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Enhanced Multi-sensor Data Fusion Methodology based on Multiple
Model Estimation for Integrated Navigation System
Lei Wang* and Shuangxi Li

Abstract: A novel multi-sensor data fusion methodology is presented in this paper with respect to noise with
unknown or randomly varying statistics properties and outliers in the SINS/GPS/Odometer integrated navigation
system. The proposed methodology combines an adaptive interacting multiple model filtering (AIMM) and fed-
erated Kalman algorithm. The former implements dynamic interaction and dynamic change of multiple modes
based on the Markov chain process of system models. To achieve the adaptive outlier detection and processing in
the measurement signal, modified Kalman filter based on orthogonality of innovation serves as the parallel model
filters in the AIMM approach. The advantage of decentralized filter architecture of the latter federated algorithm
is flexibility and modularity. It has received considerable attention because of its outstanding fault detection and
isolation capability. Experiment results show that the proposed multi-sensor data fusion methodology significantly
improves the navigation estimation accuracy and reliability as compared to the federated extend Kalman filter and
federated IMM filter approaches.

Keywords: Interacting multiple model, innovation correction, multi-sensor data fusion, SINS/GPS/odometer.

1. INTRODUCTION

Accurate positioning of a moving vehicle is one of the
great challenges in the field of navigation. The integrated
navigation consisted of global positioning system (GPS),
strapdown inertial navigation system (SINS) and odome-
ter is usually adopted for land vehicles [1,2]. Multi-sensor
data fusion shows significant advantages in state estima-
tion over single source data. To fuse the information from
the above sensors, different approaches can be found in
the actual literature [3, 4]. Based on Kalman filter, mul-
tiple sensors data can be fused in two ways: one is cen-
tralized Kalman filter and the other is distributed Kalman
filter. The centralized Kalman filter can obtain the opti-
mal state estimate in ideal condition, but the main draw-
back is the high dimensions of states that may cause the
heavy computational load. The distributed Kalman filter is
a two-stage data processing technology, which substitutes
the original centralized filter with a global filter and sev-
eral local filters. The Federated Kalman filter developed
by Carlson [5] is a special distributed Kalman filter in-
cluding a process of information sharing and data fusion.
A federated filter consists of a distributed filter structure
and is divided into parallel sensor-dedicated local Kalman
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filters, which process subsets of sensor data. A master fil-
ter periodically fuses the local filter estimates according to
the least squares criterion, yielding the overall navigation
solution.

To achieve good performance from the federated
Kalman filter, the stochastic information provided to the
local Kalman filters must be accurate. However, GPS
is easily subject to abnormal performance. Specifically,
signal jamming from nearby radio emitters can cause
position error that exceeds several hundreds of meters.
Performance degradation may also occur due to both dilu-
tion of precision reduction at low altitudes and multipath
effects. These GPS measurement errors can cause high
measurement noise [6]. Similarly, rough road condi-
tions will cause the change of statistical characteristics
of odometer measurement noise. Taking into account
the complexity of actual environmental conditions, the
stochastic characteristics of noise are sensitive to many
factors. So, adaptive method is necessary to accommo-
date for changes in environmental conditions. The inter-
acting multiple model (IMM) [7, 8] has received much
attention in resent years due to its unique power and great
success in identifying noise with unknown or randomly
varying statistics properties, and in decomposing complex
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problems into simpler sub-problems, such as target track-
ing, image processing, fault detection and integrated nav-
igation, etc. [9–12]. Zang et al. [13] have described the
IMM technique that can solve the problem of uncertainly
noise in the SINS/GPS integrated navigation system. Xu
et al. [14] have presented an improved interacting multiple
model algorithm to estimate the rough value of measure-
ment noise statistical characteristics. The basic idea of
IMM approach is to construct a set of possible candidate
models for the true plant. A bank of filters run in paral-
lel where each filter is designed using a unique model that
may represent the true behavior pattern of the plant.

However, if there are outliers in the measurement sig-
nal, the accuracy and stability of all the parallel Kalman
filters in IMM algorithm will be affected. As a result,
the global estimation by IMM algorithm may be subject
to a considerable margin of error. In order to solve this
problem, a method of adaptive outlier detection and pro-
cessing based on orthogonality of innovation in Kalman
filter is proposed. The modified Kalman filter is then
introduced as parallel filter of IMM algorithm to con-
stitute the AIMM algorithm, which serves as local filter
of federated Kalman filtering architecture. The resulted
federated AIMM algorithm can overcome the disadvan-
tages of decentralized fusion by combining local decen-
tralized data fusion with global fusion and a two-level
structure is formed to improve the accuracy and reliabil-
ity of integrated navigation systems. The dynamic model
of SINS/GPS/odometer integrated systems is developed to
describe the system state and observation. A federated es-
timation fusion method is established for individual inte-
grations of GPS and odometer into SINS to independently
obtain the local optimal state estimations of integrated
subsystems SINS/GPS and SINS/Odometer. A global op-
timal estimation fusion theory is studied for fusion of the
local optimal estimations to generate the global optimal
state estimation of SINS/GPS/Odometer navigation sys-
tems. Experimental results are presented to demonstrate
the efficacy of the proposed methodology.

The rest of the paper is organized as follows: Section
2 derives theory and structure of the proposed AIMM al-
gorithm. Section 3 describes the data fusion methodology
and error model of the integrated navigation system. Sec-
tion 4 validates the theoretical analyses and illustrates the
proposed algorithm using road tests in downtown scenar-
ios and finally. Section 5 gives some concluding remarks.

2. AIMM ALGORITHM BASED ON
INNOVATION CORRECTION

For the dynamic state space estimation system, the in-
novation refers to the deviation of the current observation
and its prediction. When the system model in the Kalman
filter coincide with the true model, including structure,
parameters and noise statistics properties, the innovations

Fig. 1. Structure of the proposed AIMM algorithm (r =
3).

will be a Gaussian white noise sequence with zero mean
[15, 16]. The consistency of the true model and the fil-
tering model is hidden in the innovations. In the tradi-
tional IMM algorithm, the innovations are used to amend
the model probabilities. But in most cases, the character-
istics of noise are time-varying and hard to get accurately,
which may cause wrong correction to the model proba-
bilities and bad performance for the estimation of IMM
algorithm. So a process of innovation correction is intro-
duced to incorporate with IMM in this paper. The inputs
to the proposed algorithm are the modeled state space and
measurement vectors. The AIMM algorithm provides a
soft switching among the different inputs. The structure
of the AIMM approach is shown in Fig. 1.

2.1. Modified Kalman filer
Consider the following class of single-input and single-

output discrete-time systems:{
XXX k+1 =FFFkXXX k +GGGkwww(k),

ZZZk =HHHkXXX k +υυυk,
(1)

where XXX k ∈Rn is the system state; FFFk ∈Rn×n is state tran-
sition matrix; GGGk ∈ Rn×l is system noise matrix; ZZZk ∈ Rm

is measurement output; HHHk ∈ Rm×n is measurement ma-
trix; wwwk ∈ Rl and υυυk ∈ Rm are system noise and measure-
ment noise vectors assumed as Gauss white noise with
zero mean and independent of each other. The covariance
matrices of system noise wwwk and measurement noise υυυk

are QQQ and RRR, respectively.
For system (1), the discrete-time Kalman filter can be

described as the following form:

X̂XX k+1|k =FFFk+1|kX̂XX k, (2)

PPPk+1|k =FFFk+1|kPPPkFFFT
k+1|k +GGGkQQQkGGGT

k , (3)

eeek+1 = ZZZk+1 −HHHk+1X̂XX k+1|k, (4)
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KKKk+1 =PPPk+1|kHHHT
k+1(HHHk+1PPPk+1|kHHHT

k+1 +RRRk+1)
−1, (5)

X̂XX k+1 = X̂XX k+1|k +KKKk+1eeek+1, (6)

PPPk+1 = (III −KKKk+1HHHk+1)PPPk+1|k(III −KKKk+1HHHk+1)
T

+KKKk+1RRRk+1KKKT
k+1, (7)

where eeek+1 in (4) is called the innovation sequence of
Kalman filter and its covariance matrix sk+1 can be cal-
culated by

sssk+1 = E(eeek+1eeeT
k+1) =HHHk+1PPPk+1|kHHHT

k+1 +RRRk+1. (8)

It can be proved that the innovation eeek+1 is an indepen-
dent identically distributed sequence and has the property
of orthogonality [17]:

E{êeek+1ZZZm}= 0, m < k+1. (9)

If there are outliers in the measurement sequence ZZZk+1,
the orthogonality of innovation eeek+1 will be disrupted.
This will be useful for the outlier detection. Suppose ẐZZk+1

is the optimal estimation of ZZZk+1, a symbol ΦΦΦk+1 is defined
as

ΦΦΦk+1 =E(ZZZk+1ZZZT
k+1)

=E(eeek+1eeeT
k+1)+E(ẐZZk+1ẐZZ

T
k+1). (10)

Since the optimal estimation ẐZZk can be denoted by

ẐZZk+1 =HHHk+1X̂XX k+1|k. (11)

Put (8) and (11) into (10),

ΦΦΦk+1 =E[ZZZk+1ZZZT
k+1] =HHHk+1PPPk+1|kHHHT

k+1 +RRRk+1

+HHHk+1X̂XX k+1|kX̂XX
T
k+1|kHHH

T
k+1. (12)

For the sake of convenience in writing, a symbol ΘΘΘk+1

is defined as

ΘΘΘk+1 =HHHk+1PPPk+1|kHHHT
k+1 +RRRk+1

+HHHk+1XXX k+1|kXXXT
k+1|kHHH

T
k+1. (13)

Then a judgment criterion if there are outliers in the
measurement data can be got by

ΦΦΦ(i,i)k+1 ∈ [ΘΘΘ(i,i)k+1 − ε,ΘΘΘ(i,i)k+1 + ε], (14)

where ΦΦΦ(i, j)k+1 and ΘΘΘ(i, j)k+1 denote the diagonal elements
of ΦΦΦ(i, j)k+1 and ΘΘΘ(i, j)k+1, respectively. If equation (14)
is valid, it can be considered that there are no outliers in
the measurement. Otherwise, there are outliers in the mea-
surement. Considering the calculation error, a perturba-
tion ε is introduced and it can be selected according the
actual situation.

In order to reduce the state estimation error caused by
outliers, an amendment method is proposed to replace the
predicting equation (6) in Kalman filter.

X̂XX k+1 = X̂XX k+1|k +KKKk+1(BBBk+1 −HHHk+1X̂XX k+1|k), (15)

where

BBBk+1 =[ ZZZ(1)k+1 f1(χ1) ZZZ(2)k+1 f2(χ2) · · ·
ZZZ(m)k+1 fm(χm) ]T, (16)

where fm(χm), (i = 1, 2, · · · , m) is an activation function
and it must have the following properties:

1) when χi → ∞, fi(χi)→ 0;
2) when χi <C or χi ≥C, fi(χi) is a constant, where C

is threshold;
3) fi(χi) is monotonic decline and continuously differ-

entiable.
In our work, a piecewise smooth function is adopted

and its specific form is as follows:

fi(χi) =

{
1, χi ≤ di,

di/χi, χi > di,
(17)

where

χi =
√

ΦΦΦ(i,i)k+1, di =
√

ΘΘΘ(i,i)k+1 + εi, i = 1,2, · · · ,m.

(18)

As can be seen from the above process, the measure-
ment ZZZk+1 is detected by (14). If outliers exist in ZZZk+1,
χi > di and fi(χi) = di/χi < 1, module of the measure-
ment ZZZk+1 will be reduced by multiplying with the func-
tion fi(χi) in the amendment predicting equation (15). On
the contrary, if there are no outliers in the measurement,
module of ZZZk+1 will keep for fi(ri) = di/χi = 1. In addi-
tion, the perturbation ε can be adjusted to meet different
kinds of application requirements.

2.2. AIMM algorithm
Suppose the model set is MMM with r models, the effec-

tive model at time k is mk, the dynamic system can be
described as{

XXX k+1 =FFFk(mk)XXX k +GGGkwwwk (mk) ,

ZZZk =HHHk(mk)XXX k +vvvk (mk) ,
(19)

where XXX k is the state vector, ZZZk is the observation vector,
GGGk is the process matrix, HHHk is the measurement matrix,
wwwk and vvvk are the process noise and observation noise se-
quence respectively. The initial Markov transition proba-
bility π ji can be denoted by:

π ji = P
{

m j
k+1|m

i
k

}
, mi

k,m
j
k+1 ∈MMM. (20)

As can be seen from Fig. 1, the proposed AIMM algo-
rithm consists of r interacting filters operating in parallel
and r is set as 3 in our work. One cycle of the algorithm
consists of the following steps:

1) Model re-initialization. At time k+1, the initial con-
dition of the jth(1 ≤ j ≤ r) model matched filter is ob-
tained by mixing the state estimates of all filters at the
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previous time. The initial model transition probability µµµ j
k|k

is

µµµ j
k|k =

π jiµµµ i
k

∑r
i=1 π jiµµµ i

k
, (21)

where µµµ i
k is the probability of model i at time k. The mix-

ing state estimation X̂ j
k and its estimation error covariance

P j
k are given by

X̂XX
j
k =

r

∑
i=1

µµµ j
k|kX̂XX

i
k, (22)

PPP j
k =

r

∑
i=1

µ̂µµ j
k|k

[
PPPi

k|k +
(

X̂XX
j
k − X̂XX

i
k|k

)(
X̂XX

j
k − X̂XX

i
k|k

)T
]
,

(23)

where X̂XX
i
k|k and PPPi

k|k are respectively the estimates of state
and its estimation error covariance of model i at time k.

2) Matched model filtering. This step performs for each
model an individual filtering. The modified Kalman filter
is used as the matched model filter in the proposed algo-
rithm. For the jth model filter, detailed steps are illustrated
as follows:

X̂XX
j
k+1|k =FFF j

k+1|kX̂XX
j
k|k, (24)

PPP j
k+1|k =FFF j

k+1|kPPP
j
k

(
FFF j

k+1|k

)T
+GGG j

kQQQ
j
k

(
GGG j

k

)T
, (25)

eee j
k+1 = ZZZ j

k+1 −HHH j
k+1X̂XX

j
k+1|k, (26)

KKK j
k+1 =PPP j

k+1|k

(
HHH j

k+1

)T

×
[
HHH j

k+1PPPk+1|k

(
HHH j

k+1

)T
+RRR j

k+1

]−1

, (27)

X̂XX
j
k+1 = X̂XX

j
k+1|k +KKK j

k+1(BBB
j
k+1 −HHH j

k+1X̂XX
j
k+1|k), (28)

PPP j
k+1 =

(
III −KKK j

k+1HHH
j
k+1

)
PPP j

k+1|k

(
III −KKK j

k+1HHH
j
k+1

)T

+KKK j
k+1RRR

j
k+1

(
KKK j

k+1

)T
. (29)

It can be seen that amendment predicting equation is
used to replace equation (6) in Kalman filter. Calculation
of BBB j

k+1 in (28) can refer to (16), (17) and (18). Then the

state estimation X̂XX
j
k+1 and its corresponding estimation co-

variance PPP j
k+1 can be acquired.

3) Innovation correction. The corrected innovation
êee j

k+1and its covariance SSS j
k+1 can be calculated by:

êee j
k+1 =BBB j

k+1 −HHH j
k+1X̂XX

j
k+1|k, (30)

SSS j
k+1 =HHH j

k+1PPPk+1|k

(
HHH j

k+1

)T
+RRR j

k+1. (31)

Compare to (26), it can be seen that the new innovation
equation (30) can reduce the affection of outliers in mea-
surement signal. The new innovation êee j

k+1 can make the

calculation of the subsequent model probability more pre-
cise and decrease the sensitivity of probabilistic weight-
ings to measurement noise.

4) Model probability update. The likelihood function
ΛΛΛ j

k+1 of the model m j can be simplified as

ΛΛΛ j
k+1 =N

[
êee j

k+1;0,SSS j
k+1

]
=
[
(2π)n

∣∣∣SSS j
k+1

∣∣∣]−1/2

× exp
{
−1

2

(
êee j

k+1

)T (
SSS j

k+1

)−1
êee j

k+1

}
, (32)

where n is the dimension of state, then the multiple model
probability can be updated as

µµµ j
k+1|k = P

{
m j

k+1|ZZZ
j
k+1

}
=

ΛΛΛ j
k+1 ∑r

j=1 π jiµµµ j
k|k

∑r
i=1

[
ΛΛΛ j

k+1 ∑r
j=1 π jiµµµ j

k|k

] . (33)

5) Output combination. The filter estimation based on
each model is weighted and combined to generate the re-
sulting filter state estimation. This is only done for output
purpose and further usage in data association. It is not part
of the algorithm recursions.

X̂XX k+1 =
r

∑
j=1

µµµ j
k+1|kX̂XX

j
k+1, (34)

PPPk+1 =
r

∑
j=1

µµµ j
k+1|k

×
[
PPPk +

(
X̂XX

j
k+1 − X̂XX k+1

)(
X̂XX

j
k+1 − X̂XX k+1

)T
]
.

(35)

3. SINS/GPS/ODOMETER INTEGRATED
NAVIGATION SYSTEM

3.1. Data fusion methodology
SINS is a precision instrumentation system, which pro-

vides the geographical position, velocity, and attitude of
a vehicle by using inertial sensors, such as gyroscopes
and accelerometers. In the system the accelerations mea-
sured by accelerometers and the angular velocities by gy-
roscopes are integrated without external aids. Through
the integration linear velocity, position, and attitude can
be obtained. Therefore, it can provide navigation solu-
tion continually. However, the measurement errors in ac-
celerometers and gyroscopes will be integrated together
with the true values, and then they accumulate in position
solution without limit. GPS is a satellite-based radio nav-
igation system, which provides highly accurate position
data of a vehicle to users. For position calculation, gen-
erally at least four satellites must be visible. However, in
an urban area, the number of visible satellites is often less
than four due to tall building and trees. Therefore, with
only a GPS receiver, continuous navigation is impossible
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Fig. 2. Structure of the multi-sensor data fusion method-
ology.

[18]. Odometer is an instrument which can provide vehi-
cle with velocity relative to land. Different from inertial
navigation system, the velocity is measured directly, so it
is bounded and of high accuracy. From the point of long-
term evolution, velocity error is far less than the inertial
navigation system. The SINS/GPS/Odometer integrated
system incorporates the characteristics of each navigation
system. To be specific, SINS provides data with good
short-term stability while the GPS and odometer provide
data with good long-term stability. It integrates the output
of the inertial measurement unit (IMU) at more frequent
periods and if the external information by GPS or odome-
ter is available at some instant, it combines those through
multi-sensor data fusion method.

To integrate the subsystems GPS and odometer into the
main system SINS, a multi-sensor data fusion methodol-
ogy is established based on federated AIMM filter. Fig. 2
depicts the structure of the federated filter, in which no-
reset mode is adopted. The observation information of the
integrated navigation system includes the GPS position
PGPS and velocity VGPS, the SINS position PINS and ve-
locity VINS, and the velocity VOD measured in body frame
by odometer. Subsystems GPS and odometer indepen-
dently observe the output of SINS. The two local filters
estimate the state of SINS according to the observed data.
Combining the local decentralized fusion with global op-
timal fusion, a two-level structure fusion methodology is
formed to achieve the accuracy and reliability of the inte-
grated system from the overall of the point. At the first
level, GPS and odometer are integrated with SINS by two
local AIMM filters respectively. This level is a parallel
process of decentralized estimation based on the obser-
vation space. At the second level, the local optimal es-
timations generated from these two local filers are fused
together to generate the global optimal state estimation of
the SINS/GPS/Odometer integrated navigation system.

SINS is used to establish the inertia navigation model.
Set the Earth-centered inertial (ECI) frame as the inertial
frame (i), the East-North-Up (ENU) geography coordinate
as the local navigation frame (n), and the Right-Front-UP
(RFU) frame as the body-fixed frame (b), clearer defini-
tion can be found in reference [19]. The error model of
SINS/GPS/Odometer integrated navigation system can be
derived according from the frames defined above.

3.2. SINS/GPS loosely coupled system
3.2.1 System error model

Assume the strapdown inertial navigation attitude er-
ror angle φφφ are small angles, and ignore the earth gravity
model error, the linear approximation of the strapdown in-
ertial navigation error equation can be obtained [20]. The
attitude error equation is given by

φ̇φφ =−ωωωn
in ×φφφ +δωωωn

in −δωωωn
ib. (36)

The speed error equation is:

δV̇VV n
= fff n ×φφφ − (2ωωωn

ie +ωωωn
en)×δVVV n

+V̂VV
n × (2δωωωn

ie +δωωωn
en +δ fff n. (37)

The SINS distance increment is

δPPP =

 δ L̇
δ λ̇
δ ḣ



=


1

RM+h δvn
N − vn

N
(RM+h)2 δh

secL
RN+h δvn

E +
vn

E secL tanL
RN+h δL− vn

E secL
(RN+h)2 δh

δvn
U

 ,
(38)

where [ φφφT δVVV nT δPPPT ]T represent misalignment an-
gle, velocity error and position error in navigation frame
respectively, δVVV = [ δvn

E δvn
N δvn

U ]T represent veloc-
ity error in the navigation frame, and the subscript E, N
and U represent east, north and upward axis projections.
The scale bias and the installation error of gyros and ac-
celerometers are ignored. The accelerometer error con-
sists of white Gaussian noise and the accelerometer bias
error, which is assumed as a random constant. The gyro-
scope error consists of white Gaussian noise and the gyro-
scope bias error, which is assumed as a random constant.
The error equation for the SINS is given in (39):

xxxINS(k+1) =FFF INS(k)xxxINS(k)+GGGINS(k)www(k), (39)

where xxxINS(k) is the state vector of the system, FFF INS(k)
is the system vector matrix, www(k) is system noise and
GGGINS(k) is the noise coefficient matrix. xxxINS is defined as

xxxINS =
[

φφφT δVVV nT δPPPT εεεbT ∇bT ]T
,

where εεε is gyroscope bias and ∇ is accelerometer bias.

3.2.2 Measurement error model
The first local filter is SINS/GPS loosely coupled sys-

tem. The error propagation model of the SINS/GPS
loosely coupled system can be formed from the differen-
tial equations of the navigation error [21, 22]. The mea-
surement error model can be determined from the GPS po-
sition information ([LGPS λGPS hGPS]

T ) obtained from the
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GPS receiver and the navigation solutions obtained from
the SINS ([SINS λSINS hSINS]

T ). A time delay ∆t is assumed
to exist in addition to the GPS position information to ob-
tain the measurement error model. The ignored term can
be considered as measurement noise.

zzz1(t)

=

 [LSINS(t)−LGPS(t −∆t)](Rm +hSINS)
[λSINS(t)−λGPS(t −∆t)](Rm +hSINS)cos(LSINS)

−[hSINS −hGPS(t −∆t)]


=

 δ pE(t)+ vGPSE(t)∆t + pmE(t)
δ pN(t)+ vGPSN(t)∆t + pmN(t)
δ pU(t)+ vGPSU(t)∆t + pmU(t)

 , (40)

where ([vGPSE vGPSN vGPSU ]
T ) is the velocity provided by

GPS, and ([pmE pmN pmU ]
T ) is the measurement noise.

Velocity values calculated from INS can replace GPS ve-
locity values when they are not available from the receiver.

3.3. SINS/Odometer integration system
The second local filer contains SINS and odometer,

which constitute a dead-reckoning (DR) system. Veloc-
ity output by IMU and odometer is utilized to calculate
the relative location of the vehicle. Odometer outputs dis-
tance increment during a small period of the vehicle. The
dead-reckoning algorithm contains position updating and
attitude updating. Suppose the odometer frame (m) coor-
dinates with the vehicle body frame (b), then the veloc-
ity of the vehicle can be obtained from the output of the
odometer

vvvn
D(k) =CCCn

Db(k)
[

0 ∆S(k)/TD 0
]T

, (41)

where vvvn
D(k) is the velocity vector at time tk; CCCn

Db(k) is the
attitude matrix from body frame to the navigation frame at
time tk; ∆S(k) is the odometer distance increment during
the sampling period and TD is the odometer output sam-
pling time.

Take the odometer scale factor error and the attitude
matrix error into consideration, the actual vehicle veloc-
ity v̂vvn

D can be written as follows:

v̂vvn
D =ĈCC

n
Dbv̂b

D =CCCn′
n CCCn

Db(1+δkD)vvvb
D

=(I − (ϕD×))CCCn
Db(1+δkD)vvvb

D, (42)

where ĈCC
n
Db is the attitude matrix determined by the dead-

reckoning updating; δkD denotes the error of the odome-
ter scale factor and (ϕD×)is the skew symmetric matrix of
attitude error in navigation frame. Expand (42) and elimi-
nate the products of error quantities yield

v̂vvn
D = vvvn

D +δkDvvvb
D − (ϕD×)vvvb

D, (43)

where vvvn
D =CCCn

Db[ 0 vvvD 0 ]T , and vvvD is the vehicle ve-
locity in the body frame. Subtract vvvn

D from both sides of
(43) yields

δvvvn
D = δkDvvvn

D − (ϕD×)vvvn
D, (44)

where δvvvn
D denotes v̂vvn

D −vvvn
D.

The position updating algorithm is of the same form as
that of the SINS position algorithm, and its discrete form
is given as follows:

LD(k) = LD(k−1)+
∆SDN(k)

RM +hD(k)
,

λD(k) = λD(k−1)+
∆SDE(k)secLD(k−1)

RN +hD(k−1)
,

hD(k) = hD(k−1)+∆SDU(k),

(45)

where LD, λD and hD are the dead-reckoning latitude, lon-
gitude and altitude; ∆SDE , ∆SDN and ∆SDU are the odome-
ter distance increment in the east, north and upward, re-
spectively. The position error equation of the odometer
dead-reckoning system is as follows:

δ ṗppD =MMMD1(vvvn
D×)ϕD +MMMD2δ pppD +MMMD1vvvn

DδkD, (46)

where

vvvn
D = [ vDE vDN vDU ]T ,

δ pppD = [ δLD δλD δhD ]T .

MMMD1 and MMMD2 are respectively given by

MMMD1 =

 0 1/(RM +hD) 0
secLD/(RN +hD) 0 0

0 0 1

 ,
MMMD2 =

 0
vDE secLD tanLD/(RN +hD)

0

0
0
0

−vDN/(RM +hD)
2

−vDE secLD/(RN +hD)
2

0

 .
The attitude error equation can be written as

ϕ̇D =[MMMD3(vvvn
D×)− (ωωωn

in×)]ϕD

+MMMD4δPPPD +MMMD3vvvn
DδkD −CCCn

Dbεεεb, (47)

where εεεb is the gyro drift rate vector; MMMD3 and MMMD4 are
given by

MMMD3 =

 0 −1/(RM +hD) 0
1/(RN +hD) 0 0

tanLD/(RN +hD) 0 1

 ,
MMMD4 =

 0
−ωie sinLD

ωie cosLD + vDE sec2 LD/(RN +hD)

0
0
0

vDN/(RM +hD)
2

−VDE/(RN +hD)
2

−VDE tanLD/(RN +hD)
2

 .
As the dead-reckoning error equations given above and

the SINS error equation in Section 3.2.1, the state model
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can be written in matrix form. The state and measurement
model can be given in matrix form by{

ẊXX2(t) =FFF2(t)XXX2(t)+WWW 2(t),

ZZZ2(t) =HHH2(t)+VVV 2(t),
(48)

where XXX2 =
[

δ pppT δvvvnT φφφT εεεbT ∇bT δ pppT
D φφφT

D δkD
]T

is the state vector, δPPP, δVVV and φφφ are the estimated po-
sition error, velocity error and attitude error of SINS,
respectively; εεεb is gyroscope bias and ∇b is accelerom-
eter bias denoted in the b-frame; δ pppT

D, φφφT
D are the dead-

reckoning position error and attitude error vectors; δkD

denotes the error of the odometer scale factor. WWW 2(t) is
the processing noise vector; FFF2(t) and HHH2(t) are the state
transition matrix and measurement matrix. The obser-
vations ZZZ2 =

[
vSE − vDE vSN − vDN vSU − vDU

]T is
the deviation of velocity between SINS and the odome-
ter dead-reckoning, where vSE , vSN , vSU and vDE , vDN ,
vDU are the velocity vectors of SINS and odometer dead-
reckoning on navigation frame, respectively, the subscript
E, N, U represent east, north and upward axis projections.

3.4. Global fusion algorithm
After completing the computations of the two parallel-

processing local AIMM filters, two local optimal state
estimations x̂xxi(k) (i = 1, 2) can be obtained and further
fused by the global filter. In the global filter, we com-
pute a weighted combination of updated state estimates
produced by the two local filters yielding a final estimate
x̂xxg(k). The weights are chosen according to the error vari-
ances Pi(k)(i=1, 2) of the two local filters.

x̂xxg(k) = Pg(k)
2

∑
i=1

P−1
i (k)x̂xxi(k), (49)

Pg(k) =

(
2

∑
i=1

P−1
i (k)

)−1

. (50)

For the no-reset mode federated Kalman filter, the
global filter retains none of the fused information, while
the local filters collectively retain all of the local infor-
mation. This no-reset design is highly fault tolerant and,
therefore, provides excellent performance for failure de-
tection and isolation because the local filters operate in-
dependently of each other. While the GPS signal is avail-
able, the global fusion is used to calibrate the IMU and
the odometer. When there is GPS signal failure, the first
local filter is disabled and pure inertial navigation assisted
by odometer is performed till the GPS signal is once again
available.

4. EXPERIMENTS AND RESULTS

A field test has been carried out to evaluate the proposed
scheme in terms of its efficacy at the proposed integrated
navigation systems shown in Fig. 3.

Fig. 3. Experimental vehicle system.

A low-cost IMU and navigation grad SINS/GPS were
mounted in the centre of vehicle. The navigation grad
SINS/GPS, an integrated navigation system consisting of
GPS receiver and a navigation grade IMU, was used to
provide precise reference solution. The test GPS antennae
with receiver were mounted on the roof of vehicle. Opti-
cal odometer was mounted at the back of the vehicle. The
raw inertial data from the low-cost IMU were collected
at 200 Hz for integration process. Velocity measurement
from odometer, position and velocity measurement from
test GPS and navigation solution position, velocity and at-
titude from reference systems were also stored in the file
at 1 Hz for post processing and comparison purpose. The
raw inertial data was collected from low-cost IMU is post
processed in MATLAB environment. A road test trajec-
tory was carried out using the setup described above in
downtown Beijing. It had a lot of degraded GPS perfor-
mance because of either severe signal reflection without
a direct line of sight or complete blockage. In the tra-
jectory the vehicle undergoes consecutive turns, acceler-
ations and decelerations. In this paper, the federated ex-
tend Kalman filter (EKF) and federated IMM algorithm
described in [6, 13, 23] were compared with the proposed
federated AIMM methodology for the road test trajecto-
ries.

To identify noise with unknown or randomly varying
statistics properties in the actual situation, selection of
process noise covariance matrix, measurement noise ma-
trix, model transition probability is crucial. For each of the
two local AIMM filters in the federated filter, the effective
models change among three models based on the Markov
transition matrix. The transition values are obtained on
the basis of statistics on the system evolution. The initial
Markov transition probability π ji is described as follows:

π ji =

{
0.95, i = j,

(1−0.95)/2, i ≠ j.
(i, j = 1,2,3).

In the federated filter, the process noise covariance ma-
trices QQQ1 and QQQ2 are regarded as constant. The mea-
surement noise matrices RRR1 and RRR2 are assumed vari-
ables in the dynamic system. In the SINS/GPS local
filter, the initial measurement noise matrix of is set as
RRR1 = diag

[
10 m 10 m

]2 and the measurement noise
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Fig. 4. Trajectory of the test vehicle.

matrices in the three parallel filters are set as RRR1, 9RRR1

and 25RRR1, respectively. In the SINS/Odometer local fil-
ter, the initial measurement noise matrix of is set as RRR2 =
diag

[
0.05 m/s 0.05 m/s

]2 and the measurement noise
matrices in the three parallel filters are set as RRR2, 4RRR2 and
8RRR2, respectively. To compare with the federated IMM
filter, the same model set is selected for federated AIMM
method. In the federated EKF, the measurement noise ma-
trices of the two filters are set as RRR1 and RRR2.

The trajectory and estimates using federated EKF, fed-
erated IMM and federated AIMM are shown in Fig. 4.
This road test was performed for 500 seconds of contin-
uous vehicle navigation. Figs. 5, 6 and 7 illustrate the
performance of the three solutions in terms of attitude, ve-
locity and position errors.

Fig. 5 depicts the attitude estimation errors. It can be
seen that the pitch and roll estimation error decreased sig-
nificantly at the beginning by all the three solutions. The
yaw estimation error converges to the referenced value.
However, the standard deviation (STD) of yaw estima-
tion error is obviously larger than that of the pitch and
roll estimation error. The results coincide with the ob-
servability analysis presented in [24]. The attitude track-
ing performance of federated IMM and federated AIMM
is better than the federated EKF. The result indicates that
the performance of the federated EKF depends highly on
the magnitude of the measurement noise variance. On the
other hand, the multiple model federated filters provide
higher performance in estimating the yaw and are more
stable than the federated extend Kalman filter when large
errors exist in the measurement values.

As can be seen from the Fig. 6, the horizontal velocity
estimates converge to the value of reference by the three
algorithms. The STDs of velocity estimation error by the
federated EKF are larger than those by another two algo-
rithms. The proposed federated AIMM filter and federated
IMM filter have bounded estimate errors. It can be indi-

(a) The pitch angle error.

(b) The roll angle error.

(c) The heading angle error.

Fig. 5. Attitude estimation errors.
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(a) East velocity error.

(b) North velocity error.

Fig. 6. Velocity estimation error curves.

cated that the multiple model based federated filters can
provide a more robust estimate than single model based
federated filters.

Fig. 7 shows the longitude and latitude estimation errors
using the three solutions. The performances of longitude
and latitude estimate of federated EKF, federated IMM fil-
ter and the proposed federated AIMM filter have similar
features in comparison with the performances of the ve-
locity estimate. For the performance comparison among
the three solutions, the root-mean-square error (RMSE) of
horizontal-axis position is defined as

RMSEpos =

√√√√ 1
T

T

∑
tk=1

(errL(tk)2 + errλ (tk)2), (51)

where errL and errλ mean longitude error and latitude er-

(a) The latitude error.

(b) The longitude error.

Fig. 7. Longitude and latitude estimation error curves.

ror, respectively. T is the total navigation time of the vehi-
cle. A total of five groups of data were post processed by
federated EKF, federated IMM and federated AIMM. The
RMSEs are plotted in Fig. 7.

As can be seen from Fig. 8, the horizontal-axis position
RMSE estimated by federated EKF is the largest, and esti-
mation by federated IMM is the second largest in RMSE.
The federated AIMM has smallest RMSE. For the total
five groups of test data, the federated EKF shows the aver-
age RMSE of 14.12 m, federated IMM shows 11.23 m and
the proposed federated AIMM shows 8.55 m. We confirm
that the multiple model based federated methods show
better performance than federated EKF. As expected, the
position error of the federated AIMM is smaller than that
of the federated IMM. From Figs. 5 through 8, the po-
sition, velocity and attitude errors increase for the feder-
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Fig. 8. RMSEs of five groups of test data.

ated EKF when the measurements have large position er-
rors, but the error does not increase or increases by only a
small amount for the two federated multiple model based
filters. The process of innovation correction is utilized to
get more accurate innovation for each parallel filter, so the
tracking performance of the AIMM is better than that of
the traditional IMM.

5. CONCLUSIONS

The major contribution of the proposed AIMM al-
gorithm is the integration of inertial navigation system,
global positioning system and odometer navigation sys-
tem in multi-sensor data fusion formalism for land vehicle
applications. It is utilized to solve the problem of paral-
lel computing and fault-tolerant in the integrated naviga-
tion system. The performance of the proposed integrated
navigation solution is demonstrated to be very competitive
for vehicle navigation with low-cost sensors. This solu-
tion can be used in all environments including degraded
GPS environments, which routinely occur in urban and
rural canyons. The method has been verified on road tests
in downtown scenarios. The results have been examined
to verify the suitability and satisfactory performance of
the proposed solution in downtown trajectories with de-
graded GPS and unusual maneuvers. The preliminary re-
sults showed the effectiveness of the proposed strategies.

REFERENCES

[1] D. Huang, H. Leung, and N. El-Sheimy, “Expectation max-
imization based GPS/INS integration for land-vehicle nav-
igation,” IEEE Trans. Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 1168-1177, July 2007. [click]

[2] A. Angrisano, S. Gaglione, and C. Gioia, “Performance
assessment of aided global navigation satellite system for
land navigation,” IET Radar, Sonar and Navigation, vol. 7,
no. 6, pp. 671-680, July 2013.

[3] L. Wang and X. Cheng, “Algorithm of gaussian sum filter
based on high-order UKF for dynamic state estimation,”
International Journal of Control Automation and Systems,
vol. 13, no. 3, pp. 652-661, June 2015. [click]

[4] M. Malleswaran, V. Vaidehi, and S. Irwin, “IMM-UKF-
TFS model-based approach for intelligent navigation,”
Journal of Navigation, vol. 66, no. 6, pp. 859-877, July
2013. [click]

[5] N. A. Carlson, “Federated filter for fault-tolerant inte-
grated navigation systems,” Position Location and Navi-
gation Symposium, pp. 110-119, 1988.

[6] M. J. Yu, “INS/GPS integration system using adaptive filter
for estimating measurement noise variance,” IEEE Trans.
Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1786-
1792, April 2012. [click]

[7] H. A. P. Blom and Y. Bar-Shalom, “The interacting multi-
ple model algorithm for systems with Markovian switching
coefficients,” IEEE Trans. Automatic Control, vol. 33, no.
8, pp. 780-783, August 1988. [click]

[8] X. R. Li, “Multiple-model estimation with variable struc-
ture. II. Model-set adaptation,” IEEE Trans. Automatic
Control, vol. 45, no. 11, pp. 2047-2060, November 2000.
[click]

[9] D. Dunne and T. Kirubarajan, “Multiple model multi-
Bernoulli filters for manoeuvering targets,” IEEE Trans.
Aerospace and Electronic Systems, vol. 49, no. 4, pp. 2679-
2692, October 2013. [click]

[10] J. S. Evans and R. J. Evans, “Image-enhanced multiple
model tracking,” Automatica, vol. 35, no. 11, pp. 1769-
1786, November 1999. [click]

[11] N. Meskin, E. Naderi, and K. Khorasani, “A multiple
model-based approach for fault diagnosis of jet engines,”
IEEE Trans. Control Systems Technology, vol. 21, no. 1,
pp. 254-262, January 2013. [click]

[12] P. Oliveira, “MMAE terrain reference navigation for under-
water vehicles using PCA,” International Journal of Con-
trol, vol. 80, no. 7, pp. 1008-1017, December 2007.

[13] R. C. Zang, P. Y. Cui, H. T. Cui, and Y. Jin, “Integrated
navigation algorithm based on IMM-UKF,” Control Theory
and Applications, vol. 24, no. 4, pp. 634-638, August 2007.

[14] T. L. Xu, P. Y. Cui, and H. T. Cui, “Research on algorithm
of adaptive interacting multiple model for integrated nav-
igation system,” System Engineering and Electronics, vol.
30, no. 11, pp. 2070-2074, November 2008.

[15] Y. Liang, Q. Pan, D. H. Zhou, and H. C. Zhang, “Adap-
tive multiple model filter using IMM and STF,” Chinese
Journal of Aeronautics, vol. 13, no. 3, pp.167-171, August
2000.

[16] P. Quan, W. Peide, and Z. Hongren, “Innovation filter and
its application to the IMM algorithm using Zhou model,”
Proc. of International Conference on Circuits and Systems,
pp. 801-804, 1991.

http://dx.doi.org/10.1109/TAES.2007.4383607
http://dx.doi.org/10.1007/s12555-014-0114-4
http://dx.doi.org/10.1017/S0373463313000404
http://dx.doi.org/10.1109/TAES.2012.6178100
http://dx.doi.org/10.1109/9.1299
http://dx.doi.org/10.1109/9.887626
http://dx.doi.org/10.1109/TAES.2013.6621845
http://dx.doi.org/10.1016/S0005-1098(99)00086-2
http://dx.doi.org/10.1109/TCST.2011.2177981


Enhanced Multi-sensor Data Fusion Methodology based on Multiple Model Estimation for Integrated Navigation ... 305

[17] S. Haykin and L. Liang, “Modified Kalman filtering,” IEEE
Tans. Signal Processing, vol. 27, no. 1, pp. 1239-1242,
May 1994. [click]

[18] J. H. Lee, K. C. Kwon, D. S. An, and D. S. Shim, “GPS
spoofing detection using accelerometers and performance
analysis with probability of detection,” International Jour-
nal of Control Automation and Systems, vol. 13, no. 4, pp.
951-959, August 2015.

[19] R. M. Roger, Applied Mathematics in Integrated Naviga-
tion Systems, American Institute of Aeronautics and Astro-
nautics, Reston, 2003.

[20] S. B. Kim, J. C. Bazin, H. K. Lee, and K. H. Choi, “Ground
vehicle navigation in harsh urban conditions by integrat-
ing inertial navigation system, global positioning system,
odometer and vision data,” IET Radar, Sonar and Naviga-
tion, vol. 5, no. 8, pp. 814-823, November 2011. [click]

[21] D. H. Titterton and J. L. Weston, Strapdown Inertial Nav-
igation Technology Second Edition, American Institute of
Aeronautics and Astronautics, Reston, 2004.

[22] Y. Ma, J. Fang, W. Wang, and J. Li, “Decoupled observabil-
ity analyses of error states in INS/GPS integration,” Jour-
nal of Navigation, vol. 67, no. 3, pp. 473-494, May 2014.
[click]

[23] A. Ndjeng, D. Gruyer, S. Glaser, and A. Lambert, “Low
cost IMU-Odometer-GPS ego localization for unusual ma-
neuvers,” Information Fusion, vol. 12, no. 4, pp. 264-274,
January 2011.

[24] S. Hong, H. L. Man, H. H. Chun, S. H. Kwon, and J. L.
Speyer, “Observability of error states in GPS/INS integra-
tion,” IEEE Trans. Vehicular Technology, vol. 54, no. 2,
pp.731-743, March 2005. [click]

Lei Wang received the Ph.D. degree in
control science and engineering from
Southeast University, China, in 2015. He
is currently a lecturer at Anhui Science
and Technology University. His research
interests include nonlinear filtering and
estimation, sensor fusion, and statistical
signal processing.

Shuangxi Li received his M.S. degree in
electronics and communication engineer-
ing from Nanjing University of Posts and
Telecommunications, China, in 2010. He
is currently an associate professor at Anhui
Science and Technology University. His
research interests include nonlinear opti-
mal control theory and nonlinear filtering.

http://dx.doi.org/10.1109/78.295192
http://dx.doi.org/10.1049/iet-rsn.2011.0100 · Source:IEEE Xplore
http://dx.doi.org/10.1017/S0373463313000829
http://dx.doi.org/10.1109/TVT.2004.841540

