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A Simple Method to Design Robust Fractional-order Lead Compensator
Sharad P. Jadhav*, Rajan H. Chile, and Satish T. Hamde

Abstract: This paper proposes a generalized and simple analytical method to design robust fractional-order lead
compensator (FOLC). The aim of the proposed fractional-order compensator is to adjust the system’s Bode phase
curve to achieve the required phase margin at a specified frequency. The structure selected in this paper is more
generalized and novel. It is easy to implement for a real world application. The method proposed is frequency
domain and parameters of fractional compensator are selected from the plant information and specifications. This
FOLC satisfies the specifications on static error constant, Kss, gain crossover frequency, ωc and phase margin, φm.
The applicability of the proposed method is demonstrated with illustrative examples. From the simulation results
obtained, it is observed that FOLC gives robust and stable performance as compared to existing FOLC and integer-
order lead compensator (IOLC).

Keywords: Fractional calculus, fractional-order lead compensator, fractional-order system, integer-order lead com-
pensator, robust performance.

1. INTRODUCTION

Fractional calculus is a three centuries old field of ap-
plied mathematics. It is a generalization of the ordinary
differentiation and integration to non-integer orders (in-
cluding complex-orders) [1]. It can be considered as the
super set of integer-order calculus. Fractional calculus is
also known as "Generalized Integral and Differential cal-
culus" and sometimes "Calculus of Arbitrary Order". Re-
search community in most of the fields of science, engi-
neering and mathematics found worth to give importance
to fractional calculus [2–7]. Fractional derivatives are best
suitable for understanding an increasing number of phys-
ical, biological, economical, social phenomena and other
fields. It is extensively used for modeling and analysis in
the areas of viscoelasticity, electrical engineering, electro-
chemistry, biology, biophysics and bioengineering, signal
and image processing, mechanics, mechatronics, physics,
and control theory. It has been proved that the use of frac-
tional calculus in modeling provides detailed description
and deeper insight of natural and man-made systems. The
extension of non-integer order controllers to fractional or-
der shows improved performance [8–12].
The control system theory can include either the FO dy-
namic system to be controlled or the FO control or both
[4, 11]. Flexibility in the design and guaranteed robust
closed-loop performance, are its attractive features. The
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introduction of transient and frequency response of the
non-integer integral/derivative and its application to con-
trol is reported in [2]. Various structures of FO con-
trollers are reported in the literature [8, 10]. A PIλ Dµ

controller, involving an integrator of order λ and a dif-
ferentiation of order µ (λ ,µ ∈ R) is proposed in [9] and
shown that this FO controller gives better performance as
compared to classical PID controller for the given FO sys-
tem. FO control algorithms and performance superiority
of the CRONE(Commaande Robuste d’Ordre Non Entier)
method over the PID controller is presented in [13]. A
frequency domain approach of designing fractional-order
PID controllers is also studied in [14]. Research is pro-
gressing to develop new tuning rules for fractional-order
controller (FOC) [10]. Four representatives of FOC in
the literature [11] are, TID (tilt-integral-derivative) con-
troller [15], CRONE generation controller [13], PIλ Dµ

controller [9] and fractional-order lead-lag compensator
[10]. From application point of view lead-lag compen-
sator is known as controller next to PID.

This paper presents simple design methodologies for
FOLC. In the literature, it is observed that compensator
design methods are categorized as graphical which are
trial-error methods and analytical methods. Graphical ap-
proaches are popular due to their simplicity, particularly
when plant models are unknown and only experimental
data is available [16]. Graphical methods modify the mag-
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nitude curve of the Bode plot, moving the gain crossover
frequency, ωc to the right and resulting in decrease in the
obtained phase margin. In order to maintain the specified
phase margin, this phase lag must be compensated by in-
creasing phase angle. The designed compensator should
be able to provide more phase. Another approach is ana-
lytical and can be carried out by computer programs which
provides the basis for a more sophisticated design and per-
formance analysis. A simple method for finding analyti-
cal solutions to lag/lead cascade and general second-order
compensation design problems in the frequency domain
are given in [12,16,17] for integer-order (IO) system. Var-
ious analytical and graphical methods for the synthesis of
lead-lag compensators that achieve design specifications
on the phase margin and the gain crossover frequency are
given in [10, 18, 19]. Analytical methods can be used for
the design of IO compensator in order to guarantee de-
sired φm at specified ωc. The FOLC structure proposed by
[10] is difficult for real time implementation and only few
methods are available to obtain its integer-order approxi-
mation [3]. The highlights of this paper are:

• A simple method is proposed for generalized IO and
FO plant structures.

• The method is flexible and parameters of FOLC are
selected from the plant information and specifica-
tions.

• The FOLC structure considered is generalized and
novel.

• There are several approximation techniques available
for the term sα in the proposed FOLC and it has
been successfully implemented using various com-
mon hardware platforms like DSP, FPGA, Micro-
controller, PLC, etc.

• Simulation results obtained, shows that proposed
FOLC gives robust and stable performance as com-
pared with existing FOLC and integer-order lead
compensator (IOLC).

The organization of this paper is as follows: Some pre-
liminary concept of linear fractional-order system and its
stability are introduced in Section 2. In Section 3, FOLC
problem formulation and the design steps are discussed.
The applicability of the proposed method is demonstrated
by illustrative design examples and simulation results in
Section 4. Conclusion is given in Section 5.

2. PRELIMINARY

The history of fractional calculus (also known as non-
integer calculus) begin at the end of the 17th century [8].
From the last couple of decades, the non-integer calcu-
lus has emerged as a powerful mathematical tool and very
popular in the research community of almost all the fields
of science and engineering [2–7]. It is generalization of
the conventional calculus to real or complex orders [33].

Formally the real order generalization is introduced as
follows:

Dα =


dα

dtα α > 0
1 α = 0∫ t

a(dτ)−α α < 0

with α ∈ R. Some common definitions of fractional
derivative and integrals are listed as follows :

(i) Riemann-Liouville:
Integral:

Jα
c f (t) =

1
Γ(α)

∫
c

t f (τ)
(t − τ)1−α dτ, (1)

where α ∈ R+ and Γ(α) is Gamma of α .
Derivative:

Dα f (t) =
dm

dtm

[
1

Γ(m−α)

∫
0

t f (τ)
(t − τ)α+1−m dτ

]
, (2)

where, m ∈ Z+, m is an integer, α ∈ R+ and (m− 1) <
α < m.

(ii) Grunwald-Letnikov:
Integral:

D−α = lim
h−→0

hα
(t−a)/h

∑
m=0

Γ(α +m)

m!Γ(α)
f (t −mh). (3)

Derivative:

Dα = lim
h−→0

1
hα

(t−a)/h

∑
m=0

(−1)m Γ(α +1)
m!Γ(α −m+1)

f (t −mh).

(4)

(iii) Caputo:

Dα f (t) =
1

Γ(m−α)

∫
0

t f m(τ)
(t − τ)α+1−m dτ, (5)

where (m−1)< α < m, and f m(.) is the mth derivative of
f (t) with respect to time.

2.1. Fractional-order system
The fractional calculus has been successfully applied

for most of the engineering problems related to electronic
circuits, chaotic, hyperchaotic systems, biological system
and economics [5, 6]. With the help of today’s high-
performance computing in this powerful tool has solved
many problems in electrical circuits, filters, oscillators,
memristor elements, Liu chaotic and hyperchaotic sys-
tems, chaos control, and the synchronization of fractional-
order chaotic systems [37]. The design of FO controller
has been of interest to many researchers. In fact classical
integer-order PID controllers represent a special case of
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Fig. 1. Block diagram of closed-loop FO system.

fractional-order PID. Most of the classical control strate-
gies are generalised and some new novel control strategies
are also developed. FO controllers have been applied to a
variety of processes which further enhance the robustness
and performance.

The continuous-time transfer function of fractional-
order (FO) system is of the form:

Y (s)
R(s)

=
bmsβm +bm−1sβm−1 + ...+b0sβ0

ansαn +an−1sαn−1 + ...+a0sα0
, (6)

where where, αn ⩾ βm, αn ∈ R and βm ∈ R.
Fig. 1 represents the block diagram of a general closed-

loop system. Y (s) and R(s) are the Laplace transforms of
the output y(t) and input r(t). G(s) is the system trans-
fer function and C(s) is the controller/compensator with
unity feedback component H(s) = 1. Polynomials in (6)
are pseudo-polynomials with fractional-orders [21].

2.2. Stability of FO system using Riemann surfaces
The stability of FO systems can be studied by obtaining

the solution of FO differential equations that characterize
the system [4]. The characteristic equation is given by,

ansαn +an−1sαn−1 + ...+a0sα0 = 0. (7)

The pseudo-polynomials in (7) is a multi-valued func-
tion whose domain can be seen as a Riemann surface
with number of sheets. The principal sheet is defined by
−π < arg(s)< π . In the case of αi ∈ Q+, that is αi = 1/v,
v being a positive integer and there are v sheets of the Rie-
mann surface. The angels of Riemann surface are calcu-
lated by (7),

s =| s | e jϕ ,(2k+1)π < ϕ < (2k+3)π, (8)

k =−1,0, ...,v−2,

where j =
√
−1 and k = −1 is the principal Riemann

sheet. These sheets are transformed to another plane
called w-plane with the relation w = sα [28]. The regions
of these sheets on the w-plane [4, 36, 37] are,

w =| w | e jθ ,α(2k+1)π < θ < α(2k+3)π, (9)

where, k =−1,0, ...,v−2.
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Fig. 2. Stability regions in w-plane [20].

In general (7) is not a polynomial and it will have an in-
finite number of roots and only a finite number of roots
will be on the principal sheet of the Riemann surface. The
roots which are in the secondary sheets of the Riemann
surface are iso-damped as shown in Fig. 2. The only
roots that are in the principal sheet of the Riemann surface
are responsible for a dynamic behaviour like damped os-
cillation, oscillation of constant amplitude and oscillation
of increasing amplitude. For the case of systems, whose
characteristics equation is a polynomial of the complex
variable w = sα the stability condition is expressed as [8],

| arg(wi) |>
απ
2

, (10)

where wi are the roots of the characteristic polynomial in
w. For the particular case of α = 1, the well known sta-
bility condition for linear time-invariant systems is recov-
ered,

| arg(wi) |>
π
2
. (11)

2.3. Compensator structure
The primary function of a compensator is to reshape

phase curve of a system and provide phase lead angle to
achieve the required phase margin at a specified frequency
[23].

The available lead compensator structures are as fol-
lows:

Integer-order Lead Compensator (IOLC) : It consists
of a gain, one pole and one zero. The traditional struc-
ture given by [23] is:

C(s) = kc

(
s+ 1

λ
s+ 1

xλ

)
= kcx

(
λ s+1
xλ s+1

)
. (12)

Here, kc is the gain of compensator, 1
λ - is the zero

frequency, 1
xλ - is the pole frequency, and x < 1 to

achieve the phase lead.
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Fractional-order Lead Compensator (FOLC) : The
conventional compensator structure is modified by
introducing a new parameter α . FO compensator
structures observed in the literature are:

FOLC proposed by [10] :

C(s) = kc

(
s+1/λ
s+1/xλ

)α

(13)

= kcxα
(

λ s+1
xλ s+1

)α

. (14)

Here α is the fractional term and indicates the
order of compensator.

FOLC structure explored in this paper is :

C(s) = kc

(
sα +1/λ
sα +1/xλ

)
, (15)

= kcx
(

λ sα +1
xλ sα +1

)
, (16)

where, 0 < x < 1 and 0 ≤ α ≤ 2.
The compensator structure (13) proposed by [8, 10] is

difficult to realize and only few methods are available to
obtain its IO approximation. The FOLC structure (15) is
not extensively used in the literature. This (15) is more
generalized and a factor sα can be easily approximated by
existing approximation techniques and implemented using
common hardware’s like DSP, FPGA, Micro-controller,
PLC, etc. for real world applications.

This paper proposes a simple analytical method to de-
sign a more generalized FOLC as given in (15). This fre-
quency domain method is flexible and compensator pa-
rameters are selected from the plant information and spec-
ifications. The specification like gain cross over frequency
and phase margin can be provided easily as compared to
compensator (13).

3. FOLC PROBLEM FORMULATION

A proposed method to design FOLC is discussed in this
section. In the selected compensator structure (15), the
value of the compensator gain k′ = kcx can be set in or-
der to fulfill the static error constant specification for the
compensated system. For a general plant model of the
form (system type n) [10],

G(s) =
k ∏i(τis+1)

sn ∏ j(τ js+1)
, (17)

where, n ∈ R. The generic structure (17) of the system
with n poles at origin is considered for design and analy-
sis. The expression for static error constant kss is:

kss = lim
s→0

[snC(s)G(s)], (18)

= lim
s→0

[
snk′

(
λ sα +1
xλ sα +1

)
k ∏i(τis+1)

sn ∏ j(τ js+1)

]
, (19)

=k′k. (20)

That is,

k′ = kcx =
kss

k
. (21)

By this much amount of gain i.e k′, FOLC can fulfill the
static error constant specification.
Now for a given phase margin at gain cross over fre-
quency, the open loop transfer function becomes,

C( jω)G( jω) |ω=ωc= e j(−π+ϕm). (22)

Replacing C( jω) given by (15) and evaluating at ω = ωc

we get,

G( jωc)kcx
(

λ ( jωc)
α +1

xλ ( jωc)α +1

)
= e j(−π+φm). (23)

After substitution and rearranging (23), we get(
λ ( jωc)

α +1
xλ ( jωc)α +1

)
=

e j(−π+φm)

kcxG( jωc)
. (24)

The right hand side of the (24) can be represented in com-
plex form as,(

λ ( jωc)
α +1

xλ ( jωc)α +1

)
= a+ jb, (25)

where a and b is real and imaginary part of right hand side
of (24). Let,

T = λ , V = xλ . (26)

Therefore, (25) becomes,

T ( jωc)
α +1

V ( jωc)α +1
= a+ jb. (27)

Replacing,

jα = cos(α
π
2
)+ j.sin(α

π
2
), (28)

and substituting in (27), we have,

1+T ωα
c [cos(απ/2)+ jsin(απ/2)]

1+V ωα
c [cos(απ/2)+ jsin(απ/2)]

= a+ jb. (29)

Separating real and imaginary parts,

(1+T ωα
c cos(απ/2))+ jT ωα

c sin(απ/2)
(1+V ωα

c cos(απ/2))+ jV ωα
c .sin(απ/2)

=

a+ jb. (30)

After rationalization and by equating real and imaginary
parts of (30), we get

a =
1+TV ω2α

c +(T +V )ωα
c cos(απ/2)

1+V 2ω2α
c +2V ωα

c cos(απ/2)
, (31)

b =
T ωα

c sin(απ/2)−V ωα
c sin(απ/2)

1+V 2ω2α
c +2V ωα

c cos(απ/2)
. (32)

To find the value of T and V , this can be simplified as,

T ωα
c cos(απ/2)+TV ω2α

c +V ωα
c cos(απ/2)(1−2a)
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−aV 2ω2α
c +1−a = 0, (33)

T ωα
c sin(απ/2)−V ωα

c sin(απ/2)−2bV ωα
c cos(απ/2)

−bV 2ω2α
c −b = 0. (34)

This (33) and (34) are solved using MATLAB R2013 to
obtain the values of T and V using different values of α .
The values of λ and x are obtained using (26), by keeping
necessary condition for lead compensator as,

0 < x < 1. (35)

Therefore, starting from lowest value of α , find the values
of λ and x and check whether 0 < x < 1. If the condition
is not satisfied, repeat with small increment in α till the
condition (35) gets satisfied.

It is clear that lower the value of α or x longer is the dis-
tance between the zero and pole of the compensator and
vice versa. The zero-pole distance will be the maximum
possible (minimum value of parameter x) and the phase
curve of the compensator is the flattest possible and also
variations in a frequency range centered at ωc will not pro-
duce a significant phase change as in integer-order cases,
thus improving the robustness of the system.
Design steps:
The procedure for designing a FOLC involves following
steps:

1. Select the desired design specifications (kss,φm,ωc).
2. Select the structure (15) :

C(s) = k′
(

λ sα +1
xλ sα +1

)
. (36)

3. From (21), determine gain k′ to satisfy the require-
ment on the given static error constant,

k′ = kcx =
kss

k
. (37)

4. Find the values of a and b using (24),

a+ jb =
e j(−π+φm)

k′G( jωc)
. (38)

5. Starting from the lowest value of α , find values T and
V by solving (33) and (34). This also gives values of
λ and x from (26).

6. Check the condition (35),

0 < x < 1. (39)

7. If condition is satisfied, terminate the algorithm. If
not satisfied then repeat step 5 with small increment
in α .

8. Plug all the parameter value in compensator (36) and
test its performance with plant.

4. DESIGN EXAMPLES

The applicability of the proposed method is presented
with illustrative examples. The considered examples are
popular control problems and well cited in the literature.

Example No. 1: Integer-order Plant Model
This section presents design of FOLC for a plant G(s) a
well known D.C. motor model given in [8, 10] ,

G(s) =
2

s(0.5s+1)
. (40)

At the gain crossover frequency, ωc = 10 rad/sec, plant
has a magnitude of −28.1188 dB and a phase of −169.65
deg. Following design specifications are selected as given
in [10],

• Velocity error constant, kv = 20.
• Gain crossover frequency, ωc = 10 rad/sec.
• Phase margin, φm = 0.277π = 50 deg.

Solution:

1. Selected structure of FO compensator (36).
2. The gain k′ can be obtained by substituting in (21),

k′ =
kv

k
=

20
2

= 10. (41)

3. From (24) the values of a and b obtained are,

a+ jb =
e j(−π+0.277π)

10G( j10)
, (42)

= 1.9900+ j1.5937. (43)

Therefore,

a = 1.9900, b = 1.5937. (44)

4. Solving (33) and (34) for the different values of α
with condition (0 < x < 1) and it is satisfied for α =
0.7. The values of T and V for α = 0.7 are,

T = 0.4125, V = 0.019851. (45)

(46)

From (26) we get,

λ = 0.4125, x = 0.0481. (47)

5. Finally the generalised structure FOLC is obtained as,

C1(s) = 10
(

0.4125s0.7 +1
0.019851s0.7 +1

)
. (48)

For the same plant FOLC compensator cited in the lit-
erature [10] is:

C2(s) = 10
(

0.6957s+1
0.002123s+1

)0.48

. (49)
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Fig. 3. Bode plot of compensators for Example-1.

Fig. 4. Bode plot of plant with compensators for Example-1.

Again for same example, if the complete procedure is re-
peated with α =1, the integer-order compensator obtained
is,

C3(s) = 10
(

0.2829s+1
0.06211s+1

)
. (50)

The frequency response of compensators and compen-

sated system is discussed here. The Bode plot of IOLC
((50)- C3(s)-dotted line) and generalised FOLC ( (48) -
C1(s)-continuous line) and FOLC ( (49 )- C2(s)- dotted-
continuous line) [10] are shown in Fig. 3. The Bode plot
of the compensated systems are shown in Fig. 4. It is clear
that both the structures given in (13) and (15) satisfies the
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Table 1. Comparison of phase angle (ϕ deg) and phase margin (φm deg) of considered plant (40) with proposed FOLC,
FOLC proposed by [10]. and with IOLC.

Freq. Plant with C1(s) Plant with C2(s) Plant with C3(s)
(rad/sec) ϕ φm ϕ φm ϕ φm

5 -125.533 54.467 -122.989 57.011 -120.704 59.296
10 -130.000 50.000 -130.000 50.000 -130.000 50.000
15 -131.303 48.697 -132.708 47.292 -138.639 41.361
20 -132.085 47.915 -134.230 45.770 -145.478 34.522
25 -132.737 47.263 -135.264 44.736 -150.693 29.307
30 -133.348 46.652 -136.052 43.948 -154.686 25.315
35 -133.939 46.061 -136.698 43.302 -157.795 22.205
40 -134.517 45.483 -137.255 42.745 -160.264 19.737
45 -135.083 44.917 -137.753 42.247 -162.261 17.739
50 -135.637 44.363 -138.208 41.792 -163.905 16.095

condition and achieve the design specifications. However,
it must be noted that the IOLC (C3(s)) gives overphase
though the desired specifications are achieved. With the
fractional-order structure ((48) - C1(s)), phase curve of the
compensator is more flatter and variations in a frequency
range centered at ωc will not produce a significant phase
change. From Table 1 and Fig. 4 it should be noted that
phase variation (near gain crossover frequency) of plant
(40) with compensator (C1(s) - (48)) is lesser than plant
with compensator (C2(s) - (49)) and (C3(s) - (50)). Flatter
frequency response at ωc, results in the improved robust
performance.

Example No. 2: FO Model given by I. Podlubny
The proposed design method is also tested for FO model
of reheating-furnace system given by [3]:

G(s) =
1

0.8s2.2 +0.5s0.9 +1
. (51)

At the gain crossover frequency, ωc= 1.7028 rad/sec the
phase margin of the plant is 3.5977 deg. Following design
specifications are selected,

• Gain crossover frequency, ωc = 7.3 rad/sec.

• Phase margin, φm = 0.305π = 55 deg.

Solution:

1. Same procedure is followed with plant (51) and com-
pensator (36).

2. As there is no static error constant specification pro-
vided, for both IOLC and FOLC,

k′ = 1 (52)

3. From (24) the obtained values of a and b are,

a = 20.1283, b = 57.7756. (53)

4. By solving (33) and (34), the values of T and V for
α = 0.8 are

T = 12.431, V = 0.00119. (54)

From (26),

λ = 12.431, x = 0.0000104. (55)

5. Necessary condition of lead compensator (35) is sat-
isfied for αmin = 0.8.

6. The resulting fractional compensator (36) is,

C1(s) =
(

12.431s0.8 +1
0.00119s0.8 +1

)
, (56)

and integer-order compensator obtained is,

C2(s) =
(

8.8274s+1
0.04535s+1

)
. (57)

Bode plot of FOLC (56) and IOLC (57) are shown in
Fig. 5. It can be observed from Fig. 6 and Table 2 that
phase curve of the plant (51) with compensator (C1(s)
-(56)) is flatter than plant with (C2(s) -(57)). Variations in
the frequency range near ωc will not produce a significant
phase change and improves the robustness of the system.
The gain margin measured for plant without any compen-
sator is 2.46 dB and with compensator is 103 dB. Fig. 7
(A)- show root locus plot of plant (51), Fig. 7 (B)- show
root locus plot of plant with IOLC ((57)- C2(s)) and Fig.
7 (C)- show root locus plot of plant with FOLC ((56)-
C1(s)). From the Fig. 7 (C) it is clear that plant with
FOLC (C1(s)) is relatively more stable (stable for more
amount of gain) as compared to plant with IOLC (C2(s)).

Example No. 3: FO Integrating type Plant Model
Design method is also extended to FO integrating plant:

G(s) =
0.5

s2.5 +0.5s
. (58)
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Fig. 5. Bode plot of compensators for Example-2.

Table 2. Comparison of phase angle (deg) and phase margin (deg) of given plant (51) with FOLC (56) and with IOLC
(57).

Freq. Plant with FOLC C1(s) Plant with IOLC C2(s)
(rad/sec) Phase(ϕ) margin(φm) Phase(ϕ) margin(φm)

5 -123.8992 56.1008 -118.5371 61.4629
7.3 -125.0000 55.0000 -125.0000 55.0000
10 -125.6101 54.3899 -131.5534 48.4466
15 -126.1700 53.8300 -141.7632 38.2368
20 -126.4865 53.5135 -149.9110 30.0890
25 -126.7139 53.2861 -156.3787 23.6213
30 -126.8989 53.1011 -161.5292 18.4708
35 -127.0603 52.9397 -165.6697 14.3303
40 -127.2070 52.7930 -169.0397 10.9603
45 -127.3437 52.6563 -171.8186 8.1814
50 -127.4732 52.5268 -174.1396 5.8604

For this plant at gain crossover frequency, ωc = 0.8678
rad/sec, the phase margin is -7.1457 deg. Following de-
sign specifications are selected,

• Velocity error constant, kv = 10.

• Gain crossover frequency, ωc = 8 rad/sec.

• Phase margin, φm = 0.194π = 35 deg.

Solution:

1) Similar procedure is repeated for this plant.

2) For k′ = 10,

a = 6.7456, b = 34.9985. (59)

3) By solving (33) and (34) the values of T and V for
α = 0.9 are,

T = 5.464, V = 0.00088. (60)

λ = 5.464, x = 0.000161. (61)

4) Necessary condition (35) is satisfied for αmin= 0.9.
5) The final FOLC obtained is,

C1(s) = 10
(

5.464s0.9 +1
0.00088s0.9 +1

)
. (62)

and IOLC is,

C2(s) = 10
(

4.5132s+1
0.0205s+1

)
. (63)
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Fig. 6. Bode plot of plant with compensators for Example-2.

Fig. 7. Root locus plot of compensators for Example.2.

Bode plot of FOLC (62) and IOLC (63) are shown in
Fig.8. It is observed that the phase curve of the plant (58)
with FOLC ((62)-C1(s)) is flatter than with IOLC ((63)-
C2(s)). The variations in a frequency range near ωc will
not produce a significant phase change ( see Table 3 and
Fig. 9 ). The gain margin obtained for plant without com-
pensator is −2.01 dB, plant with IOLC (C2(s)) is 26.4 dB
and with FOLC (C1(s)) is 80 dB.

Fig. 10 (A) shows root locus of plant (58), Fig. 10 (B)-
root locus plot of plant with IOLC ((63)-C2(s)) and Fig.
10 (C)-root locus plot of plant with FOLC ((62)- C1(s)).
From Fig. 10 (C) it is clear that plant with FOLC (62) is
relatively more stable (stable for a larger gain interval) as
compared to plant with IOLC (63).
In the design specification, if required phase margin is in-
creased beyond 44 deg then it fails to fulfill the phase mar-
gin specification using IOLC. If it is designed for φm = 45
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Fig. 8. Bode plot of compensators for Example-3.

Fig. 9. Bode plot of plant with compensators for Example-3.

deg then it is unstable. The obtained IOLC for φm = 45
deg is,

IOLC = 10
(

4.4555s+1
−0.0037s+1

)
. (64)

Where as with the use of fractional structure it is possible
to design a stable FOLC for φm = 45 deg. The FOLC

obtained with same methodologies is,

FOLC = 10
(

3.5904s1.1 +1
0.0124s1.1 +1

)
. (65)

Discussion and Analysis
The paper presents a design method and simulation results
of novel FOLC for generalized IO and FO plant struc-
tures. The contribution of this paper is proved using exten-
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Table 3. Comparison of phase angle (deg) and phase margin (deg) of given plant (58) with FOLC (62)and with IOLC
(63).

Freq. Plant with FOLC C1(s) Plant with IOLC C2(s)
(rad/sec) Phase(ϕ) margin(φm) Phase(ϕ) margin(φm)

5 -144.7567 35.2433 -141.5253 38.4747
8 -145.0000 35.0000 -145.0000 35.0000
10 -145.0458 34.9542 -147.2181 32.7819
15 -145.1202 34.8798 -152.6045 27.3955
20 -145.2057 34.7943 -157.7214 22.2786
25 -145.3071 34.6929 -162.5041 17.4959
30 -145.4196 34.5804 -166.9171 13.0829
35 -145.5394 34.4606 -170.9517 9.0483
40 -145.6641 34.3359 -174.6175 5.3825
45 -145.7921 34.2079 -177.9355 2.0645
50 -145.9222 34.0778 -180.9900 -0.9900

Fig. 10. Root locus plot of compensators for Example-3.

sive analysis and simulation exercise. The designed FOLC
ensures minimum variation around the specified value of
phase margin as compared to its IO counterparts. From
Tables 1–3 it is observed that for a frequency range of
5− 50 rad/sec, the phase margin variation for Example.1
with proposed FOLC (C1(s)) is 10.104 deg and with the
FOLC (C2(s)) is 15.219 deg. The phase variation for Ex-
ample.1 with IOLC (C3(s)) is 43.201 deg. This variation
is especially very small if the plant has FO dynamics. For
FO plant Example. 2 with FOLC the phase variation is
3.574 deg and with IOLC 55.6025 deg. Similarly for FO
plant Example. 3 with FOLC the phase variation is 1.1655
deg and with IOLC 37.4847 deg. The root locus plots
Fig. 7 and Fig. 10 shows that designed FOLC improves

gain margin and hence stability as compared to IOLC.

5. CONCLUSION

A generalized and simple analytical method is proposed
to design stable FOLC for generalized IO and FO plant
structures. The FOLC structure is simple and easy to im-
plement. The compensator parameter α in this general-
ized structure allows flexibility on the fulfillment of spec-
ifications of phase margin φm, gain crossover frequency
ωc and static error constant, kss. The simulation results
proved that FOLC ensures minimum variation around the
specified value of the phase margin φm as compared to its
IO counterpart. The phase curve of the FOLC is flatter



A Simple Method to Design Robust Fractional-order Lead Compensator 1247

than IOLC. This phase variation is very small if the plant
has FO dynamics. The performance of FOLC is robust
and also improves the gain margin and hence the stability.
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