
N
∑

i=1
∥∆u∗

ik∥λ . It follows from (11), (13) and Assumption 1

that

lim
k→∞

N

∑
i=1

∥∆x∗ik∥λ = 0.

Therefore, we have

lim
k→∞

∥e∗ik∥s = 0, i = 1,2, · · · ,N.

This completes the proof. □

Remark 1: Theorem 1 extends the corresponding re-
sult of Theorem 2 in [10] to large-scale interconnected
systems.

Remark 2: If Assumption 1 is replaced with the fol-
lowing assumption: for all k, the repeatability of the initial
setting is satisfied within an admissible deviation level,
i.e., ∥xi0 − xik(0)∥ ≤ εi, i = 1,2, · · · ,N, k = 0,1,2, · · · ,
where ε1,ε2, · · · ,εN are positive constants, then the output

tacking error
N
∑

i=1
∥e∗ik∥s is bounded. A brief explanation is

given as follows:
From (12), we have

N

∑
i=1

∥∆u∗i(k+1)∥λ ≤ ρ̂
N

∑
i=1

∥∆u∗
ik∥λ + c9

N

∑
i=1

εi.

So it can be derived by Lemma 1 that

limsup
k→∞

N

∑
i=1

∥∆u∗
ik∥λ ≤ c9

1− ρ̂

N

∑
i=1

εi,

which together with (11) implies

limsup
k→∞

N

∑
i=1

∥∆x∗ik∥s = limsup
k→∞

{
N

∑
i=1

sup
t∈[0,T ]

∥∆x∗ik(t)∥
}
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≤ limsup
k→∞

{
N

∑
i=1

sup
t∈[0,T ]

{
eλT e−λ t ∥∆x∗ik(t)∥

}}

= eλT limsup
k→∞

N

∑
i=1

∥∆x∗ik∥λ

≤ eλT c8
1− e−λT

λ
limsup

k→∞

N

∑
i=1

∥∆u∗
ik∥λ + eλT c8

c5

N

∑
i=1

εi

≤ eλT c8
1− e−λT

λ
c9

1− ρ̂

N

∑
i=1

εi + eλT c8

c5

N

∑
i=1

εi.

Therefore,
N
∑

i=1
∥e∗ik∥s is bounded.

For the system (2) that the dimension of the output is
less than or equal to the dimension of the input, i.e., mi ≤
ri, i = 1,2, · · · ,N, we have:

Theorem 2: Consider the system (1) satisfying (4) and
Assumptions 1-2 hold true. If there exist the gain matrices
Γi ∈ Rri×mi(i = 1,2, · · · ,N) such that

ρ = max
1≤i≤N

∥I −CiBiΓi∥< 1, (14)

then the output yik(t) of each subsystem converges uni-
formly to the corresponding output limiting trajectory
y∗id(t) of over the whole time interval [0,T ], under the ac-
tion of the learning scheme (3) , i.e., lim

k→∞
∥e∗ik∥s = 0, where

e∗ik(t) = y∗id(t)− yik(t).

Proof: Denote δxik(t) = xi(k+1)(t)− xik(t), δuik(t) =
ui(k+1)(t)−uik(t). From (2), (3) and (9), we have

d(δxik(t))
dt

= Aiδxik(t)+Biδuik(t)+
N

∑
j=1, j ̸=i

Di jδx jk(t)

= Aiδxik(t)+BiΓi(ėik(t)+Lieik(t))

+
N

∑
j=1, j ̸=i

Di jδx jk(t)

= Aiδxik(t)+BiΓi(ė∗ik(t)+Lie∗ik(t))

+
N

∑
j=1, j ̸=i

Di jδx jk(t). (15)

It is easy to yield that

e∗i(k+1)(t) = e∗ik(t)− (yi(k+1)(t)− yik(t)).

From (15), we can obtain

ė∗i(k+1)(t)

= ė∗ik(t)− (ẏi(k+1)(t)− ẏik(t))

= ė∗ik(t)−Ci
d(δxik(t))

dt
= ė∗ik(t)−Ci(Aiδxik(t)+BiΓi(ė∗ik(t)+Lie∗ik(t))

+
N

∑
j=1, j ̸=i

Di jδx jk(t))

= (I −CiBiΓi)ė∗ik(t)−Ci(Aiδxik(t)+BiΓiLie∗ik(t)

+
N

∑
j=1, j ̸=i

Di jδx jk(t)).

Taking the λ - norm on both sides of the above expression
yields

∥ė∗i(k+1)∥λ ≤ ∥I −CiBiΓi∥∥ė∗ik∥λ + c10 ∥δxik∥λ

+ c11 ∥e∗ik∥λ + c12

N

∑
j=1, j ̸=i

∥δx jk∥λ ,

where c10 = max
1≤i≤N

∥CiAi∥, c11 = max
1≤i≤N

∥CiBiΓiLi∥, and

c12 = max
1≤i, j≤N,i̸= j

∥CiDi j∥. Taking sum of the above expres-

sion for i from 1 to N and combining with (14) , we have

N

∑
i=1

∥ė∗i(k+1)∥λ ≤ ρ
N

∑
i=1

∥ė∗ik∥λ + c10

N

∑
i=1

∥δxik∥λ

+ c11

N

∑
i=1

∥e∗ik∥λ + c12(N −1)
N

∑
i=1

∥δxik∥λ

= ρ
N

∑
i=1

∥ė∗ik∥λ + c13

N

∑
i=1

∥δxik∥λ + c11

N

∑
i=1

∥e∗ik∥λ , (16)

where c13 = c10 + c12(N − 1). It follows from (2),(4) and
(6) that

e∗ik(t) =
∫ t

0

d(e∗ik(ξ ))
dξ

dξ+Ci(xi0 − xik(0)).

Then we have

∥e∗ik∥λ ≤ 1− e−λT

λ
∥ė∗ik∥λ +∥Ci∥∥xi0 − xik(0)∥ . (17)

Substituting (17) into (16) results

N

∑
i=1

∥ė∗i(k+1)∥λ ≤
(

ρ + c11
1− e−λT

λ

) N

∑
i=1

∥ė∗ik∥λ

+ c13

N

∑
i=1

∥δxik∥λ + c11

N

∑
i=1

∥Ci∥∥xi0 − xik(0)∥. (18)

Integrating both sides of (15) over [0, t], we can obtain

δxik(t) =
∫ t

0
Aiδxik(ξ )dξ

+
∫ t

0
BiΓiė∗ik(ξ )dξ +

∫ t

0
BiΓiLie∗ik(ξ )dξ

+
N

∑
j=1, j ̸=i

∫ t

0
Di jδx jk(ξ )dξ + xi(k+1)(0)− xik(0)

=
∫ t

0
Aiδxik(ξ )dξ +

∫ t

0
BiΓiė∗ik(ξ )dξ

+
∫ t

0
BiΓiLie∗ik(ξ )dξ
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+
N

∑
j=1, j ̸=i

∫ t

0
Di jδx jk(ξ )dξ

+ xi(k+1)(0)− xi0 + xi0 − xik(0).

Denote c14 = max
1≤i≤N

∥BiΓi∥, c15 = max
1≤i≤N

∥BiΓiLi∥. As in the

proof of Theorem 1, we can derive

N

∑
i=1

∥δxik∥λ

≤ c16
1− e−λT

λ

N

∑
i=1

∥ė∗ik∥λ + c17
1− e−λT

λ

N

∑
i=1

∥e∗ik∥λ

+ c18

N

∑
i=1

(∥∥xi(k+1)(0)− xi0
∥∥+∥xi0 − xik(0)∥

)
, (19)

where

c16 =
c14

1− 1− e−λT

λ
c7

, c17 =
c15

1− 1− e−λT

λ
c7

,

c18 =
1

1− 1− e−λT

λ
c7

.

From (17) and (19), we have

N

∑
i=1

∥δxik∥λ ≤ c16
1− e−λT

λ

N

∑
i=1

∥ė∗ik∥λ

+ c17
1− e−λT

λ
1− e−λT

λ

N

∑
i=1

∥ė∗ik∥λ

+ c17
1− e−λT

λ

N

∑
i=1

∥Ci∥∥xi0 − xik(0)∥

+ c18

N

∑
i=1

(∥∥xi(k+1)(0)− xi0
∥∥+∥xi0 − xik(0)∥

)
=

(
c16 + c17

1− e−λT

λ

)
1− e−λT

λ

N

∑
i=1

∥ė∗ik∥λ

+ c17
1− e−λT

λ

N

∑
i=1

∥Ci∥∥xi0 − xik(0)∥

+ c18

N

∑
i=1

(∥∥xi(k+1)(0)− xi0
∥∥+∥xi0 − xik(0)∥

)
.

Substituting the above expression into (18) results

N

∑
i=1

∥ė∗i(k+1)∥λ ≤ ρ̄
N

∑
i=1

∥ė∗ik∥λ

+ c13c17
1− e−λT

λ

N

∑
i=1

∥Ci∥∥xi0 − xik(0)∥

+ c13c18

N

∑
i=1

(∥∥xi(k+1)(0)− xi0
∥∥+∥xi0 − xik(0)∥

)
+ c11

N

∑
i=1

∥Ci∥∥xi0 − xik(0)∥, (20)

where

0 < ρ̄ = ρ + c11
1− e−λT

λ

+ c13

(
c16 + c17

1− e−λT

λ

)
1− e−λT

λ
< 1,

when we choose λ sufficiently large. By Assumption 1
and (20), we have

N

∑
i=1

∥ė∗i(k+1)∥λ ≤ ρ̄
N

∑
i=1

∥ė∗ik∥λ . (21)

It follows from (21) that

lim
k→∞

N

∑
i=1

∥ė∗ik∥λ = 0.

Therefore, we have

lim
k→∞

∥ė∗ik∥s = 0, i = 1,2, · · · ,N.

Since e∗ik(0) = 0 by (6) and Assumption 1, we can derive

lim
k→∞

∥e∗ik∥s = 0, i = 1,2, · · · ,N.

This completes the proof. □

Remark 3: It is worth pointing out that this kind of
convergence condition such as (14) is not discussed in [10,
13].

Remark 4: Similar to Remark 2, the boundedness of
N
∑

i=1
∥ė∗ik∥s can be obtained by (20) and Lemma 1. And fur-

thermore,
N
∑

i=1
∥e∗ik∥s is bounded.

Remark 5: Assumption 2 can guarantee the gain ma-
trices Γi in Theorem 1,2 are existing.

Remark 6: Generally speaking, PD-type learning al-
gorithms can guarantee the output limiting trajectory of
the system asymptotically converges to the desired refer-
ence trajectory as time increases [10, 11, 13]. It follows
from the expression of y∗id(t) that the decentralized PD-
type learning algorithms in this paper also have the same
properties.

4. SIMULATION EXAMPLES

1) Systems that the dimension of the input is less than
the dimension of the output. Consider the following inter-
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connected linear system:

ẋ1k(t) =
[

1 0
0 1

]
x1k(t)+

[
1
2

]
u1k

+

[
1 0
0 1

]
x2k(t),

y1k(t) =
[

1 0
0 1

]
x1k(t),

ẋ2k(t) =
[

−1 0
0 −1

]
x2k(t)+

[
2
1

]
u2k

+

[
1 0
0 1

]
x1k(t),

y2k(t) =
[

1 0
0 1

]
x2k(t),

where the subscript k is employed to mark the iteration
index. It is easy to yield that the above system satisfies
Assumption 2. Set the initial values at each iteration to the

fixed values x10 =

[
2
1

]
, x20 =

[
1
2

]
, and take T = 1,

L1 = L2 =

[
1 0
0 1

]
, Γ1 = Γ2 =

[
0.2 0.2

]
,

then

|1−Γ1C1B1|= |1−Γ2C2B2|= 0.4 < 1.

For the given desired reference trajectories:

y1d(t) =
[

2et −2e−t

et − e−t

]
, y2d(t) =

[
0
0

]
,

we have

y∗1d(t) =y1d(t)− e−L1t(y1d(0)−C1x10)

=

[
2et −2e−t

et − e−t

]

− e

 −t 0
0 −t

([
0
0

]
−
[

1 0
0 1

][
2
1

])
=

[
2et

et

]
,

y∗2d(t) =y2d(t)− e−L2t(y2d(0)−C2x20)

=

[
0
0

]

− e

 −t 0
0 −t

([
0
0

]
−
[

1 0
0 1

][
1
2

])
=

[
e−t

2e−t

]
.

Take the initial controls u10(t) = u20(t) = 0. Under the
action of the learning scheme (3), and by using the math-
ematical software Matlab, it is easy to see that ∥e∗ik∥s (i =
1,2) tend to zero as k → ∞ (shown in Figs. 1 and 2).

Fig. 1. Tracking errors of y1k.

Fig. 2. Tracking errors of y2k.

2) Systems that the dimension of the output is less than
the dimension of the input. Consider the following inter-
connected linear system:

ẋ1k(t) =
[

1 0
0 1

]
x1k(t)+

[
1 0
0 1

]
u1k

+

[
1 0
0 1

]
x2k(t),

y1k(t) =
[

1 1
]

x1k(t),

ẋ2k(t) =
[

−1 0
0 −1

]
x2k(t)+

[
1 0
0 1

]
u2k

+

[
1 0
0 1

]
x1k(t),

y2k(t) =
[

1 1
]

x2k(t),

where the subscript k is employed to mark the iteration
index. It is easy to yield that the above system satisfies
Assumption 2. Set the initial values at each iteration to the

fixed values x10 =

[
2
1

]
,x20 =

[
1
2

]
, and take T = 1,

L1 = L2 = 1, Γ1 = Γ2 =

[
0.25
0.25

]
,
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Fig. 3. Tracking errors of y1k.

then

|1−C1B1Γ1|= |1−C2B2Γ2|= 0.5 < 1.

For the given desired reference trajectories:

y1d(t) = 3et −3e−t , y2d(t) = 0,

we have

y∗1d(t) =y1d(t)− e−L1t(y1d(0)−C1x10)

=3et −3e−t − e−t
(

0−
[

1 1
][ 2

1

])
=3et ,

y∗2d(t) =y2d(t)− e−L2t(y2d(0)−C2x20)

=0− e−t
(

0−
[

1 1
][ 1

2

])
=3e−t .

Take the initial controls u10(t) = u20(t) =
[

0
0

]
. Un-

der the action of the learning scheme (3), and by using
the mathematical software Matlab, it is easy to see that
∥e∗ik∥s (i = 1,2) tend to zero as k → ∞ (shown in Figs. 3
and 4).

3) Systems that the dimension of the output is equal
to the dimension of the input. In order to illustrate the
application of the results, we consider the two identical
pendulums which are coupled by a spring and subject to
two distinct inputs [20] as shown in Fig. 5.
We choose the state vectors as

x1(t) =
[

θ1(t) θ̇1(t)
]T

,

x2(t) =
[

θ2(t) θ̇2(t)
]T

.

Fig. 4. Tracking errors of y2k.

Fig. 5. The coupled inverted pendulums.

Then, the interconnected system can be described by

ẋ1k(t) =
[

0 1
g
l 0

]
x1k(t)+

[
0
1

ml2

]
u1k

+

[
0 0

− k̄a2

ml2 0

]
x1k(t)+

[
0 0

k̄a2

ml2 0

]
x2k̄(t),

y1k(t) =
[

1 1
]

x1k(t),

ẋ2k(t) =
[

0 1
g
l 0

]
x2k(t)+

[
0
1

ml2

]
u2k

+

[
0 0

k̄a2

ml2 0

]
x1k(t)+

[
0 0

− k̄a2

ml2 0

]
x2k(t),

y2k(t) =
[

1 1
]

x2k(t),

where the subscript k is employed to mark the iteration
index, k̄ and g are spring and gravity constants. For simu-
lation, we give the following parameters as in [20]:

g
l
= 1.0,

1
ml2 = 1.0,

k̄
m

= 2.0,
a
l
= 0.5.

Set the initial values at each iteration to the fixed values

x10 =

[
1.5
0.5

]
, x20 =

[
0.5
1.5

]
, and take T = 1,

L1 = 1, L2 = 2, Γ1 = Γ2 = 0.5,

then

|1−C1B1Γ1|= |1−C2B2Γ2|= 0.5 < 1.
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Fig. 6. Tracking errors of y1k.

Fig. 7. Tracking errors of y2k.

For the given desired reference trajectories:

y1d(t) = 2et −2e−t , y2d(t) = 0,

we have

y∗1d(t) = y1d(t)− e−L1t(y1d(0)−C1x10)

= 2et −2e−t − e−t
(

0−
[

1 1
][ 1.5

0.5

])
= 2et ,

y∗2d(t) = y2d(t)− e−L2t(y2d(0)−C2x20)

= 0− e−2t
(

0−
[

1 1
][ 0.5

1.5

])
= 2e−2t .

Take the initial controls u10(t) = u20(t) = 0. Under the
action of the learning scheme (3), and by using the math-
ematical software Matlab, it is easy to see that ∥e∗ik∥s (i =
1,2) tend to zero as k → ∞ (shown in Figs. 6 and 7).

5. CONCLUSIONS

This paper studies the decentralized ILC problem for
large-scale interconnected linear systems in the presence

of fixed initial shifts. Two kinds of the system structure
are considered in this paper, one is that the dimension of
the input is less than or equal to the dimension of the out-
put, and the other is that the dimension of the output is
less than or equal to the dimension of the input. By using
the PD-type learning schemes, the corresponding output
limiting trajectory over the whole time interval under the
action of the PD-type learning schemes is given, and the
convergence theorems of the output tracking errors are es-
tablished based on the contraction mapping method. The
simulation results are consistent with theoretical analysis.
Since the PD-type ILC for the system with fixed initial
shifts has mainly focused on single system until now, the
result of this paper extends the range of the application of
PD-type ILC to some extent.
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