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Stability of Nonlinear Systems with Variable-time Impulses:
B-equivalence Method
Chuandong Li*, Yinghua Zhou, Hui Wang, and Tingwen Huang

Abstract: This paper addresses the stability problem of nonlinear systems with variable-time impulses. By B-
equivalence method, we shall show that under the well-selected conditions each solution of the considered systems
will intersect each surface of discontinuity exactly once, and that the considered systems can be reduced to the fixed-
time impulsive ones, which can be regarded as the comparison systems of the considered variable-time impulsive
systems. Based on the stability theory of fixed-time impulsive systems, we propose a set of stability criteria for the
variable-time impulsive systems. The theoretical results are illustrated by impulsive stabilization of Chua circuit.
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1. INTRODUCTION

Generally, an impulsive system is a discontinuous dy-
namical system comprised of three parts: a continuous-
time subsystem (namely, differential system or difference
system), a discrete-time subsystem (namely, a state jump
operator), and a switching rule which determines the im-
pulse moments [1, 2]. According to different switching
rule, impulsive systems can be divided commonly into
three types: systems with fixed-time impulses; systems
with variable-time impulses, and more generally, systems
with event-dependent impulses. The impulse moments
in fixed-time impulsive system are prescribed, while in
a variable-time impulsive system they are not prescribed,
and not known until one starts to look for a certain so-
lution. Generally, variable-time impulses arise naturally
in control, biological and physiological systems includ-
ing nonlinear control systems, artificial neural networks,
and variable moments of impulses are often of state de-
pendence, and therefore, different solutions of variable-
time impulsive system have different moments of im-
pulses. Obviously, the variable-time impulsive systems
are of much more importance in modeling and control,
and of much more analytic difficulties than the fixed-time
impulsive systems.

In recent years, much attention has been focused on the
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impulsive systems and impulsive control because of their
immense application prospective. For example, the state
of electronic networks is often subject to instantaneous
and experience abrupt change at certain instants which
may be caused by switching phenomenon or other sudden
noise [3, 4]. Because of the complex and analytical diffi-
culties, most existing publications about impulsive control
systems only focused on the case of fixed-time impulses;
the readers are referred to the references [1–11]. In the
existing publications [1,2,12–15]for variable-time impul-
sive systems, comparison system method is often applied
to analyze the system stability. In [2] and [12–15], several
types of comparison systems for variable-time impulsive
systems have been formulated. However, all these com-
parison systems are also variable-time impulsive systems
but with one dimension, and it is usually difficult to verify
or derive the system conditions and system parameters of
the corresponding comparison systems.

Recently, Akhmet and his colleague in [16–22] pro-
posed a powerful analytical tool for discontinuous sys-
tems, namely, B-equivalence, by means of which one can
reduce a variable-time impulsive system to a fixed-time
impulsive system. The reduced fixed-time impulsive sys-
tem is expected to be the comparison system with impulse
moments θk of the variable-time impulsive system with
the impulse moments being governed by t = θk+τk (x(t)).
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It is also worth noting that the jump operator in compar-
ison system might be very complex map and difficult to
be applied to stability analysis. Sayli and Yilmaz in [23]
tried to investigate the asymptotic stability of variable-
time bidirectional associative memory (BAM) neural net-
works by means of B-equivalence. The main difficulty
in use of B-equivalence method is to formulate or esti-
mate the relationship between the original jump operator
in variable-time impulsive system and new jump operator
in corresponding fixed-time impulsive system. Sayli and
Yilmaz in [23] just simply assumed that new jump opera-
tor is linear with respect to system states (although it may
be feasible theoretically). Unfortunately, it is very difficult
to determine the coefficient in the assumption (A5) in [23].
Therefore, to the best of our knowledge there are very few
(if any) publications in literature where the reduction prin-
ciple based on B-equivalence can be effectively applied to
stability analysis on variable-time impulsive systems.

In the present paper, we shall formulate a throughout
theoretical framework of reduction and comparison prin-
ciple by B-equivalence for variable-time impulsive control
systems. More specifically, we shall restate the sufficient
conditions that ensure every solution of system intersects
each surface of discontinuity exactly once, analyze and
formulate the relationship between original jump opera-
tor and corresponding new one, theoretically prove that
the stability properties of corresponding comparison sys-
tem imply the same stability properties of the considered
variable-time impulsive control systems, and finally estab-
lish a set of stability criteria by use of comparison system
with fixed-time impulses.

This paper is organized as follows: In the next section,
the considered systems are formulated and some prelimi-
naries are presented. In Section 3, we state the conditions
of absence of beating, and then we introduce the corre-
sponding B-equivalent system in Section 4. A number
of criteria for global exponential stability/stabilization of
variable-time impulsive systems are established in Section
5. Chua circuit as the numerical example is presented to
illustrate the theoretical results in Section 6, with conclu-
sions drawn in Section 6.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Notations: Throughout this paper, we denote by PT

the transpose of matrix, P by P > 0(< 0) the symmetri-
cal and positive (negative) definite matrix P and by ∥∗∥
the Euclidian norm of a square matrix or a vector. Let
R+ = [0,+∞), Z+ = {1 2 3 · · ·}, and we denote Γi =
{(t,x(t)) ∈ R+ × G : t = θi + τi (x(t)), t ∈ R+, x ∈ G,
G ⊂ Rn}. the ith surface of discontinuity.

In this paper, we will consider the following systems:

{
ẋ = f (t,x) , t > 0, t ̸= θi + τi (x) ,
∆x|t=θi+τi (x)

= Ji (x) , i ∈ Z+,
(1)

where x ∈ G ⊆ Rn, f (t,x) is continuous on R+×G with
f (t, 0) = 0, and moreover, satisfies the Lipschitzian con-
dition with respect to x, i.e., for all t ∈ R+, there ex-
ists a positive number l f such that ∥ f (t,x)− f (t,y)∥ ≤
l f ∥x− y∥, for all x,y ∈ G, t ∈ R+. Ji (x) : G → G, τi (x) :
G →R are continuous functions, for all i ∈ Z+, satisfying
that Ji (0) = 0, τi (0) = 0, and there exist positive num-
bers lJ and lτ such that ∥Ji (x)− Ji (y)∥ ≤ lJ ∥x− y∥, and
∥τi (x)− τi (y)∥ ≤ lτ ∥x− y∥, for all i ∈ Z+, x,y ∈ G. Fur-
thermore, we assume that there exists a positive number ν
such that 0 ≤ τi (x)< ν , for all i ∈ Z+ and x ∈ G. For an-
alytical simplification, we assume that each solution x(t)
of (1) is left-continuous, i.e., limt→ξ−0x(t) = x(ξ ). We
denote ∆x(ξ ) = x(ξ +0)− x(ξ ), and assume that the se-
quence {θi}∞

i=1 satisfies that , and limi→∞θi = ∞.
The following definitions and lemmas are necessary in

the sequel.
Definition 1 [1]: Let V : R+×Rn → R+, then V is said

to belong to class Σ if
a) V is continuous in (τi−1, τi] ×Rn and for each x ∈

Rn, i = 1,2, · · · , lim
(t,y)→(τ+

i ,x)
V (t,y) =V

(
τ+

i ,x
)

exists.

b) V is locally Lipschitzian in s.
From this definition, we can see that V associated with

impulsive system (1) is the analog of Lyapunov function
for stability analysis of ODE. Because these Lyapunov-
like functions are generally discontinuous, a generalized
derivative should be defined, which is known as the right
and upper Dini’s derivative.

Definition 2 [1]: For (t,x) ∈ (τi−1, τi] ×Rn, the right
and upper Dini’s derivative of V ∈ Σ with respect to time
variable is defined as

D+V (t,x)

≡ lim
h→0+

sup
1
h
{V [t +h,x+h f (t,x)]−V (t,x)} .

Definition 3 [1]: The origin of system (1) is said to be
globally exponentially stable if there exist some constants
α > 0 and M > 0 such that ∥x(t, t0, x(t0))∥ ≤ Me−α(t−t0),
for any t ≥ t0.

3. CONDITIONS FOR ABSENCE OF BEATING

In this section, by means of the B-equivalent method,
we shall make such assumptions that each solution of (1)
intersects each surface of discontinuity exactly once, and
then try to reduce variable-time impulsive system (1) to
fixed-time impulsive systems as its comparison system.
For this purpose, we make the following assumptions.

(A1) There exist positive numbers θ and θ̄ , such that
θ + v < θi −θi−1 < θ̄ − v, for all i ∈ Z+.
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This assumption implies that θ < [θi+1 + τi+1 (x)]−
[θi+ τi (x)]< θ̄ , and therefore no “beating phenomenon”
will occur.

(A2) τi (x+ Ji (x))≤ τi (x), for all i ∈ Z+, x ∈ G.
(A3) lτ ·M f < 1, where M f = sup

(t,x)∈R+×G
∥ f (t,x)∥<+∞.

From (A1)-(A3), we have following observations.
Observation 1: Assume that (A1) holds, then each

solution of (1), which intersects surface Γi and Γk,
(i < k−1), must intersects all surfaces Γ j, (i < j < k), be-
tween Γi and Γk.

Proof: Suppose x(t) be a solution of (1), which inter-
sects Γi and Γk. That is, there exist ξi and ξk (ξi < ξk),
such that

ξi = θi + τi (x(ξi)) , ξk = θk + τk (x(ξk)) .

Define a function φ (t) = t −θ j − τ j (x(t)), (i < j < k).
Then φ (t) is continuous with respect to t because of the
continuity of τ j.

Note that

φ (ξi) = ξi −θ j − τ j (x(ξi)) = θi + τi (x(ξi))

−θ j − τ j (x(ξi))

=− [(θ j −θ j−1 + τ j (x(ξi))− τ j−1 (x(ξi)))+ · · ·
+(θi+1 −θi + τi+1 (x(ξi))− τi (x(ξi)))]

<−( j− i−1)θ ≤ 0.

Therefore, there exists a positive number ξ j, (ξi < ξ j < ξk),
such that φ (ξ j) = 0, i.e., ξ j = θ j + τ j (x(ξ j)). Thus, x(t)
intersects each impulse surface Γ j, (i < j < k). The ob-
servation holds. □

Observation 2: Assume that (A1) holds, and x(t) :
Z+ → G is a solution of (1). Then x(t) intersects every
surface Γi, i ∈ Z+.

Proof: Assume on the contrary that x(t) does not
intersect Γ j for some j ∈ Z+. Observation 1 im-
plies, the solution x(t) does not intersect all the sur-
faces Γi for all i < j or i > j. Introduce a new func-
tion r (t) = t − [θ j + τ j (x(t))]. Note that t − (θ j + v) <
r (t) < t − (θ j − v). One observes that r (θ j − v) < 0 <
r (θ j + v). Therefore, by the continuity of r (t), there ex-
ists ξ ∈ (θ j − v, θ j + v) such that r (ξ ) = 0, i.e., ξ =
θ j + τ j (x(ξ )). The observation holds. □

Observation 3: Assume that (A2) and (A3) hold. Ev-
ery solution of (1) intersects the surface Γi at most once.

Proof: Assume on the contrary that there is a solution
x(t) intersects the surface Γ j at (s, x(s)) and (s1,x(s1)),
where we assume that s < s1 and there exists no dis-
continuity point of x(t) between s and s1. Then s =
θ j + τ j (x(s)) and s1 = θ j + τ j (x(s1)), and

0 < s1 − s

= τ j (x(s1))− τ j (x(s))

≤ τ j (x(s1))− τ j (x(s)+ J j (x(s)))

≤ lτ ∥x(s1)− [x(s)+ J j (x(s))]∥

= lτ

∥∥∥∥∫ s1

s
f (u,x(u))du

∥∥∥∥
≤ lτ M f (s1 − s)< s1 − s.

This contradicts (A3). The observation holds. □
Based on the above observations, the following result is

immediate.
Theorem 1: Assume that (A1)-(A3) hold, then every

solution x(t) : R+ → G of (1) intersects each the surface
Γi, i ∈ Z+, exactly once.

4. REDUCTION TO FIXED-TIME IMPULSIVE
SYSTEM

In this section, we shall present a fixed-time impulsive
system which can be regarded as the comparison system
of the considered variable-time impulsive system (1), and
then discuss the relationship between both systems.

Let x0 (t) = x(t,θi,x) be a solution of the first equation
of model (1) in time interval [θi, ξi], where we denote by
ξi the meeting moment of the solution with the surface of
discontinuity so that ξi = θi+τi

(
x0 (ξi)

)
. Note that ξi ≥ θi

because of 0 ≤ τi (x) < ν , for all i ∈ Z+, x ∈ G. Let also
x1 (t) be a solution of (1a) in time interval (θi, ξi] such
that,

x1 (ξi) = x0 (ξi+) = x0 (ξi)+ Ji
(
x0 (ξi)

)
.

Define the following map:

Wi (x) = x1 (θi)− x

= x1 (ξi)+
∫ θi

ξi

f
(
s, x1 (s)

)
ds− x

= x0 (ξi)+ Ji
(
x0 (ξi)

)
+

∫ θi

ξi

f (s, x1 (s))ds− x

=
∫ ξi

θi

f
(
s, x0 (s)

)
ds

+ Ji

(
x+

∫ ξi

θi

f
(
s, x0 (s)

)
ds
)

+
∫ θi

ξi

f
(
s, x1 (s)

)
ds. (2)

From the definition of Wi (x) together with Fig. 1, we
have the following observations without proof:

(i) x0 (t) = x(t,θi,x) can be extended as the solution of
(1) in R+;

(ii) x1 (t) = x
(
t, ξi, x0 (ξi+)

)
can be extended as the

solution of the following fixed-time impulsive system in
R+: {

ẋ(t) = f (t, x(t)) t ̸= θi,

∆x|t=θi
=Wi (x) .

(3)
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Fig. 1. Construction Principle of the map Wi (x).

(iii) For all i ∈ Z+, on time interval (ξi−1, θi], x0 (t) ≡
x1 (t), and x1 (θi+) ≡ x0 (θi) + Wi

(
x0 (θi)

)
, x1 (ξi) =

x0 (ξi+) = x0 (ξi)+ Ji
(
x0 (ξi)

)
.

(iv) For all i ∈ Z+, on time interval (θi, ξi],

x1 (t)− x0 (t)

= x+Wi (x)+
∫ t

θi

f
(
u,x1 (u)

)
du− x

−
∫ t

θi

f
(
u,x0 (u)

)
du

=Wi (x)+
∫ t

θi

(
f
(
u,x1 (u)

)
− f

(
u,x0 (u)

))
du. (4)

5. STABILITY ANALYSIS ON VARIABLE-TIME
IMPULSIVE SYSTEMS

From (2), we have

∥Wi (x)∥=
∥∥∥∥∫ ξi

θi

f
(
s, x0 (s)

)
ds

+ Ji

(
x+

∫ ξi

θi

f
(
s, x0 (s)

)
ds
)

+
∫ θi

ξi

f
(
s, x1 (s)

)
ds
∥∥∥∥

≤ 2M f (ξi −θi)+ lJ ∥x∥+ lJM f (ξi −θi)

= [2+ lJ]M f τi
(
x0 (ξi)

)
+ lJ ∥x∥ .

Note that

τi
(
x0 (ξi)

)
≤ lτ

∥∥x0 (ξi)
∥∥

= lτ

∥∥∥∥x+
∫ ξi

θi

f
(
s, x0 (s)

)
ds
∥∥∥∥

≤ lτ ∥x∥+ lτ

∥∥∥∥∫ ξi

θi

f
(
s, x0 (s)

)
ds
∥∥∥∥

≤ lτ ∥x∥+ lτ M f (ξi −θi)

= lτ ∥x∥+ lτ M f τi
(
x0 (ξi)

)
,

which implies that

τi
(
x0 (ξi)

)
≤ (1− lτ M f )

−1lτ ∥x∥ . (5)

Therefore,

∥Wi (x)∥ ≤
[
(2+ lJ)M f (1− lτ M f )

−1lτ + lJ
]
∥x∥ .

(6)

Moreover, from (4) and using Gronwall-Bellman In-
equality, we have, for all t ∈ (θi, ξi],∥∥x1 (t)− x0 (t)

∥∥
≤ ∥Wi (x)∥+

∫ t

θi

∥∥ f
(
u,x1 (u)

)
− f

(
u,x0 (u)

)∥∥ du

≤ ∥Wi (x)∥+ l f

∫ t

θi

∥∥x1 (u)− x0 (u)
∥∥ du

≤ ∥Wi (x)∥exp{l f (t −θi)}

≤
[
(2+ lJ)M f (1− lτ M f )

−1lτ + lJ
]

el f v ∥x∥ .

That is, for all t ∈ (θi, ξi],∥∥x1 (t)− x0 (t)
∥∥

≤
[
(2+ lJ)M f (1− lτ M f )

−1lτ + lJ
]

el f v ∥x∥ . (7)

Based on the above discussion, the following theorem
is immediate.

Theorem 2: The variable-time impulsive system (1)
has the same stability property with the fixed-time impul-
sive system (3).

Remark 1: Theorem 2 implies that system (3) can be
regarded as the comparison system of system (1) in the
context of stability analysis. Therefore, we shall study the
stability of (1) by considering the stability of (3).

Theorem 3: Suppose that there exists V ∈ Σ such that

α∥x(t)∥p ≤V (t,x(t))≤ β∥x(t)∥p, (8)

and {
D+V (t,x(t))≤ bV (t,x(t)) , t ̸= θk, k ∈ Z+,

V (t,x(t)+Wi (x(t)))≤ dkV (t,x(t)) , t = θk,

(9)

where α > 0, β > 0, p > 0, b > 0, and dk > 0. If there
exists a positive number r,such that

lndk +b
(
θ̄ − v

)
≤−r. (10)

Then the origin of system (3) is globally exponentially
stable, and therefore, the origin of system (1) is globally
exponentially stable.

Proof: To prove this theorem, we first show the follow-
ing claim holds:
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For any t ∈ (θk, θk+1], k ∈ Z+, we have

V (t, x(t))≤V0 exp

{
bt +

k

∑
i=1

lndi

}
, (11)

where V0 =V (0, x(0)). We now prove the claim (11) by
means of mathematical induction.

(i) When k = 0, i.e., t ∈ (0, θ1], it follows from (9) that

V (t, x(t))≤V0 exp{bt} ,

and

V (θ1, x(θ1)+W1 (x(θ1)))≤ d1V (θ1, x(θ1))

≤ d1V0 exp{bθ1} .

(ii) When k = 1, i.e., t ∈ (θ1, θ2], it follows from (9)
that

V (t, x(t)) ≤V (θ1, x(θ1+))exp{b(t −θ1)}
≤ d1V0 exp{bt}=V0 exp{bt + lnd1} ,

and

V (θ2, x(θ2)+W2 (x(θ2)))≤ d2V (θ2, x(θ2))

≤ d1d2V0 exp{bθ2} .

Therefore, the claim (11) is true when k = 1, i.e., t ∈
(θ1, θ2].

(iii) Suppose that the claim holds when k = s, s > 1.
That is,

V (t, x(t))≤V0 exp

{
bt +

s

∑
i=1

lndi

}
, t ∈ (θs, θs+1] .

(iv) When k = s+1, i.e., t ∈ (θs+1, θs+2], we have

V (t, x(t))

≤V (θs+1, x(θs+1)+Ws+1 (x(θs+1)))exp{b(t −θs+1)}

≤ ds+1V0 exp

{
bt +

s

∑
i=1

lndi

}

=V0 exp

{
bt +

s+1

∑
i=1

lndi

}
.

This implies that the claim (11) holds for k = s + 1,
i.e., t ∈ (θs+1, θs+2], and therefore, it holds for all t ∈
(θk, θk+1], k ∈ Z+.

Note that, for t ∈ (θk, θk+1], k ∈ Z+ we have

t ≤ θk+1 = θk+1 −θk +θk −θk−1 + · · ·+θ1 −θ0

≤
k+1

∑
i=1

(θi −θi−1)≤ (k+1)
(
θ̄ − v

)
.

Therefore, k ≥ t
θ̄−v −1, and

V (t, x(t))

≤V0 exp

{
bt +

k

∑
i=1

lndi

}

≤V0 exp

{
b

k+1

∑
i=1

(θi −θi−1)+
k

∑
i=1

lndi

}

=V0 exp
{

b
(
θ̄ − v

)}
exp

{
k

∑
i=1

[lndi +b(θi −θi−1)]

}
≤V0 exp

{
b
(
θ̄ − v

)}
exp{−kγ}

<V0 exp
{

b
(
θ̄ − v

)
+ γ

}
exp

{
− γ

θ̄ − v
t
}

The last inequality together with (8) implies that the ori-
gin of system (3) is globally exponentially stable. □

Remark 2: Theorem 3 present a set of sufficient condi-
tions for the exponential stability of fixed-time impulsive
system (3) in terms of Lyapunov function. Based on Theo-
rem 3 and by selecting some suitable Lyapunov functions,
we can derive some alternative stability criteria which are
easy to be verified for variable-time impulsive systems (1).

6. STABILIZING CHUA CIRCUIT

In this section, we take the Chua circuit as an exam-
ple to illustrate the effectiveness of the theoretical re-
sults mentioned in the previous section. The mathematical
model of Chua circuit is the following equations:

ẋ1 =−α [x1 − x2 +g1 (x1)] ,

ẋ2 = x1 − x2 + x3,

ẋ3 =−βx2.

(12)

The Chua circuit (12) exhibits the chaotic behavior with
the attractor

G =
{
(x1,x2,x3) ∈ R3 | |xi| ≤ 2, i = 1,2,3

}
,

when α = 9.2156, β = 15.9946,

g1 (x1) = bx1 +
1
2
(a−b) [|x1 +1|− |x1 −1|] ,

and a =−1.24905, b =−0.75735.
This system can be rewritten as the compact form:

ẋ(t) = Ax(t)+g(x(t)) (13)

with x(t) = [x1 (t) , x2 (t) , x3 (t)]
T ∈ R3, and

A =

−α (1+b) α 0
1 −1 1
0 −β 0

 ,

g(x(t)) =
[

1
2
(a−b)(|x1 +1|− |x1 −1|) ,0,0

]T

.

To stabilize this system, we take the impulsive con-
troller

∆x|t=θk+τk (x(t))
= Bkx(t) , (14)
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where τk (x(t)) = γk |x1|, γk > 0, Bk, k ∈ Z+ are constant
scalars.

Therefore, the controlled system is of the form{
ẋ(t) = Ax(t)+g(x(t)) , t ̸= θk + γk |x1| ,
∆x|t=θk+γk |x1| = Bkx(t) , k ∈ Z+.

(15)

Note that v = 2max{γk}, lτ = max{γk}, and

∥Ax(t)+g(x(t))∥ ≤ ∥A∥∥x(t)∥+∥g(x(t))∥
≤ ∥A∥∥x(t)∥+ |a−b|

= 18.5
√

12+0.4917

≤ 64.5776

which implies M f = sup
(t,x)∈R+×G

∥ f (t,x)∥ ≤ 64.5776. Then,

from Theorem 1 the following corollary is immediate.
Corollary 1: If the controlled system (15) satisfies the

following conditions:
(i) There exist positive numbers θ and θ̄ , such that θ +

2max{γk}< θi −θi−1 < θ̄ −2max{γk}, for all i ∈ Z+.
(ii) |1+Bi| ≤ 1, for all i ∈ Z+.
(iii) max{γk}·M f < 1, where M f = sup

(t,x)∈R+×G
∥ f (t,x)∥≤

64.5776.
Then the assumptions (A1)-(A3) hold, and therefore,

every solution x(t) : R+ → G of (15) intersects each sur-
face Γi = {(t, x(t)) ∈ R+×G : t ̸= θk + γk |x1|}, i ∈ Z+,
exactly once.

Now, it is time to define the map Wk (x) based on (2) as
following:

Wk (x) =
∫ ξk

θk

[
Ax0 (u)+g

(
x0 (u)

)]
du

+Bkx+Bk

∫ ξk

θk

[
Ax0 (u)+g

(
x0 (u)

)]
du

+
∫ θk

ξk

[
Ax1 (u)+g

(
x1 (u)

)]
du

= Bkx+(I +Bk)
∫ ξk

θk

[
Ax0 (u)+g

(
x0 (u)

)]
du

+
∫ θk

ξk

[
Ax1 (u)+g

(
x1 (u)

)]
du.

Note that

∥x+Wk (x)∥
≤ |1+Bk|∥x∥+ |1+Bk| ·M f · |ξk −θk|+M f · |ξk −θk|
= |1+Bk|∥x∥+M f [|1+Bk|+1] |ξk −θk|
= |1+Bk|∥x∥+M f [|1+Bk|+1]γk |x1|
≤ {|1+Bk|+ γkM f [|1+Bk|+1]}∥x∥ . (16)

We then obtain the following B-equivalent system of
(15):{

ẋ = Ax+g(x) , t ̸= θk,

∆x|t=θk
=Wk (x) , k ∈ Z+.

(17)

Theorem 4: Suppose that the conditions in Corollary
1 are satisfied. If there exists positive number r such that,
for all k ∈ Z+,

lndk +λ1 [θk −θk−1]≤−r,

where λ1 = λmax
(
A+AT +2(b−a) I

)
and dk = [|1+Bk|

+γkM f (|1+Bk|+1)]2. Then, the origin of system (17) is
globally exponentially stable, and therefore, the origin of
system (15) is globally exponentially stable.

Proof: Consider the following Lyapunov function can-
didate

V (t,x) = xT (t)x(t) .

When t ̸= θk, the Dini derivative of V (t,x) with respect
to time t along the solution of (17) can be calculated as

D+V (t,x(t)) = 2xT (t) [Ax(t)+g(x(t))]

= xT (t)
[
A+AT ]x(t)+2xT (t)g(x(t))

≤ xT (t)
[
A+AT +2(b−a) I

]
x(t)

≤ λ1V (t, x(t)) .

On the other hand, from (16), one observes that

V (θk,x(θk)+Wk (x(θk))) = [x+Wk (x)]
T [x+Wk (x)]

≤ dk∥x(θk)∥2.

The remaining proof follows Theorem 4, and therefore,
we omit it. □

Remark 3: Note that the impulse moments are not
fixed and prescribed. Therefore, the existing results for
fixed-time impulsive systems such as references [1–10,
24–28] are unavailable to this example. It is easy to see
that the coefficient in (A5) of [23] is difficult to be deter-
mined in this example, therefore, the results in [23] are
also inapplicable to this example.

For numerical simulation, we take θk = 0.2k, γk =
0.001, Bk =−0.9. Then, by simple computation, we have
λ1 = 17.53318, dk = 0.029253 and therefore, r = 0.02513.
By Theorem 4, the origin of system (15) is globally expo-
nentially stable, that is, chaotic Chua circuit (12) can be
stabilized at the origin under the variable-time impulsive
control (14), as shown in Fig. 2.

7. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented the theoretical frame-
work for analyzing the stability/stabilization of nonlin-
ear systems with variable-time impulses by means of B-
equivalence. However, several issues are still open, for ex-
amples, (i) the conditions for absence of beating are con-
servative; (ii) the estimation on the norm of transforma-
tion map Wi (x) is also very conservative, which leads to
conservative stability/stabilization conditions; (iii) it is ex-
pected to extend the presented method to delayed systems
or more general impulsive systems.
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Fig. 2. Time response curve of system (15) where the ini-
tial values are [−0.5,−0.2,0.4].
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