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Robust Output Tracking Control for a Class of Uncertain Nonlinear Sys-
tems Using Extended State Observer
Yan Zhao, Jiang-Bo Yu*, and Jie Tian

Abstract: This paper investigates the global robust output tracking control problem via output feedback for a class
of nonlinear uncertain systems with the integral input-to-state stable (iISS) dynamic uncertainties. By performing
the coordinates transformation and employing an extended state observer (ESO), it can be seen that the robust set-
point tracking control is well solved. The proposed control strategy simplifies the control design procedure. This
control scheme finds its application in the mass-spring mechanical system. It is shown that the asymptotic tracking
control for any desired displacement can be achieved in the mass-spring mechanical system in the case of unknown
parameters. The simulation results demonstrate that the proposed control scheme has a better tracking performance.
This verifies the effectiveness of the developed method.
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1. INTRODUCTION

The nonlinear control theory is an active research di-
rection because of its widespread applications in the real
world [1]. During the past two decades, the input-to-state
stability (ISS) invented by Sontag ED in [2] has now be-
come one of the central properties in the study of stabil-
ity of perturbed nonlinear systems. As an integral variant
of ISS, iISS is another meaningful but much weaker no-
tion. As stated in [3], iISS is a most natural concept and
has been widely used as well as ISS in nonlinear feed-
back control design and analysis. In recent years, the re-
search on iISS has received much attention in the control
community. The work [4] presents a unifying framework
for global output feedback regulation control from ISS
to iISS. More recently, the technique of changing supply
rates for iISS systems has been discussed in [5, 6]. More
results along this direction can be found in [7–11], etc.

The set-point tracking control is one of the active top-
ics in nonlinear control community. The global set-point
tracking control is to design a feedback controller in order
to achieve the tracking control of constant reference sig-
nals starting from any initial conditions. It is extensively
studied by many researchers in recent decades. Freeman
and Kokotović in [12] proposed a global set-point tracking
controller for a class of nonlinear systems with full-state
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information and no zero dynamics. Characterizing the dy-
namic uncertainties via ISS and ISS-Lyapunov functions,
Jiang and Mareels in [13] further extended the previous
results. However, the decay rate in the ISS dissipation in-
equality is monotone or non-oscillatory in [13]. This prob-
lem is further investigated in case of unknown control co-
efficients in [14] by state feedback, and output feedback in
[15], whereas a filter and an observer are needed to com-
pensate the unknown parameter vector, and this makes the
control scheme much complicated.

As a further development of the existing work in [13–
15], the purpose of this paper is to continue studying this
issue using only the output information under the weaker
iISS conditions, which accommodates the oscillatory dis-
sipation. A dynamic output feedback control scheme will
be proposed with the help of a (n+1)-order observer due
to the unknown equilibrium. Moreover, the mass-spring
system as a nonlinear benchmark example provides a sim-
ple yet practical method for modeling a wide variety of
vibrating systems, see [16, 17]. It is interesting to note
that the proposed control scheme could be applied to the
robust set-point tracking control for the mass-spring sys-
tem. With only the angle measured for arbitrary initial
amplitude, the external force is quantitatively worked out,
which allows the mass displacement to any desired set po-
sition in the presence of uncertain viscous friction.
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Our main contributions are composed of three parts.
(i). This paper investigates the global set-point track-

ing control for a class of nonlinear uncertain systems with
much weaker iISS inverse dynamics than ISS in [13, 14].

(ii). By performing a coordinate transformation and
constructing an extended (n+1)-order state observer, we
present a novel set-point tracking control scheme which
is robust and easier implemented because of less variables
than earlier works [15].

(iii). The developed control scheme is applied to the
mass-spring mechanical system. It is shown that any de-
sired displacement can be regulated using only the dis-
placement information.

2. PROBLEM STATEMENT

In this paper, we focus on the following class of nonlin-
ear uncertain systems described by

η̇ = q(η ,y)

ξ̇1 = ξ2 +θ1(η ,y)
...

ξ̇n = u+θn(η ,y)

y = ξ1, (1)

where u,y ∈ R is the control input, output and η ∈ Rι ,
ξ = (ξ1,ξ2, · · · ,ξn)

T ∈ Rn are the states. It is further as-
sumed that the states (ξ2, · · · ,ξn) as well as η which is
also referred to as dynamic uncertainties are not assumed
to be measurable. For each 1 ≤ i ≤ n, nonlinear vector
field θi : Rι ×R → R is a uncertain function. The uncertain
functions q(·),θi(·) are assumed to be locally Lipschitz.

Given a desired reference signal yr ∈ R, the control ob-
jective here is to find, if possible, a smooth, dynamic, out-
put feedback law of the form

κ̇ = ν(κ,y), u = µ(κ,y) (2)

such that the tracking error y(t)−yr → 0 as t → ∞ and the
other signals (η(t),ξ (t),κ(t)) are bounded.

The following assumptions are needed for system (1):
Assumption 1: For any desired reference signal yr ∈ R,

there exists a unique ηr ∈ Rι such that q(ηr,yr) = 0.
Assumption 2: For any pair of (ηr,yr) , there are two

unknown constants pi1, pi2 > 0, such that for all (η ,y),∣∣θi(η ,y)−θi(ηr,yr)
∣∣

≤pi1ki1
(
|η −ηr|

)
+ pi2ki2

(
|y− yr|

)
,

where ki1(·) and ki2(·) are smooth functions vanishing at
the origin and independent of (ηr,yr).

Assumption 3: Letting x1 = y− yr and ζ = η −ηr, the
derived system

ζ̇ = q(ζ +ηr,x1 + yr) = q0(ζ ,x1) (3)

has an iISS-Lyapunov function U0(ζ ) satisfying

∂U0

∂ζ
(ζ )q0(ζ ,x1)≤−α0(|ζ |)+ γ0(|x1|), (4)

where α0(·) is a positive-definite continuous function and
γ0 is a class-K∞ function.

Remark 1: The system (1) can cover a large class of
nonlinear systems with dynamic uncertainties. For exam-
ple, the classical systems in output feedback form could
be transformed into such class of nonlinear systems (1)
via suitable coordinates change, see [4, 18], etc.

Remark 2: The similar assumptions on system (1) can
be found in [13, 14]. However, different from the state
feedback control therein, the control task here is to achieve
the set-point tracking by output feedback. Due to the un-
measured η in the nonlinear uncertainties θi(·), how to
achieve this control task is a more challenging control
problem than the work in [13, 14].

Remark 3: According to [3], one knows that the η-
subsystem is iISS, and the function pair (α0,γ0) is the sup-
ply rates. Unlike the global exponentially stable condition
imposed in [19], iISS can characterize a broader class of
dynamic uncertainties, such as [7, 8], etc.

3. OUTPUT FEEDBACK CONTROL DESIGN

3.1. State transformation
To begin with, we perform the coordinates changes

xi = ξi −ξir(i = 1, · · · ,n), xn+1 =−ur (5)

with ξ1r = yr, ξir = −θ(i−1)r(ηr,yr)(i = 2, · · · ,n), ur =
−θnr(ηr,yr), and we obtain

ζ̇ = q(η ,y)−q(ηr,yr) = q0(ζ ,x1)

ẋ1 = x2 +θ1(η ,y)−θ1(ηr,yr)

...

ẋn−1 = xn +θn−1(η ,y)−θn−1(ηr,yr)

ẋn = u+ xn+1 +θn(η ,y)−θn(ηr,yr). (6)

Next, we will design a dynamic output feedback controller
using only x1 for the transformed system (6).

3.2. Observer design
We design the linear extended state observer (LESO):

˙̂x1 = x̂2 + l1(x1 − x̂1)

...
˙̂xn = u+ x̂n+1 + ln(x1 − x̂1)

˙̂xn+1 = ln+1(x1 − x̂1), (7)

where li(i = 1, · · · ,n+ 1) are constant design parameters
to be determined later.
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Remark 4: From the coordinates change (5), it can be
seen that the unknown term of −ur as an external distur-
bance because of unknown θnr(ηr,yr), is formulated as an
augmented state. And then, a LESO is designed to rebuild
the unmeasured states (x2, · · · ,xn) and xn+1. The LESO
has strong robustness and could account for the nonlinear-
ities and the modeling uncertainties, see [20–23].

Let the error ei = xi − x̂i(i = 1, · · · ,n+1), and we get

ė = Ae+Θ(η ,y,ηr,yr), (8)

where

e =

 e1
...

en+1

 , A =

 −l1
... In

−ln+1 0 · · · 0

 ,

Θ(η ,y,ηr,yr) =


θ1(η ,y)−θ1(ηr,yr)

...
θn(η ,y)−θn(ηr,yr)

0

 .

Choose li(i = 1, · · · ,n + 1) such that A is Hurwitz, and
hence there exists a positive definite matrix P satisfying

AT P+PA =−2I. (9)

In order to obtain a computable gain function, one has
the following scaled error system

˙̄e = Aē+
1
ρ

Θ(η ,y,ηr,yr), (10)

with ē = 1
ρ e, ρ = max{1,∥P∥pi1,∥P∥pi2

∣∣i = 1, · · · ,n}.
Proposition 1: Let Vē = ēT Pē, and we get

V̇ē ≤−ēT ē+ k2
1(|ζ |)+ k2

2(|x1|) (11)

with smooth functions k1,k2 taking values zero at zero.
Proof: According to (9)(10) and the definition of ρ , by

completing the squares, a straight computation shows that

V̇ē ≤−ēT ē+
n

∑
i=1

(
k2

i1(|ζ |)+ k2
i2(|x1|)

)
. (12)

Take the following smooth functions

k1(|ζ |) =
( n

∑
i=1

k2
i1(|ζ |)

) 1
2 , k2(|x1|) =

( n

∑
i=1

k2
i2(|x1|)

) 1
2 ,

and we arrive at

V̇ē ≤−ēT ē+ k2
1(|ζ |)+ k2

2(|x1|). (13)

This completes the proof.
Remark 5: From Assumption 2, ki2(·)(i = 1,2, · · · ,n)

vanishing at the origin, in view of k2(|x1|) =(
∑n

i=1 k2
i2(|x1|)

) 1
2 , one get k2(0) = 0. As a result,

k2(|x1|) = k2(0)+ |x1|
∫ 1

0
k̇2(s|x1|)ds (14)

= |x1|
∫ 1

0
k̇2(s|x1|)ds. (15)

3.3. Controller design
In this subsection, for the following augmented system

˙̄e = Aē+
1
ρ

Θ(η ,y,ηr,yr)

ζ̇ = q0(ζ ,x1)

ẋ1 = x̂2 +ρ ē2 +θ1(η ,y)−θ1(ηr,yr)

...
˙̂xn = u+ x̂n+1 + ln(x1 − x̂1)

˙̂xn+1 = ln+1(x1 − x̂1)

y = x1, (16)

we develop a global set-point tracking control procedure.
Step 1: In view of the subsystem ẋ1 = x2 +θ1(η ,y)−

θ1(ηr,yr), we define z1 = x1, z2 = x̂2 −α1 where α1 is the
virtual control input. Choose the Lyapunov function

V1 =Vē +
1
2

z2
1 (17)

and from the x1 subsystem, its time derivative satisfies

V̇1 ≤z1
(
α1 + e2 +θ1(η ,y)−θ1(ηr,yr)

)
+ z1z2

− ēT ē+ k2
1(|ζ |)+ k2

2(|z1|). (18)

According to (15) and z1 = x1, the following holds

k2
2(|z1|) = z2

1(
∫ 1

0
k̇2(s|z1|)ds)2. (19)

By completing the squares, we have

z1e2 = z1ρ ē2 ≤
1

2n
ēT ē+

n
2

ρ2z2
1. (20)

Similar to the calculations in (14) and (15), one gets

z1
(
θ1(η ,y)−θ1(ηr,yr)

)
≤ |z1|

(
p11k11(|ζ |)+ p12k12(|x1|)

)
≤ k2

11(|ζ |)+
p2

11

4
z2

1 + p12|z1|k12(|x1|)

≤ k2
1(|ζ |)+

p2
11

4
z2

1 + p12z2
1

∫ 1

0
k̇12(s|x1|)ds. (21)

Based on the above calculation, we get

z1e2 + z1
(
θ1(η ,y)−θ1(ηr,yr)

)
≤ 1

2n
ēT ē+ k2

1(|ζ |)+ z2
1φ1(x1)p∗ (22)

with φ1(x1) = 1 +
∫ 1

0 k̇12(λ |x1|)dλ + (
∫ 1

0 k̇2(λ |z1|)dλ )2

and p∗ = max{ p2
11
4 + n

2 ρ2, p12,
p2

12
4 }.

Due to the unknown p∗, we augment V1 as follows

V 1 =V1 +
1

2λ
(p̂− p∗)2, (23)

where λ > 0 is a design parameter. According to (18) (22),
the following holds

V̇ 1 ≤− (1− 1
2n

)ēT ē+ z1
(
α1 + z1φ1(x1)p̂

)
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+
1
λ

p̃(λ z2
1φ1(x1)− ˙̂p)+2k2

1(|ζ |)+ z1z2. (24)

Choose the virtual control law and updating function as
follows

α1(x1, p̂) =−ν1(z1)z1 − z1φ1(x1)p̂,

τ1 = λ z2
1φ1(x1), (25)

where ν1(·) is a smooth function, and we get

V̇ 1 ≤− (1− 1
2n

)ēT ē−ν1(z1)z2
1 +2k2

1(|ζ |)

+
1
λ

p̃(τ1 − ˙̂p)+ z1z2. (26)

Step i (2≤ i≤ n): Suppose we have designed the virtual
control α j and updating function τ j (1 ≤ j ≤ i−1), such
that, with z j = x̂ j−α j−1(x1, x̂1, · · · , x̂ j−1, p̂)(1≤ j ≤ i−1),
the time derivative of the following function along solu-
tions of equation (16)

Vi−1 =Vi−2 +
1
2

z2
i−1 (27)

satisfies

V̇i−1 ≤− (1− i−1
2n

)ēT ē− z2
1

(
ν1(z1)− i+2

)
−

i−1

∑
j=2

ν jz2
j + ik2

1(|ζ |)+ zi−1zi

+
( 1

λ
p̃+

i−2

∑
j=1

z j+1
∂α j

∂ p̂

)
(τi−1 − ˙̂p), (28)

where ν j(2 ≤ j ≤ i−1) are positive design parameters.
We prove in the sequel that a similar property holds for

the x̂i subsystem of equation (16).
Set zi+1 = x̂i+1−αi, and we consider the following Lya-

punov function

Vi =Vi−1 +
1
2

z2
i . (29)

Noticing that the variable zi satisfies

żi =x̂i+1 + li(x1 − x̂1)−
i−1

∑
j=1

∂αi−1

∂ x̂ j

˙̂x j −
∂αi−1

∂x1
x̂2

− ∂αi−1

∂x1

(
θ1(η ,y)−θ1(ηr,yr)

)
− ∂αi−1

∂x1
e2

− ∂αi−1

∂ p̂
˙̂p. (30)

Similar to (20) and (21), there exists smooth function
φi(x1, x̂1, · · · , x̂i, p̂) =

(
(
∫ 1

0 k̇12(λ |x1|)dλ )2 + 1
)
( ∂αi−1

∂x1
)2,

such that

−zi
∂αi−1

∂x1
e2 − zi

∂αi−1

∂x1

(
θ1(η ,y)−θ1(ηr,yr)

)
≤ 1

2n
ēT ē+ k2

1(ζ )+ z2
1 + z2

i φi(·)p∗. (31)

Then, it can be verified that

V̇i ≤− (1− i
2n

)ēT ē− z2
1

(
ν1(z1)− i+1

)
−

i−1

∑
j=2

ν jz2
j +

( 1
λ

p̃+
i−2

∑
j=1

z j+1
∂α j

∂ p̂

)
(τi−1 − ˙̂p)

+ zi

(
αi + zi−1 + li(x1 − x̂1)−

i−1

∑
j=1

∂αi−1

∂ x̂ j

˙̂x j

− ∂αi−1

∂x1
x̂2 −

∂αi−1

∂ p̂
˙̂p+ ziφi(·)p̂

)
+ z2

i φi p̃+(i+1)k2
1(|ζ |)+ zizi+1. (32)

Choose the virtual control law and updating function

αi =−νizi − zi−1 − li(x1 − x̂1)+
∂αi−1

∂x1
x̂2

+
i−1

∑
j=1

∂αi−1

∂ x̂ j

˙̂x j − ziφi p̂+
∂αi−1

∂ p̂
τi

− ziφi(·)λ
i−2

∑
j=1

z j+1
∂α j

∂ p̂

τi =τi−1 +λ z2
i φi(x1, x̂1, · · · , x̂i, p̂), (33)

then, one can get

V̇i ≤− (1− i
2n

)ēT ē− z2
1

(
ν1(z1)− i+1

)
−

i

∑
j=2

ν jz2
j +(i+1)k2

1(|ζ |)+ zizi+1

+
( 1

λ
p̃+

i−1

∑
j=1

z j+1
∂α j

∂ p̂

)
(τi − ˙̂p). (34)

So far, if i = n, the actual adaptive controller and the
updating law are given by

u = αn(x1, x̂1, · · · , x̂n, p̂)− x̂n+1, (35)
˙̂p = τn = τn−1 +λ z2

nφn(x1, x̂1, · · · , x̂n, p̂), (36)

and the function

Vn = ēT Pē+
n

∑
j=1

1
2

z2
j +

1
2λ

(p̂− p∗)2 (37)

satisfies

V̇n ≤− 1
2

ēT ē− z2
1(ν1(z1)−n+1)−

n

∑
j=2

ν jz2
j

+(n+1)k2
1(|ζ |). (38)

At this stage, we have completed the design procedure
of the output feedback control by the recursive design. In
the next section it will be shown that the dynamic output
feedback controller (35) could achieve the control objec-
tive proposed in Section 2.
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4. MAIN RESULTS

Now, we are ready to state the main results in this paper.
Theorem 1: Under Assumptions 1-3, suppose the fol-

lowing local conditions hold:

k2
i1(s) = O

(
α0(s)

)
(i = 1, · · · ,n),γ0(s) = O(s2). (39)

Moreover in case α0 is bounded, we have the following
additional condition

limsup
s→∞

k2
i1(s)

α0(s)
< ∞, i = 1, · · · ,n. (40)

Then, the global asymptotic regulation control is achieved
by the output feedback controller (35). More precisely, the
following convergence property holds:

a) lim
t→∞

(
|y(t)− yr|+ |η(t)−ηr|

)
= 0;

b) lim
t→∞

(
|ξ1(t)−ξ1r|+ · · ·+ |ξn(t)−ξnr|

)
= 0.

Proof: To begin with, it is easy to see that the right-
hand sides of the closed-loop system are locally Lipschitz.
Assume that the solution is defined on a right-maximal
interval [0,Tf ) with 0 < Tf ≤ ∞. We will establish that
Tf = ∞. Next, we construct another iISS-Lyapunov func-
tion to handle the unmeasured state ζ

V0(ζ ) =
∫ U0(ζ )

0
σ(s)ds, (41)

where σ(·) is a positive continuous function. In view of
(39), (40) and Proposition 1, using the changing supply
function technique for iISS systems, there exists a positive
continuous function σ̃(·), such that the time derivative of
V0(ζ ) along the solutions of ζ system satisfies

V̇0 ≤−k2
1(|ζ |)+ σ̃(x1)γ0(|x1|). (42)

Consequently, for the whole closed-loop system, consider
the following Lyapunov function

Vc(ζ ,z, ē, p̂) =Vn +hV0(ζ ) (43)

where h > 0 is a designed constant. With the help of (38)
and (42), the derivative of Vc with respect to time satisfies

V̇c ≤− 1
2

ēT ē−
n

∑
j=2

ν jz2
j − (h−n−1)k2

1(|ζ |)

−
(

z2
1

(
ν1(z1)−n+1

)
−hσ̃(z1)γ0(|z1|)

)
. (44)

Considering γ0(s) = O(s2) and σ̃(·) is a positive continu-
ous function, there exists a function ν1(·) such that,

h > n+1+ ν̄k, ν̄k > 0,

z2
1

(
ν1(z1)−n+1

)
−hσ̃(z1)γ0(|z1|)≥ z2

1. (45)

Substituting (45) into (44) yields that

V̇c ≤−1
2

ēT ē− z2
1 −

n

∑
j=2

ν jz2
j − ν̄kk2

1(|ζ |). (46)

Thus, we conclude that Vc(ζ ,z, ē, p̂) is bounded and in
turn, the solution (ζ (t),z(t), ē(t), p̂(t)) is bounded. There-
fore, there is no finite escape on [0,Tf ), and further, we
derive that for the closed-loop system there is a unique
solution that is defined for all t > 0, thus Tf = ∞.

In the sequel, we will prove the convergence properties
a) and b). With the help of (46), we know from LaSalle’s
invariance principle(see [18]) that

lim
t→∞

(
|ē(t)|+ |z(t)|+ k1(|ζ (t)|)

)
= 0. (47)

Since k1(·) is positive definite, then ζ (t) → 0 as t → ∞.
Considering z1(t)→ 0 and z1 = x1, we can get x1(t)→ 0
as t → ∞, and hence, convergence property a) is proved.
From z1(t) → 0, we can get α1(x1, p̂) → 0 according to
(30). In view of z2 = x̂2 − α1, together with z2(t) → 0
and α1(t) → 0, we can get x̂2 → 0. From x2 = x̂2 + e2

and e2 → 0, we get x2 → 0. Using the similar recursive
method, it can be concluded that x(t) converges to the ori-
gin. Therefore, convergence property b) is proved. As a
result, the proof can be completed.

5. ILLUSTRATIVE EXAMPLE

5.1. Application to the mass-spring mechanical sys-
tems

In this section, we apply our output feedback tracking con-
trol strategy into the mass-spring control system. The
mass-spring system is a typical and popular model for
analysis of vibrational phenomena in engineering and
technology, and hence it is also known as the mass-spring-
damping system [16, 17]. The dynamics of a mass at-
tached to a spring is described by

ÿ+ c ẏ+ k(1+a2y2)y = F, (48)

where y is the displacement from a reference position
which is considered as the measured output, ẏ viewed as
the velocity is not measured for the feedback, F is an ex-
ternal force which is considered as the control input, c,k,a
are unknown constant parameters. The control objective
is to give the external force F such that the mass displace-
ment y can approach any desired position yr using only the
information of the system output y.

Towards this end, we choose the following new state
variables

ξ1 = y, ξ2 = ξ̇1 + cξ1, u = F, (49)

and then, (48) is turned into

ξ̇1 = ξ2 − cξ1

ξ̇2 = u− k ξ1 − k a2 ξ 3
1

y = ξ1, (50)

which falls into the class of investigated system (1). Let

ξ1r = yr, ξ2r = cξ1r, ur = k ξ1r + k a2 ξ 3
1r,
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x1 = ξ1 −ξ1r, x2 = ξ2 −ξ2r, x3 = ur, (51)

then (50) can be further changed into

ẋ1 = x2 − cx1

ẋ2 = u+ x3 − kx1 − ka2(ξ 3
1 −ξ 3

1r). (52)

Design the following extended state observer

˙̂x1 = x̂2 + l1(x1 − x̂1)

˙̂x2 = u+ x̂3 + l2(x1 − x̂1)

˙̂x3 = l3(x1 − x̂1) (53)

and the observer error e = [e1,e2,e3]
T , then we have

ė = Ae+Θ(y,yr) (54)

with

Θ(y,yr) =

 −cx1

−kx1 − ka2(ξ 3
1 −ξ 3

1r)
0

 .

Choose li(i = 1,2,3) such that A is Hurwitz, and hence
choose a P > 0 satisfying AT P+PA =−2I.

By simple calculations, the scaled-error dynamics is

˙̄e = Aē+
1
ρ

Θ(y,yr) (55)

with ē = 1
ρ e and ρ = max{1,∥P∥(c2 + k2)

1
2 ,∥P∥|k|a2}.

For the augmented system composed of (52), (53), (55),
using the proposed method in Section 3, we can obtain the
following controller and the updating law

u =−ν1z1 −ν2z2 − x̂3 − l2(x1 − x̂1)+
∂α1

∂x1
x̂2

+
∂α1

∂ p̂
˙̂p− p̂z2(

∂α1

∂x1
)2, (56)

˙̂p =τ2 = τ1 +λ z2
2(

∂α1

∂x1
)2. (57)

The simulation results are shown in Fig.1. It can be
seen that the system output y = ξ1 can be regulated to any
desired reference signal yr. The control input u = F has
a good performance. In addition, the observer works well
and the other signals in closed-loop system are bounded.
The simulation is carried out with the reference signal
yr = 1 and the parameters k = 1, a = 1, c = 1. The initial
conditions are chosen as x̂1(0) = 0.5, x̂2(0) = 0, x̂3(0) =
1, p̂(0) = 0.5, and the design parameters l1 = 6, l2 =
11, l3 = 6, v1 = 1, v2 = 1, λ = 1.

5.2. Comparison
For illustrating the effectiveness and superiority of the

control scheme derived herein, the results of this pa-
per will be compared with those by other control meth-
ods, such as the output regulation control with reduced-
order observer in [15], the proportional-integral-derivative
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Fig. 1. The output in closed-loop system (48)-(57).

(PID) control, and adaptive control design with K-filters
[18]. For comparison purposes, the simulations are car-
ried out with the same reference signal yr = 1, parameters
k = 1, a = 1, c = 1, as well as the same initial conditions
y(0) = 1.5, ẏ(0) = 0.

Case 1 (Output regulation control based reduced-order
observer [15]): Take the notations

ϕ T
1 (y) = [y,0,0], ϕ T

2 (y) = [0,y,y3],

θ T = [−c,−k,−ka2].

Like in [15], we design the reduced-order observer
˙̂x1 = u−L1(x̂1 +L1y), L1 > 0, (58)

and the dynamic auxiliary signals

Ξ̇ =−L1Ξ+ϕ2(y)−L1ϕ1(y) (59)

with ΞT = [Ξ1, Ξ2, Ξ3]. Using the adaptive backstepping
technique, one can design the following output feedback
controller and the adaptive law

u =− v2e2 − e1 − e2(
∂α1

∂e1
)2 +L1(x̂1 +L1y)

+
∂α1

∂e1
(x̂1 +L1y+(y+Ξ1)θ̂1 +Ξ2θ̂2 +Ξ3θ̂3)

+
∂α1

∂ θ̂ T
˙̂θ +

∂α1

∂ΞT Ξ̇, (60)

˙̂θ =(e1 − e2
∂α1

∂e1
)[y+Ξ1,Ξ2,Ξ3]

T (61)

with e1 = x1 − yr, e2 = x̂1 −α1, α1 =−v1e1 − e1 −L1y−
(y+Ξ1)θ̂1 −Ξ2θ̂2 −Ξ3θ̂3. The initial conditions are cho-
sen as x̂1(0) = 0.5, Ξ1(0) = 0, Ξ2(0) = 0.5, Ξ3(0) =
1, θ̂1(0) = 0, θ̂2(0) = 0, θ̂3(0) = 1 and the design param-
eters L1 = 1, v1 = 1, v2 = 1.

Case 2 (PID controller): The PID controller is designed
as

u = kIe0 + kPe1 + kDe2, (62)



Robust Output Tracking Control for Uncertain Nonlinear Systems Using Extended State Observer 1233

where the PID control gains tuned via error-and-try
method as in [20–22] are kI = 10,kP = 40,kD = 1, and
the initial values are e0(0) = 0,e1(0) = 0.5,e2(0) = 1.

Case 3 (Adaptive controller with K-filters [18]): For
the mass-spring mechanical system (48), we choose the
following new state variables

x1 = y, x2 = ẋ1 + cx1, u = F, (63)

and adopt the following notations:

θ1 = c, θ2 = k, θ3 = ka2,φ1(y) = [−y, 0]T ,

φ2(y) = [0, − y]T ,φ3(y) = [0, − y3]T ,

A =

[
0 1
0 0

]
, b =

[
0
1

]
,

then the system (48) is turned into

ẋ = Ax+
3

∑
j=1

θ jφ j(y)+bu. (64)

Design the following K-filters

ς̇ = A0ς + ly

χ̇ j = A0χ j +φ j(y), 1 ≤ j ≤ 3

υ̇0 = A0υ0 +bu (65)

with

A0 =

[
−l1 1
−l2 0

]
, l =

[
l1
l2

]
, ς =

[
ς1

ς2

]
,

υ0 =

[
υ01

υ02

]
, χ j =

[
χ j1

χ j2

]
, j = 0,1,2,3.

Using adaptive backstepping design approach, we can
construct the following dynamic output feedback con-
troller and adaptive law

u =− c2z2 − z1 +
∂α1

∂y

(
ς2 +υ02 + θ̂ T ω1(y,χ)

)
+ l2ς1 −dz2(

∂α1

∂y
)2 +

∂α1

∂ς2
(−l2ς1 + l2y)

+
3

∑
i=1

∂α1

∂ χi2

(
− l2χi1 +φi2(y)

)
+

∂α1

∂ θ̂ T
τ2, (66)

˙̂θ =(z1 −
∂α1

∂y
z2)ω1(y,χ) (67)

with y = x1, z1 = x1 − yr, z2 = υ02 −α1, α1 = −c1z1 −
dz1 −ς2 −ωT

1 θ̂ , and ωT
1 = [−y+χ12,χ22,χ32]. The initial

conditions are chosen as x1(0) = 1.5,x2(0) = 1.5, ς1(0) =
1, ς2(0) = 0.5, χ11(0) = 1, χ12(0) = 0, χ21(0) =
1, χ22(0) = 1, χ31(0) = 0.5, χ32(0) = 1.5, υ01(0) = 0.5,
υ02(0) = 1.5, θ̂1(0) = 1, θ̂2(0) = 0, θ̂3(0) = 0.5 and the
design parameters c1 = 1, c2 = 10, d = 1, l1 = 2, l2 = 1.

Remark 6: The simulation results are shown in Fig.
2. From the comparison and analysis of the four control
schemes, the primary observations are listed as follows:
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Fig. 2. The system outputs using different methods.

(i) The tracking objectives with the four methods are all
well obtained. However, compared with the other three
control schemes, our result in this paper yields faster con-
vergence with less transitional fluctuation, less control ef-
forts and faster adjustment time in terms of performance.
This shows that the proposed output feedback set-point
tracking control scheme based ESO can quickly handle
unmodeled factors better than the other controllers; (ii)
Different from Case 1 and Case 3, since the number of
the online adaptive parameter is only one, the computa-
tion burden is significantly reduced accordingly using the
current control method proposed in this paper, which is
more feasible in engineering.

Remark 7: As an anonymous reviewer pointed out, it is
found that the proposed output-feedback control scheme
is more robust than the PID controller. Comparing with
the PID controller, our method is more insensitive to
the changes of the system parameters, since the control
scheme employs the ESO and adaptive control technique
to estimate modeling uncertainties and compensate them
in controller. To illustrate this point, the following sim-
ulation plotted in Fig.3 is carried out in such a way that
the control is fixed while the simulated system assumes
the parameter k = 1 in the first 20s and assumes k = 10
in the remaining seconds. From the simulation results,
it can be seen that the proposed robust tracking control
scheme works well no matter how the parameters of the
mass-spring control system vary.

6. CONCLUSION

The global robust output tracking control problem is in-
vestigated for a class of nonlinear systems with dynamic
uncertainties and uncertain nonlinearities. The studied
system covers a larger variety of nonlinear uncertain sys-
tems than existing results, which allows the oscillatory
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Fig. 3. The response using PID and current method under
disturbance.

decay rate for the iISS dynamic uncertainties. Different
from the existing related results, we employ a novel ESO
to present a systematic output feedback set-point track-
ing control scheme. It requires only fewer dynamic vari-
ables and no redesign when the tracked signals change,
and then the computation burden can be reduced accord-
ingly; therefore, it is more convenient to implement this
algorithm in practice. The mass-spring mechanical system
is used to verify the proposed algorithm, and the simula-
tion results give a good control performance. One inter-
esting subject of future study is how to achieve the robust
set-point tracking control with time delay [24].
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Design, Birkhäuser, Boston, 1996.

[13] Z. P. Jiang and I. Mareels, “Robust nonlinear integral con-
trol,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1336-
1342, 2001. [click]

[14] J. B. Yu and Y. Q. Wu, “Global set-point tracking control
for a class of nonlinear systems and its application in con-
tinuously stirred tank reactor systems,” IET Control Theory
Appl., vol. 6, no. 12, pp. 1965-1971, 2012. [click]

[15] J. B. Yu, J. Z. Wang, C. X. Zhang, and Y. Q. Wu, “Output
feedback regulation control for a class of uncertain nonlin-
ear systems,” ASME J. Dyn. Syst. Meas. Control, vol. 137,
no. 4, pp. 041019-1-5, 2015. [click]

[16] K. Dupree, C. H. Liang, G. Hu, and W. E. Dixon, “Adaptive
Lyapunov-based control of a robot and mass-spring system
undergoing an impact collision,” IEEE Trans. on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 4,
pp. 1050-1061, 2008. [click]

[17] H. Y. Li, Y. N. Peng, and P. Shi, “Switched fuzzy out-
put feedback control and its application to Mass-spring-
damping system,” IEEE Trans. Fuzzy Systems, vol. 24, no.
6, pp. 1259-1269, 2016.
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