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Adaptive Iterative Learning Controller with Input Learning Technique
for a Class of Uncertain MIMO Nonlinear Systems
Minsung Kim*, Tae-Yong Kuc, Hyosin Kim, and Jin S. Lee

Abstract: In this paper, an adaptive iterative learning controller (AILC) with input learning technique is presented
for uncertain multi-input multi-output (MIMO) nonlinear systems in the normal form. The proposed AILC learns
the internal parameter of the state equation as well as the input gain parameter, and also estimates the desired input
using an input learning rule to track the whole history of command trajectory. The features of the proposed control
scheme can be briefly summarized as follows: 1) To the best of authors’ knowledge, the AILC with input learning
is first developed for uncertain MIMO nonlinear systems in the normal form; 2) The convergence of learning
input error is ensured; 3) The input learning rule is simple; therefore, it can be easily implemented in industrial
applications. With the proposed AILC scheme, the tracking error and desired input error converge to zero as the
repetition of the learning operation increases. Single-link and two-link manipulators are presented as simulation
examples to confirm the feasibility and performance of the proposed AILC.

Keywords: Adaptive control, iterative learning control, multi-input multi-output systems, nonlinear systems, robot
manipulators, uncertain systems.

1. INTRODUCTION

Iterative learning control of nonlinear systems has been
attracted a lot of attention from the control community
[1–5]. The basic idea behind iterative learning control is
that the knowledge obtained from the previous iteration is
used to improve the control input for the current iteration.
Hence, the control input in each iteration is adjusted using
the tracking error signals obtained from the previous trial.
In its initial stage, the iterative learning controller was de-
veloped for nonlinear systems that have constant input and
output gains [6]. In this scheme, the time derivative of the
output error was used to modify the control input for the
next iteration. A learning scheme that does not use the
time derivative of the output/state variable was proposed
for robotic systems in [7], and it was extended to a class
of nonlinear systems whose input gain satisfies the global
Lipschitz condition [8]. ILC laws based on the relative
degree of nonlinear system were proposed in [9]. Fur-
ther, a P-type learning controller was proposed for nonlin-
ear time-varying system in [10]. Since then, the iterative
learning scheme has been extended to a general nonlin-
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ear system in [11]. However, these ILC techniques have
problems such as the requirement of the global Lipschitz
condition, initial resetting condition, and low convergence
rate.

To overcome these difficulties, an adaptive iterative
learning controller (AILC) was introduced in the early-
90’s. The AILC accommodates the adaptive control tech-
nique that adjusts the control parameters over successive
repetitions. The AILC scheme was first proposed for un-
certain robotic system in which the uncertainty is in lin-
ear parameters [12–14]. Afterward, the results were ex-
tended to a class of nonlinear systems. The state-tracking
problems for the parametric uncertain system in the nor-
mal form [15] and with time-varying parameters [16] were
solved, where parameter adjustment was performed in the
time domain [15] and iteration domain [16], respectively.
A large class of uncertain nonlinear system was consid-
ered in [17, 18] using the hybrid system parameter ad-
justment technique. Recently, multi-input multi-output
(MIMO) nonlinear systems with iteration-varying initial
error and reference trajectory were considered in [19].

A new AILC approach, an AILC with the input learning
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technique was introduced in [20], in which the unknown
periodic desired input is learned. Using this technique,
the state feedback problem was solved for the single-input
single-output (SISO) feedback linearizable system with
matched uncertainty in [21] and the output feedback prob-
lem was solved for a class of minimum-phase nonlinear
systems with output dependent nonlinearities in [22, 23].
Since then, the AILCs with the input learning have been
proposed for nonlinear systems in the normal form and
the cascaded form in [24], a class of partially feedback
linearizable system in [25], a class of nonlinear systems
in a lower triangular form with general unknown periodic
uncertainties in [26], and for relative degree one systems
with output dependent uncertainties and for nonlinear sys-
tems with matching uncertainties in [27]; these works are
only limited to SISO systems. Comparing to SISO sys-
tems, MIMO systems cover larger industrial applications
such as excavators, chemical reactors, robot manipulators,
and unmanned vehicles. Thus, the AILC with input learn-
ing must be further investigated in uncertain MIMO non-
linear systems.

Motivated by the aforementioned discussion, in this
paper, the AILC with input learning technique is devel-
oped for uncertain MIMO nonlinear systems in the normal
form. The proposed controller consists of three learning
rules that estimate the unknown parameters in the system
and input gain, and the unknown desired input. After the
sufficient learning of the control input occurs, the feed-
back control gain can be decreased, and so the proposed
AILC becomes more robust to practical problems such as
actuator saturation, unmodelled dynamics, and noise vul-
nerability than the AILC without input learning. The main
advantages of the proposed control scheme are that 1) To
the best of our knowledge, the AILC with input learning
is first developed for uncertain MIMO nonlinear systems
in the normal form; 2) The convergence of learning in-
put error is ensured; 3) The input learning rule is simple;
therefore, it can be easily implemented in industrial ap-
plications. The proposed controller achieves asymptotic
convergence of both the tracking error and desired input
error as it performs a repetitive task. Simulation results
on robotic applications are presented to validate the effec-
tiveness of proposed control scheme. It is also worth high-
lighting that two-link manipulator is formulated as uncer-
tain MIMO nonlinear system in the normal form for the
first time.

The remainder of this paper is organized as follows.
Uncertain SISO/MIMO nonlinear systems in the normal
form are described in Section 2. The AILC with input
learning is proposed and shows its asymptotic conver-
gence for both the SISO/MIMO systems in Section 3. The
simulation results are presented in Section 4 and the con-
clusions are discussed in Section 5.

In the subsequent discussion, the following notation and
definitions will be used. Rn is the n-dimensional Euclidean

space over R endowed with L2-norm ||x|| = (Σn
i=1|xi|2)

1
2 .

For any m×n matrix B, λmin(B) is the smallest eigenvalue.
A hat over a variable (i.e. (·̂)) denotes the estimated value
of (·).

The signum function sgn(·) is defined as

sgn(x)≡


−1 if x < 0
0 if x = 0
1 if x > 0,

(1)

where x is scalar variable. The projection operation Proj(·)
is described as

Proj(x̂)≡


−xb if x̂ ≤−xb

x̂ if − xb < x̂ < xb

xb if x̂ ≥ xb,

(2)

where xb is the upper bound of |x|. For notational brevity,
the time variable t is omitted from the time-dependent
variables except for the variables in the adaptive learning
law.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Uncertain SISO nonlinear system in the normal
form

Consider uncertain SISO nonlinear system in the nor-
mal form as:

ẋ1 = x2,

...

ẋn−1 = xn,

ẋn = f (x)+g(x)u,
y = x1, (3)

where x = [x1, ...,xn] ∈ Rn, y ∈ R, and u ∈ R are the state,
output, and control input, respectively. The functions f (x)
and g(x) are bounded Lipschitz continuous functions of x
and can be linearly parameterized as

f (x) = Σn1
i=1 fi(x)θ1i = wT

1 θ1,

g(x) = Σn2
j=1g j(x)θ2 j = wT

2 θ2, (4)

where wT
1 = [ f1(x), ..., fn1(x)]∈Rn1 , wT

2 = [g1(x), ...,gn2(x)]
∈ Rn2 with fi(x)∈ R, g j(x)∈ R being known bounded uni-
formly continuous functions, θ1 = [θ11, ...,θ1n1 ]

T ∈ Rn1 ,
θ2 = [θ21, ...,θ2n2 ]

T ∈ Rn2 with θ1i ∈ R, θ2 j ∈ R being un-
known parameters.

Further, consider the desired system:

ẋ1d = x2d ,

...
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ẋn−1d = xnd ,

ẋnd = f (xd)+g(xd)ud ,

yd = x1d , (5)

where xd = [x1d , ...,xnd ] ∈ Rn, yd ∈ R, and ud ∈ R are the
desired state, output, and input, respectively. Again, f (xd)
and g(xd) can be linearly parameterized as f (xd) = wT

1dθ1
and g(xd) = wT

2dθ2.
For the proposed controller design, the following as-

sumptions, corollary, and lemma are introduced.
Assumption 1: The desired system is invertible; that is,

for each yd , this system has a unique solution ud that can
be obtained using inverse dynamics.

Assumption 2: Let ti, i= 0,1,2, ..., be a sequence satis-
fying t0 = 0 and ti+1 − ti = T > 0. The desired input ud(t)
is uniformly continuous on each interval [ti, ti+1).

Assumption 3: The system parameter θ1, input gain pa-
rameter θ2, desired input ud , and desired output yd are pe-
riodic with T ; that is, θ1(t) = θ1(t−T ), θ2(t) = θ2(t−T ),
ud(t) = ud(t −T ), and yd(t) = yd(t −T ) ∀t ∈ [T,∞).

Assumption 4: The system parameter θ1, input gain
parameter θ2, desired input ud , desired output yd , and its
derivatives y(1)d , ...,y(n)d are all bounded.

Assumption 5: There exists a positive constant ḡ such
that 0 < ḡ < |g(x)| for all x, and the sign of the input gain
g(x) is known.

Corollary 1:(Barbalat’s Corollary). If h(t), ḣ(t) ∈ L∞
and h(t) ∈ L2, then limt→∞ h(t) = 0.

Lemma 1:(Generalized Barbalet’s Lemma). Let ti, i =
0,1,2, ..., be a sequence satisfying t0 = 0, ti+1− ti ≥ τ > 0.
If the differentiable function h(t) has a finite limit as
t → ∞ and if ḣ(t) is uniformly continuous on each interval
[ti, ti+1), then ḣ(t)→ 0 as t → ∞.

Proof: The proof is quite similar to that of lemma 1
in [28]. Suppose that ḣ(t) does not approach zero as
t → ∞. Then there exists an infinite sequence {τs1 ,τs2 , ...},
τsk ∈ [tsk , tsk+1), limk→∞ τsk =+∞ such that |ḣ(τsk)|> ε0 for
some positive number ε0.

Since limt→∞ h(t) exists, by Cauchy’s convergence cri-
terion, for any ε > 0, there exists a positive number T ,
such that for any T2 > T1 > T , |h(T2)−h(T1)|< ε , that is,∣∣∣∣∫ T2

T1

ḣ(t)dt
∣∣∣∣< ε. (6)

Let δ = min{δmin,τ}. Then, tsk+1 − tsk > τ ≥ δ . We have
either

(τsk −
δ
2
,τsk ]⊂ [tsk , tsk+1), (7)

or

[τsk ,τsk +
δ
2
)⊂ [tsk , tsk+1). (8)

When (7) holds, by uniform continuity, for any t ∈ (τsk −
δ/2,τsk ], we have

|ḣ(τsk)|− |ḣ(t)| ≤ |ḣ(τsk)− ḣ(t)| ≤ ε0

2
. (9)

From (9) and |ḣ(τsk)|> ε0, we have

|ḣ(t)| ≥ |ḣ(τsk)|−
ε0

2
>

ε0

2
. (10)

By continuity of ḣ(t) over (τsk − δ/2,τsk ] and (10), ḣ(t)
does not change sign for any t ∈ (τsk −δ/2,τsk ]. Then∣∣∣∣∫ τsk

τsk−δ/2
ḣ(s)ds

∣∣∣∣= ∫ τsk

τsk−δ/2
|ḣ(s)|ds

>
∫ τsk

τsk−δ/2

ε0

2
ds >

δε0

4
> 0. (11)

Similarly, when (8) holds, we have∣∣∣∣∫ τsk+δ/2

τsk

ḣ(s)ds
∣∣∣∣> δε0

4
> 0. (12)

Both (11) and (12) contradict (6) for sufficiently large τsk .
Thus, limt→∞ ḣ(t) = 0.

2.2. Uncertain MIMO nonlinear system in the normal
form

Consider the following uncertain MIMO nonlinear system
in the normal form:

ẋ11 = x12,

...

ẋ1n1−1 = x1n1 ,

ẋ1n1 = f1(x)+Σp
i=1g1i(x)ui,

ẋ21 = x22,

...

ẋpnp−1 = xpnp ,

ẋpnp = fp(x)+Σp
i=1gpi(x)ui,

y1 = x11,

y2 = x21,

...

yp = xp1, (13)

where x= [x11, ...,xpnp ]∈ Rn with n= n1+ · · ·+np, yi ∈ R,
and ui ∈ R for all i = 1, ..., p. The functions fi(x) and
gi j(x) are bounded Lipschitz continuous functions of x for
all i = 1, ..., p and j = 1, ..., p.

Combining the ui-related equations in (13), we have
y(n1)

1
...

y(np)
p

=

 f1(x)
...

fp(x)

+A(x)

u1
...

up

 , (14)

where the decoupling matrix is

A(x) =

g11(x) · · · g1p(x)
...

. . .
...

gp1(x) · · · gpp(x)

 . (15)
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In a MIMO system, we assume that [ f1(x), ..., fp(x)]T and
A(x) can be linearly parameterized as:

[ f1(x), ..., fp(x)]T = Σn1
i=1wT

1iθ1i = WT
1 θ1, (16)

A(x) = Σn2
i=1Ai(x)θ2i, (17)

where WT
1 = [wT

11, ...,wT
1n1

] ∈ Rp×n1 with wT
1i being a

known column vector, Ai(x) ∈ Rp×n2 is a known matrix,
θ1 = [θ11, ...,θ1n1 ] ∈ Rn1 with θ1i ∈ R being an unknown
parameter, θ2i ∈ R is an unknown parameter.

Further, consider the desired system:

ẋ1d1 = x1d2,

...

ẋ1dn1−1 = x1dn1 ,

ẋ1dn1 = f1(xd)+Σp
i=1g1i(xd)uid ,

ẋ2d1 = x2d2,

...

ẋpdnp−1 = xpdnp ,

ẋpdnp = fp(xd)+Σp
i=1gpi(xd)uid ,

y1d = x1d1,

y2d = x2d1,

...

ypd = xpd1, (18)

where xd = [x1d1, ...,xpdnp ] ∈ Rn, yid ∈ R, and uid ∈ R for
all i = 1, ..., p.

Combining the uid-related equations in (18), we have
y(n1)

1d
...

y(np)
pd

=

 f1(xd)
...

fp(xd)

+A(xd)

u1d
...

upd

 , (19)

where the decoupling matrix is

A(xd) =

g11(xd) · · · g1p(xd)
...

. . .
...

gp1(xd) · · · gpp(xd)

 . (20)

Both [ f1(xd), ..., fp(xd)]
T and A(xd) can be linearly pa-

rameterized as [ f1(xd) , ..., fp(xd)]
T = WT

1dθ1, A(xd) =
Σn2

i=1Ai(xd)θ2i. Denoting ud = [u1d , ...,upd ]
T and yd =

[y1d , ...,ypd ]
T , we have the same assumptions 1-4 as in the

SISO system, and another assumption 5: A(x) must be a
positive definite matrix for all x.

3. ADAPTIVE ITERATIVE LEARNING
CONTROLLER DESIGN

3.1. Controller design for the SISO system
Consider the u-related equation in (3) for the uncertain

SISO nonlinear system, and the ud-related equation in (5)

Linear
Controller

Nonlinear System
In Normal Form 

yd y+ +

-

Parameter
Learning

+

+

e

ul

u

Nonlinear 
Compensator

Feedforward 
Controller

y

x𝜃1

(w1d-w1)T𝜃1

Fig. 1. Schematic diagram of the adaptive iterative learn-
ing control system.

for its desired system

y(n) = f (x)+g(x)u, (21)

y(n)d = f (xd)+g(xd)ud . (22)

Subtracting (21) from (22) and linearly parameterizing the
uncertain terms, we have

y(n)d − y(n) = f (xd)− f (x)+g(xd)ud −g(x)u

= wT
1dθ1 −wT

1 θ1 +wT
2dθ2ud −wT

2 θ2u.
(23)

The control law is

u =
1

wT
2 θ̂2

(v+wT
2dθ̂2ul), (24)

where v = a1e(n−1)+ · · ·+ ane+(w1d −w1)
Tθ̂1 ∈ R, e =

[e, ...,e(n−1)]T ∈ Rn, and e = yd −y. The positive constants
a1, ...,an are chosen such that sn + a1sn−1 + · · ·+ an be-
comes a Hurwitz polynomial. By using adaptive learn-
ing laws, θ̂1 ∈ Rn1 , θ̂2 ∈ Rn2 , and ul ∈ R respectively learn
the system parameter θ1, input gain parameter θ2, and de-
sired input ud . This control scheme (Fig. 1) consists of
three parts. The feedback term a1e(n−1) + · · ·+ ane in v
makes the closed loop system stable within a uniform er-
ror bound. The term (w1d −w1)

Tθ̂1 in v compensates for
the nonlinear part of the system. The learning input ul

estimates the unknown desired input ud and also compen-
sates for the nonlinear part of the system. Substituting
(24) into (23) yields

e(n) = wT
1dθ1 −wT

1 θ1 +wT
2dθ2ud −a1e(n−1)−·· ·

−ane− (w1d −w1)
Tθ̂1 −wT

2dθ̂2ul

− wT
2 (θ2 − θ̂2)

wT
2 θ̂2

(v+wT
2dθ̂2ul). (25)

Moving the error terms to the left-hand side of (25), we
obtain the error dynamics as:

e(n)+a1e(n−1)+ · · ·+ane

= (w1d −w1)
Tθ̃1 +(wT

2dul −wT
2 u)θ̃2 +wT

2dθ2ũl

= wT
1eθ̃1 +wT

2eθ̃2 +wT
2dθ2ũl
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= wT
e θ̃ +wT

2dθ2ũl , (26)

where θ̃1 = θ1 − θ̂1 ∈ Rn1 , θ̃2 = θ2 − θ̂2 ∈ Rn2 , ũl = ud −
ul ∈ R, wT

1e = (w1d −w1)
T ∈ Rn1 , wT

2e = wT
2dul −wT

2 u ∈
Rn2 , wT

e = [wT
1e,wT

2e]∈ Rn1+n2 , and θ̃ = [θ̃ T
1 , θ̃ T

2 ]
T ∈ Rn1+n2 .

If the bias term wT
e θ̃ +wT

2dθ2ũl on the right hand side of
(26) is zero, then the closed-loop system would be asymp-
totically stable. However, the bias term prevents the track-
ing error e from being zero. Hence an adaptive learn-
ing mechanism must be used to estimate and cancel the
bias term. In the following theorem, we propose adaptive
learning laws for the system parameter θ1, input gain pa-
rameter θ2, and desired input ud .

Theorem 1: Consider the uncertain SISO nonlinear
system in (3) with Assumptions 1-5. Consider the con-
trol law as in (24) and choose θ̂1(t), θ̂2(t), ul(t) as

θ̂1(t) = θ̂1pr(t −T )+β1w1ebTPe, (27)

θ̂2(t) = θ̂2pr(t −T )+β2w2ebTPe, (28)

ul(t) = ul pr(t −T )+β3sgn(wT
2dθ2)bTPe, (29)

where

θ̂1pr(t −T ) = Proj(θ̂1(t −T ))

= [Proj(θ̂11(t −T )), ...,Proj(θ̂1n1(t −T ))]T , (30)

θ̂2pr(t −T ) = Proj(θ̂2(t −T ))

= [Proj(θ̂21(t −T )), ...,Proj(θ̂2n2(t −T ))]T , (31)

ul pr(t −T ) = Proj(ul(t −T )), (32)

and β1, β2, β3 are positive learning gains. If the con-
trol scheme satisfies the condition that wT

2 θ̂2 is bounded
away from zero, then the tracking error e, parameter er-
rors θ̃1 and θ̃2, and desired input error ũl are bounded,
and e asymptotically converges to the origin. Moreover,
ũl asymptotically converges to zero.

Proof: Applying the control input in (24) to the dy-
namics in the normal form in (3), we have (26) and error
dynamics in the state-space form as:

ė =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−an −an−1 · · · −a1

e+


0
...
0
1

(wT
e θ̃

+wT
2dθ2ũl)

= Ae+b(wT
e θ̃ +wT

2dθ2ũl), (33)

and obtain P by solving the Lyapunov equation
PA+ATP =−Q. Then, using this P, we first choose
the Lyapunov function candidate as:

V = eTPe+
∫ t

t−T

[
1
β1

θ̃ T
1 (τ)θ̃1(τ)+

1
β2

θ̃ T
2 (τ)θ̃2(τ)

+
|wT

2dθ2|
β3

ũ2
l (τ)

]
dτ. (34)

After taking the time derivative on each side of (34), we
get

V̇ = ėTPe+ eTPė

+
1
β1

(θ̃ T
1 (t)θ̃1(t)− θ̃ T

1 (t −T )θ̃1(t −T ))

+
1
β2

(θ̃ T
2 (t)θ̃2(t)− θ̃ T

2 (t −T )θ̃2(t −T ))

+
|wT

2dθ2|
β3

(ũ2
l (t)− ũ2

l (t −T ))

≤ ėTPe+ eTPė

+
1
β1

(θ̃ T
1 (t)θ̃1(t)− θ̃ T

1pr(t −T )θ̃1pr(t −T ))

+
1
β2

(θ̃ T
2 (t)θ̃2(t)− θ̃ T

2pr(t −T )θ̃2pr(t −T ))

+
|wT

2dθ2|
β3

(ũ2
l (t)− ũ2

l pr(t −T )). (35)

Subtracting θ1(t) = θ1(t −T ), θ2(t) = θ2(t −T ), ud(t) =
ud(t −T ) from (27)−(29), we have

θ̃1(t) = θ̃1pr(t −T )−β1w1ebTPe, (36)

θ̃2(t) = θ̃2pr(t −T )−β2w2ebTPe, (37)

ũl(t) = ũl pr(t −T )−β3sgn(wT
2dθ2)bTPe, (38)

where θ̃1pr(t−T ) = θ1(t−T )− θ̂1pr(t−T ), θ̃2pr(t−T ) =
θ2(t −T )− θ̂2pr(t −T ), ũl pr(t −T ) = ud(t −T )−ul pr(t −
T ).

Applying (36)−(38) to (35) gives

V̇ ≤ eT(PA+ATP)e+2eTPbwT
1eθ̃1(t)

+2eTPbwT
2eθ̃2(t)+2eTPbwT

2dθ2ũl(t)

−2eTPbwT
1eθ̃1pr(t −T )−2eTPbwT

2eθ̃2pr(t −T )

−2eTPbwT
2dθ2ũl pr(t −T )+β1eTPbwT

1ew1ebTPe

+β2eTPbwT
2ew2ebTPe+β3eTPb|wT

2dθ2|bTPe

= eT(PA+ATP)e+2eTPbwT
1e(θ̃1(t)− θ̃1pr(t −T ))

+2eTPbwT
2e(θ̃2(t)− θ̃2pr(t −T ))

+2eTPbwT
2dθ2(ũl(t)− ũl pr(t −T ))

+β1eTPbwT
1ew1ebTPe+β2eTPbwT

2ew2ebTPe

+β3eTPb|wT
2dθ2|bTPe

=−eTQe−β1eTPbwT
1ew1ebTPe

−β2eTPbwT
2ew2ebTPe−β3eTPb|wT

2dθ2|bTPe

=−eTMe
≤ 0, (39)

where M = Q + β1PbwT
1ew1ebTP + β2PbwT

2ew2ebTP +
β3Pb|wT

2dθ2|bTP is a positive definite matrix.
Because V (t) is decreasing, we have V (t)≤V (0)< ∞.

Thus, e ∈ L∞. θ̃1 ∈ L∞, θ̃2 ∈ L∞, ũl ∈ L∞, wT
1 ∈ L∞,
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and wT
2 ∈ L∞. Therefore, it can be easily derived that

ė = Ae+b(wT
e θ̃ +wT

2dθ2ũl) ∈ L∞. From V̇ ≤−eTQe, we
have∫ ∞

0
V̇ dt ≤−λmin(Q)

∫ ∞

0
||e||22dt, (40)

and ∫ ∞

0
||e||22dt ≤ V (∞)−V (0)

−λmin(Q)
=

V (0)
λmin(Q)

− V (∞)

λmin(Q)

<
V (0)

λmin(Q)
< ∞. (41)

Therefore, e ∈ L2. By corollary 1, e → 0 as t → ∞. As
a result, this closed loop system becomes asymptotically
stable.

Moreover, e → 0 implies that e(1), ...,e(n−1) → 0, and
wT

e → 0. Let e(n) → 0 as t → ∞. Then, all terms except
wT

2dθ2ũl in (26) become zero as t →∞. Therefore, wT
2dθ2ũl

needs to become zero as t → ∞. Because 0 < ḡ < |wT
2dθ2|

from Assumption 5, the desired input error ũl → 0.
The remaining part of the proof is to show that e(n) → 0

as t → ∞. Let ti, i = 0,1,2, ..., be a sequence satisfying
t0 = 0 and ti+1 − ti = T > 0. To establish e(n) → 0 as
t → ∞, we need to verify that e(n) = wT

1dθ1 +wT
2dθ2ud −

wT
1 θ1 −wT

2 θ2u is uniformly continuous on each interval
[ti, ti+1). This in turn requires u to be a bounded uniformly
continuous function on each interval [ti, ti+1). First, it can
be shown that the parameters θ̂1, θ̂2, and ul are bounded
functions from the parameter learning rules in (27)−(29),
and e → 0. Further we assume that θ̂1, θ̂2, and ul are uni-
formly continuous functions on each interval [ti, ti+1). Be-
cause wT

2 θ̂2 is a uniformly continuous function on each in-
terval [ti, ti+1) and is bounded away from zero, 1/(wT

2 θ̂2)
then becomes a bounded uniformly continuous function
on each interval [ti, ti+1). e is also a bounded uniformly
continuous function because e ∈ L∞ and ė ∈ L∞. Hence, it
follows that the control input u = 1/(wT

2 θ̂2) · (a1e(n−1) +
· · ·+ ane + (w1d −w1)

Tθ̂1 + wT
2dθ̂2ul) is a bounded uni-

formly continuous function on each interval [ti, ti+1). Con-
sequently, according to Lemma 1, e(n) → 0 as t → ∞. □

Remark 1: The estimated parameters θ̂1, θ̂2, and ul are
the sums of the tracking error e on each interval [ti, ti+1) as
in the learning rules in (27)−(29); therefore, these param-
eters are differentiable functions. Further, we use the for-
getting factor technique for the learning rules in (27)−(29)
as:

θ̂1(t) = λ1θ̂1pr(t −T )+β1w1ebTPe, (42)

θ̂2(t) = λ2θ̂2pr(t −T )+β2w2ebTPe, (43)

ul(t) = λ3ul pr(t −T )+β3sgn(wT
2dθ2)bTPe, (44)

where 0 < λ1,λ2,λ3 < 1 are the forgetting factors, and the
projection operator is redefined as Proj(x) ≡ tanh(x/xb)
where xb ∈ R is the upper bound of x. Then, assuming that

the derivatives of w1 and w2 are bounded, the derivatives
of θ̂1, θ̂2, and ul become bounded on each interval [ti, ti+1).
Because every function that is differentiable and has a
bounded derivative is uniformly continuous, the assump-
tion that θ̂1, θ̂2, and ul are uniformly continuous functions
on each interval [ti, ti+1) in theorem 1 is satisfied.

Remark 2: The boundedness of 1/wT
2 θ̂2 in the control

input u in (24) cannot be ensured by the learning rule in
(28), because this learning rule can generate the estimate
wT

2 θ̂2 arbitrarily close or even equal to zero. To guaran-
tee that wT

2 θ̂2 is bounded away from zero, we first assume
that sgn(θ2i) and a lower bound θ̄2i > 0 for |θ2i| are known
and the sign of w2i is the same as the sign of θ2i for all
i = 1, ...,n2. Then, we modify the adaptive learning rule
in (28) using the projection technique in [29] as follows:

θ̂2i(t) =


θ̂2ipr(t −T )

+β2(w2ebTP1ê)(i)

if |θ̂2i(t)|> θ̄2i(t)or
if |θ̂2i(t)|= θ̄2i(t) and

(w2ebTP1ê)(i)
·sgn(θ̂2i(t))≥ 0,

θ̂2ipr(t −T ) otherwise,
(45)

where the initial value θ̂2i(t) is chosen such that
θ̂2i(t)sgn(θ2i(t))≥ θ̄2i for all t ∈ [0,T ).

Remark 3: The control input and parameter learning
rules require knowledge of the state variables. Although
we used the output variable y throughout this paper, we
assume that the state variables are available.

Remark 4: The fundamental operating principle of
the ILC is to observe the periodic output signals for one
period, and then to generate the control output for the
next period. The ILC has been successfully used for hard
disk drive, process control, and power converter. These
systems have periodic reference signals and suffer from
the periodic disturbances. An adaptive learning controller
has also been dealt with these systems, and so periodicity
of the signals can be ensured.

However, in practice, the error between ideal periodic
signals and actual almost periodic signals can be accu-
mulated as the iteration increases, and it affects to the
performance of the control system. To solve this prob-
lem, several solutions have been proposed. A supervisory
adaptive scheme has been proposed to estimate the period
from on-line measurements [30, 31]. In order to improve
the capability of repetitive controllers for the case where
the periodicity cannot be ensured, a robust repetitive con-
troller has been proposed in [32]. Robustness of repetitive
controller can be achieved for small variations in the pe-
riod by using multiple memory-loops and correct design
of the coefficients.

Remark 5: Neural network/adaptive fuzzy based adap-
tive control techniques have been applied to a class of
nonlinear systems in [33–38]. These controllers can also
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estimate and compensate the unknown parameters in non-
linear systems so that they can precisely control these
systems. However, in practical applications, it requires
to set much more learning parameters compared to the
proposed adaptive controller.

3.2. Controller design for the MIMO system
We review below the dynamic equation (14) for the un-

certain MIMO nonlinear system and the dynamic equation
(19) for its desired system:

y(n1)
1
...

y(np)
p

=

 f1(x)
...

fp(x)

+A(x)

u1
...

up

 , (46)


y(n1)

1d
...

y(np)
pd

=

 f1(xd)
...

fp(xd)

+A(xd)

u1d
...

upd

 . (47)

Subtracting (46) from (47) and linearly parameterizing the
uncertain terms, we have

y(n1)
1d
...

y(np)
pd

−


y(n1)

1
...

y(np)
p

=

 f1(xd)
...

fp(xd)

−

 f1(x)
...

fp(x)



+A(xd)

u1d
...

upd

−A(x)

u1
...

up


= WT

1dθ1 −WT
1 θ1

+A(xd)ud −A(x)u. (48)

The control law is

u = Â(x)−1(v+ Â(xd)ul), (49)

where v = [v1, ...,vp]
T ∈ Rp, vi = ai1e(ni−1)

i + · · · +
aini ei + ((W1d −W1)

Tθ̂1)(i) ∈ R for all i = 1, ..., p,
e = [e1, ...,ep]

T ∈ Rn1+···+np , ei = [ei, ...,e
(ni−1)
i ] ∈ Rni , and

ei = yid − yi ∈ R for all i = 1, ..., p. The positive constants
ai1, ...,aini are chosen such that sni + ai1sni−1 + · · ·+ aini

becomes a Hurwitz polynomial for each i = 1, ..., p. The
vectors θ̂1 ∈ Rn1 , θ̂2 ∈ Rn2 , and ul ∈ Rp are to be learned
by the adaptive learning laws.

Substituting (49) into (48) yields
e(n1)

1
...

e(np)
p

= WT
1dθ1 −WT

1 θ1 +A(xd)ud −v

− Â(xd)ul + Â(x)Â(x)−1(v+ Â(xd)ul)

−A(x)Â(x)−1(v+ Â(xd)ul). (50)

Assigning v and moving the error terms to the left-hand
side of (50), we have

e(n1)
1 +a11e(n1−1)

1 + · · ·+a1n1 e1
...

e(np)
p +ap1e(np−1)

p + · · ·+apnp ep


= WT

1dθ1 −WT
1 θ1 +A(xd)ud − (W1d −W1)

Tθ̂1

− Â(xd)ul − (A(x)− Â(x))Â(x)−1(v+ Â(xd)ul)

= (W1d −W1)
Tθ̃1 +A(xd)ud − Â(xd)ul −A(xd)ul

+A(xd)ul − (A(x)− Â(x))u

= (W1d −W1)
Tθ̃1 +A(xd)ũl +(A(xd)− Â(xd))ul

− (A(x)− Â(x))u

= (W1d −W1)
Tθ̃1 +Σn2

i=1Ai(xd)(θ2i − θ̂2i)ul

−Σn2
i=1Ai(x)(θ2i − θ̂2i)u+A(xd)ũl

= (W1d −W1)
Tθ̃1 +Σn2

i=1(Ai(xd)ul −Ai(x)u)θ̃2i

+A(xd)ũl

= WT
1eθ̃1 +WT

2eθ̃2 +A(xd)ũl

= WT
e θ̃ +A(xd)ũl, (51)

where θ̃1 = θ1 − θ̂1 ∈ Rn1 , θ̃2 = θ2 − θ̂2 ∈ Rn2 ,
ũl = ud − ul ∈ Rp, WT

1e = (W1d −W1)
T, WT

2e =
[A1(xd)ul − A1(x)u, ...,An2(xd)ul − An2(x)u] ∈ Rp×n2 ,
WT

e = [WT
1e,WT

2e] ∈ R p×(n1+n2), and θ̃ = [θ̃ T
1 , θ̃ T

2 ]
T ∈

Rn1+n2 .
As we did for the SISO system, we propose the adap-

tive learning laws with input u in (49) in the following
theorem.

Theorem 2: Consider the uncertain MIMO nonlinear
system in (13) with the same assumptions. We define the
control law as in (49) and choose θ̂1(t), θ̂2(t), ul(t) as

θ̂1(t) = θ̂1pr(t −T )+β1W1eBTPe, (52)

θ̂2(t) = θ̂2pr(t −T )+β2W2eBTPe, (53)

ul(t) = ulpr(t −T )+β3BTPe, (54)

where

θ̂1pr(t −T ) = Proj(θ̂1(t −T ))

= [Proj(θ̂11(t −T )), ...,Proj(θ̂1n1(t −T ))]T , (55)

θ̂2pr(t −T ) = Proj(θ̂2(t −T ))

= [Proj(θ̂21(t −T )), ...,Proj(θ̂2n2(t −T ))]T , (56)

ulpr(t −T ) = Proj(ul(t −T ))

= [Proj(ul1(t −T )), ...,Proj(ul p(t −T ))]T , (57)

and β1, β2, β3 are the positive adaptation gains. If the con-
trol scheme satisfies the condition that Â(x) is invertible,
then the tracking error e, parameter errors θ̃1 and θ̃2, and
desired input error ũl are bounded, and e asymptotically
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converges to the origin. Moreover, ũl asymptotically con-
verges to zero.

Proof: Applying the control input from (49) to the dy-
namics in the normal form in (14), we rewrite (51) and the
error dynamics in the state-space form as:

ėi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−aini −ai(ni−1) · · · −ai1

ei +

0
...
1

(WT
e θ̃

+A(xd)ũl)(i)

= Aiei +b(WT
e θ̃ +A(xd)ũl)(i). (58)

We obtain Pi by solving PiAi +AT
i Pi =−Qi and construct

the matrices P, Q, A, and B by diagonalizing Pi, Qi, Ai,
and b for each i = 1, ..., p. Then, we obtain P by using
PA+ATP =−Q. Using this P, we choose the Lyapunov
function candidate as:

V = eTPe+
∫ t

t−T

[
1
β1

θ̃ T
1 (τ)θ̃1(τ)+

1
β2

θ̃ T
2 (τ)θ̃2(τ)

+
1
β3

ũT
l (τ)A(xd)ũl(τ)

]
dτ. (59)

By taking the time derivative on both sides of (59), we
have

V̇ = ėTPe+ eTPė

+
1
β1

(θ̃ T
1 (t)θ̃1(t)− θ̃ T

1 (t −T )θ̃1(t −T ))

+
1
β2

(θ̃ T
2 (t)θ̃2(t)− θ̃ T

2 (t −T )θ̃2(t −T ))

+
1
β3

(ũT
l (t)A(xd)ũl(t)− ũT

l (t −T )A(xd)ũl(t −T ))

≤ ėTPe+ eTPė

+
1
β1

(θ̃ T
1 (t)θ̃1(t)− θ̃ T

1pr(t −T )θ̃1pr(t −T ))

+
1
β2

(θ̃ T
2 (t)θ̃2(t)− θ̃ T

2pr(t −T )θ̃2pr(t −T ))

+
1
β3

(ũT
l (t)A(xd)ũl(t)− ũT

lpr(t −T )A(xd)

× ũlpr(t −T )). (60)

Subtracting θ1(t) = θ1(t − T ), θ2(t) = θ2(t − T ), and
ud(t) = ud(t −T ) from (52)−(54), we have

θ̃1(t) = θ̃1pr(t −T )−β1W1eBTPe, (61)

θ̃2(t) = θ̃2pr(t −T )−β2W2eBTPe, (62)

ũl(t) = ũlpr(t −T )−β3BTPe, (63)

where θ̃1pr(t−T ) = θ1(t−T )− θ̂1pr(t−T ), θ̃2pr(t−T ) =
θ2(t −T )− θ̂2pr(t −T ), ũlpr(t −T ) = ud(t −T )−ulpr(t −

T ).
Applying (61)−(63) to (60), we obtain

V̇ ≤ eT(PA+ATP)e+2eTPBWT
1eθ̃1(t)

+2eTPBWT
2eθ̃2(t)+2eTPBA(xd)ũl(t)

−2eTPBWT
1eθ̃1pr(t −T )−2eTPBWT

2eθ̃2pr(t −T )

−2eTPBA(xd)ũlpr(t −T )

+β1eTPBWT
1eW1eBTPe

+β2eTPBWT
2eW2eBTPe+β3eTPBA(xd)BTPe

= eT(PA+ATP)e+2eTPBWT
1e(θ̃1(t)− θ̃1pr(t −T ))

+2eTPBWT
2e(θ̃2(t)− θ̃2pr(t −T ))

+2eTPBA(xd)(ũl(t)− ũlpr(t −T ))

+β1eTPBWT
1eW1eBTPe

+β2eTPBWT
2eW2eBTPe+β3eTPBA(xd)BTPe

=−eTQe−β1eTPBWT
1eW1eBTPe

−β2eTPBWT
2eW2eBTPe−β3eTPBA(xd)BTPe

=−eTMe
≤ 0, (64)

where M=Q+β1PBWT
1eW1eBTP+β2PBWT

2eW2eBTP+
β3PBA(xd)BTP is a positive definite matrix. We can de-
rive e → 0 as t → ∞ as in the SISO system. Therefore,
this closed loop system becomes asymptotically stable.

As in the SISO system, A(xd)ũl → ∞ as t → 0 in the
MIMO system. Because A(xd) is a nonsingular matrix,
ũl → 0 as A(xd)ũl → 0. □

Remark 6: In the early stage of learning, the linear
controller is dominant over the learning input ul, but role
exchange occurs after sufficient learning from the result
ũl → 0 as t → ∞ in theorem 1. Consequently, inverse
dynamics model will be formed in the feedforward con-
troller.

Remark 7: The high-gain feedback technique offers a
simple and useful approach to control the uncertain non-
linear systems. However, in practice, the feedback gain
cannot be made arbitrarily large due to practical prob-
lems such as actuator saturation, unmodelled dynamics
and noise vulnerability [8]. The proposed AILC chooses
an appropriate feedback gain (i.e. linear controller gain)
at the initial stage of learning to ensure that the tracking
error stays within a uniform bound. Then, the tracking
error converges to zero as the repetition of the learning
operation increases, so the proposed AILC is more robust
to practical problems than is the high-gain feedback tech-
nique.

The AILCs without input learning technique can con-
trol uncertain nonlinear systems [15–19]. The difference
lies in that the learning input in the proposed AILC can
learn the desired input after sufficient learning (Remark
6). After sufficient learning has occurred, the learning
input becomes dominant, so the feedback gain can be
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reset to a small value. Therefore, the proposed AILC is
also more robust to practical problems than is the AILCs
without input learning.

Remark 8: The proposed AILC can be compared with
other AILCs with input learning technique [24, 25]. In
[24], they consider the SISO nonlinear systems in the nor-
mal form and the cascade form with no parameterization
in system uncertainty. In [25], they consider the SISO
partially feedback linearizable system, where the system
uncertainty is nonparameterizable and the input gain is
an unknown constant of known sign. In our paper, we
consider the uncertain MIMO nonlinear systems in the
normal form with unknown parameters in both the system
uncertainty and the input gain uncertainty. Moreover, we
consider the convergence of learning input error by means
of lemma 1 whereas, in [24], they consider only the ex-
istence of the learning input. Further, the input learning
rule in the proposed AILC is simpler than that in [25].

4. SIMULATION RESULTS

4.1. Single-link manipulator
A single-link manipulator is used to simulate the perfor-

mance of the proposed adaptive iterative learning control
scheme. The dynamics of this manipulator is given as:

q̈ =
0.5m0 +M0

J
gl sinq+

1
J

τ, (65)

where the moment of inertia of the joint is J = M0l2 +
m0l2/3. We set the tip load m0 = 2 kg, the length of the
link l = 0.5 m, the mass of the link M0 = 4 kg, and the
gravitational acceleration g = 9.8 m/s2. We consider the
desired trajectory yd = 1

2 cos 2πt
T with period T = 1 s, and

set the initial conditions q(0) = [1/2,0]T .
Denoting x = [q, q̇]T , y = h(x) = q, and u = τ , we for-

mulate the following dynamic equation

ÿ = f (x)+g(x)u, (66)

where

f (x) =
0.5m0 +M0

J
gl sinx1, (67)

g(x) =
1
J
. (68)

Denoting θ1 =
0.5m0+M0

J gl and θ2 =
1
J , we linearly param-

eterize f (x) and g(x) as

f (x) = sinx1 ·θ1 = w1θ1, (69)

g(x) = 1 ·θ2 = w2θ2. (70)

We implement the control input u based on the control
law

u =
1

w2θ̂2
(a1ė+a2e+(w1d −w1)θ̂1 +w2d θ̂2ul),

(71)

where a1 = 5, a2 = 50, and e = yd − y. We obtain P by
solving PA+ATP =−Q where

A =

[
0 1

−a2 −a1

]
, Q =

[
1 0
0 1

]
, (72)

and

b =

[
0
1

]
. (73)

Using P and b, we choose the parameters θ̂1(t), θ̂2(t),
ul(t) as

θ̂1(t) = θ̂1pr(t −T )+β1w1ebTPe, (74)

θ̂2(t) = θ̂2pr(t −T )+β2w2ebTPe, (75)

ul(t) = ul pr(t −T )+β3bTPe, (76)

∀t ∈ [T,∞) where β1 = 1 × 10−2, β2 = 1 × 10−5, β3 =
7× 10−1, e = [e, ė]T , w1e = w1d −w1, and w2e = w2dul −
w2u. The initial parameter values are set to θ̂1(t) = 0.9θ1,
θ̂2(t) = 0.95θ2, and ul(t) = 0, ∀t ∈ [0,T ). For the pro-
jections, θ̂1, θ̂2, and ul , bounds are set to θ̂ b

1 = 1.2θ1,
θ̂ b

2 = 1.2θ2, and ub
l = 100, respectively. The sampling pe-

riod is set to 5 ms, and we simulate this example for 60 s
with Matlab software.

We apply input u in (71) with the parameter learning
rules in (74)−(76) to the single-link manipulator system
in (66). As shown in Fig. 2, the root mean square (rms)
error of the joint position and joint velocity decreases as
the repetition of the learning operation increases. In the-
orem 1, result ũl → 0 is obtained as t → ∞. In this sim-
ulation, this result cannot be derived directly, because the
actual value of the desired input ud is unknown. However,
u ≃ ud can be deduced as t → ∞ from the fact that the rms
error of the joint position and joint velocity become zero.
Therefore, the input error ue = u−ul goes to zero as learn-
ing proceeds, as shown in Fig. 3. As a result, ũl → 0 is
inferred as t → ∞.

The ALC without input learning has been proposed in
SISO systems [15, 16] and can also control the SISO sys-
tems (Fig. 4). The difference lies in that the learning input
in the proposed ALC can learn the desired input after suf-
ficient learning. After sufficient learning occurs, the learn-
ing input becomes dominant, and so the feedback gain
in linear controller can be reset to a small value. Then,
the proposed ALC becomes more robust to practical prob-
lems such as actuator saturation, unmodelled dynamics
and noise vulnerability than that without input learning.

4.2. Two-link manipulator
A two-link manipulator (Fig. 5) is used to simulate the

performance of the proposed learning controller in uncer-
tain MIMO nonlinear system. It is worth highlighting that
two-link manipulator is formulated as uncertain MIMO
nonlinear system in the normal form for the first time.
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Fig. 2. Rms errors of the joint position and velocity with
parameter learning. Solid red line: the rms error of
the joint position q; solid red line: the rms error of
the joint velocity q̇.
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Fig. 3. The input error ue = u−ul with parameter learning
as the task is repeated.

Repetition

0 100 200 300 400 500 600 700 800

R
m

s
 e

rr
o
rs

 o
f 
jo

in
t 
p
o
s
it
io

n
 (

ra
d
) 

a
n
d
 v

e
lo

c
it
y
 (

ra
d
/s

)

0

0.5

1

1.5

2

2.5

3

Fig. 4. Rms errors of joint position and velocity without
input learning. Solid red line: the rms error of the
joint position q; solid red line: the rms error of the
joint velocity q̇.

Fig. 5. The two-link manipulator configuration. mi, li, and
qi represent the mass, length, and joint position,
respectively.

The dynamic equation of this manipulator is given as
[39]:

M(q)q̈+C(q, q̇)q̇+G(q) = τ, (77)

where

M(q) =

m2l2
2 +2m2l1l2c2

+(m1 +m2)l2
1

m2l2
2

+m2l1l2c2

m2l2
2 +m2l1l2c2 m2l2

2

 , (78)

C(q, q̇) =
(
−2m2l1l2s2q̇2 −m2l1l2s2q̇2

m2l1l2s2q̇1 0

)
, (79)

G(q) =
(

m2l2gs12 +(m1 +m2)l1gs1

m2l2gs12

)
, (80)

where q = [q1,q2]
T , s1 = sinq1, s2 = sinq2, c2 = cosq2,

s12 = sin(q1 +q2), m1 = 20 kg, m2 = 10 kg, l1 = 2 m,
l2 = 1 m, and g = 9.8 m/s2, and the proportional con-
stant k = 2 is known when m1 = km2. We consider the
desired trajectory yd = [ 1

2 sin 2πt
T , 1

2 cos 2πt
T ]T with period

T = 3 s and set the initial conditions q(0) = [0,1/2]T , and
q̇(0) = [π/3,0]T .

Denoting x = [q1,q2, q̇1, q̇2]
T , y1 = h1(x) = q1,y2 =

h2(x)= q2 and u= τ , we formulate the following dynamic
equation[

ÿ1

ÿ2

]
=

[
f1(x)
f2(x)

]
+A(x)u, (81)

where[
f1(x)
f2(x)

]
=−M−1(q)(C(q, q̇)q̇+G(q)), (82)

A(x) = M−1(q). (83)

Denoting θ11 = l2/l1, θ12 = 1, θ13 = g/l1, θ14 = 3g/l1,
θ15 = 3g/l2, θ16 = 3l1/l2, θ21 = 1/m2l2

1 , θ22 = 1/m2l1l2,
and θ23 = 3/m2l2

2 , we linearly parameterize [ f1(x), f2(x)]T
and A(x) as[

f1(x)
f2(x)

]
=

l2
l1

(
(2s2q̇1q̇2 + s2q̇2

2 + s2q̇2
1)/(3− c2

2)
−(2s2q̇1q̇2 + s2q̇2

2 + s2q̇2
1)/(3− c2

2)

)
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+

 (s2c2q̇2
1)/(3− c2

2)
−(2s2c2q̇1q̇2 + s2c2q̇2

2 +2s2c2q̇2
1)

/(3− c2
2)


+

g
l1

(
(c2s12)/(3− c2

2)
−(c2s12)/(3− c2

2)

)
+

3g
l1

(
−s1/(3− c2

2)
s1/(3− c2

2)

)
+

3g
l2

(
0

−(s12 − s1c2)/(3− c2
2)

)
+

3l1
l2

(
0

−(s2q̇2
1)/(3− c2

2)

)
= Σ6

i=1wT
1iθ1i = WT

1 θ1, (84)

A(x) =
1

m2l2
1

(
1/(3− c2

2) −1/(3− c2
2)

−1/(3− c2
2) 1/(3− c2

2)

)
+

1
m2l1l2

(
0 −c2/(3− c2

2)
−c2/(3− c2

2) 2c2/(3− c2
2)

)
+

3
m2l2

2

(
0 0
0 1/(3− c2

2)

)
= Σ3

i=1Ai(x)θ2i. (85)

We implement the control input u based on the control
law [

u1

u2

]
= Â(x)−1

(a11ė1 +a12e1
+((W1d −W1)

Tθ̂1)(1)
a21ė2 +a22e2

+((W1d −W1)
Tθ̂1)(2)


+ Â(xd)

[
u1l

u2l

])
, (86)

where a11 = 1, a12 = 4, a21 = 2, a22 = 16, e1 = y1d − y1,
e2 = y2d − y2 and Â(x) = Σ3

i=1Ai(x)θ̂2i. We obtain Pi by
solving PiAi +AT

i Pi =−Qi for all i = 1,2 where

A1 =

[
0 1

−a12 −a11

]
,A2 =

[
0 1

−a22 −a21

]
, (87)

Q1 = Q2 =

[
1 0
0 1

]
, (88)

and

b1 = b2 =

[
0
1

]
. (89)

By diagonalizing P1, P2, b1, and b2, we obtain P and B.
We choose parameters θ̂1(t), θ̂2(t), ul(t) using P and B
with adaptive learning laws as

θ̂1(t) = θ̂1pr(t −T )+β1W1eBTPe, (90)

θ̂2(t) = θ̂2pr(t −T )+β2W2eBTPe, (91)

ul(t) = ulpr(t −T )+β3BTPe, (92)

∀t ∈ [T,∞) where β1 = 2 × 10−4, β2 = 2 × 10−6,
β3 = 7× 10−1, e = [e1, ė1,e2, ė2]

T , WT
1e = (W1d −W1)

T,
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Fig. 6. Rms errors of joint 1 with parameter learning.
Solid blue line: the rms error of the joint position
q1; solid red line: the rms error of the joint velocity
q̇1.
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Fig. 7. Rms errors of joint 2 with parameter learning.
Solid blue line: the rms error of the joint position
q2; solid red line: the rms error of the joint velocity
q̇2.

and WT
2e = [A1(xd)ul −A1(x)u, A2(xd)ul −A2(x)u,

A3(xd)ul −A3(x)u]. The initial parameter values were
set to θ̂1(t) = 0.95θ1, θ̂2(t) = 0.95θ2, and ul(t) = 0
∀t ∈ [0,T ). For the projections, the θ̂1, θ̂2, and ul bounds
are set to θ̂ b

1 = 1.2θ1, θ̂ b
2 = 1.2θ2, ub

l = [200,200]T , re-
spectively. The sampling period was set to 5 ms, and we
simulated this example for 900 s with Matlab software.

We applied input u in (86) with the parameter learn-
ing rules to the two-link manipulator system in (81). The
proposed learning controller performed poorly at the ini-
tial stage because of parameter mismatch (Figs. 6 and 7).
However, as the number of repetitions of the learning op-
eration increased, rms errors for the joint positions and
joint velocities both decreased. In addition, the input error
ue = u−ul became zero as learning proceeded (Fig. 8).
Namely, ũl → 0 as t → ∞.
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Fig. 8. The input error ue = u−ul with parameter learn-
ing as the task is repeated. Solid blue line: the
input error u1e = u1 −u1l ; solid red line: the input
error u2e = u2 −u2l .

5. CONCLUSION

A new AILC approach has been proposed for uncertain
MIMO nonlinear systems in the normal form. The pro-
posed AILC learns the system and input gain parameters
as well as the desired input. Compared with the existing
results in AILC, the AILC with input learning is first de-
veloped for the uncertain MIMO nonlinear systems in the
normal form; the input learning rule is simple, and so it
can be easily implemented in industrial applications. The
tracking error and desired input error signal asymptoti-
cally converge to zero, and the error signals are bounded in
the learning control system. Single-link and two-link ma-
nipulators are presented as simulation examples to demon-
strate the validity of the proposed controller.
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