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Pinning Exponential Synchronization of Nonlinearly Coupled Neural Net-
works with Mixed Delays via Intermittent Control
Jian-An Wang* and Xin-Yu Wen

Abstract: This paper is concerned with the exponential synchronization problem of nonlinearly coupled neural
networks with mixed delays. By employing the intermittent control strategy, several appropriate linear and adaptive
pinning controllers are designed in each control period. With the help of a new differential inequality, some condi-
tions are proposed to guarantee that the coupled networks can realize pinning synchronization exponentially. The
minimum number of pinned nodes is determined by using high-degree pinning scheme. Two numerical examples
are provided finally to demonstrate the effectiveness of the theoretical results.
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1. INTRODUCTION

In the past decades, due to the successful applications
in various engineering fields, neural networks have drawn
close attention [1,2]. The practical applications mainly de-
pend on the dynamic behavior of neural networks. Time
delay is unavoidably encountered be-cause of the finite
signal propagation time, which may destroy dynamical
behaviors or exhibit some complex dynamics and even
chaotic behaviors [3–6]. When the signal propagation is
instantaneous, it can be modeled by discrete delay. When
the signal propagation exists during a certain time period,
the distributed delay is a useful description. Therefore,
mixed delays (both discrete delay and distributed delay)
should be considered when modeling a realistic neural net-
work [7].

Recently, as an important and interesting phenomenon
in complex networks, synchronization has been widely in-
vestigated by many researchers. Sometimes, coupled net-
works can achieve synchronization by the interaction of
intrinsic dynamical behavior of nodes, topological struc-
ture and communication way [8–10]. But in most cases,
synchronization cannot be obtained by themselves. Ac-
cordingly, some control injections should be applied to
force the coupled systems to synchronize [11–20]. It is
impossible to add controllers to all nodes in a large-scale
coupled network. To reduce the number of controlled
nodes, pinning control is a natural idea and has been em-
ployed in the study of synchronization for coupled dynam-
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ical networks [21–24]. On the other hand, period-ically in-
termittent control has been broadly explored due to the ad-
vantages in practical applications and reducing economic
cost. In this kind of control strategy, each period usually
contains two types of time: work time and rest time. The
controllers are activated in each work time and is off in the
rest time. To further reduce the control cost and amount
of transmitted information, combining pinning control and
intermittent control together is thus of meaningful, and a
great many achievements have been acquired in [25–28].

As a special case of complex networks, delayed neural
networks can also exhibit some chaotic behaviors. Hence,
synchronization of delayed chaotic neural networks has
become a research focus in control field nowadays, see
[29–31] for some recent works. Furthermore, an array
of coupled neural networks has been found to exhibit
more complicated behaviors and its synchronization has
been one of the attractive and challenging research. For
the synchronization stability problems of coupled neural
net-works, some sufficient conditions based on linear ma-
trix inequality were developed in [32–36]. Some control
strategies are also introduced to realize synchronization
if the coupled neural network cannot synchronize by it-
self. The impulsive control was utilized to investigate
the synchronization of coupled neural networks in [37].
In [38], the randomly occurring control was introduced
to deal with the distributed synchronization of stochastic
coupled neural networks. The pinning synchronization of
linearly coupled neural networks with delayed coupling
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was investigated in [39]. The synchronization problems of
linearly coupled reaction-diffusion neural networks were
discussed in [40, 41]. On the basis of T-S fuzzy theory,
chaotic synchronization for coupled neural net-works was
studied in [42].

Up to now, some researches have been carried out in
the synchronization of coupled neural networks via pin-
ning control. However, there are few theoretical results fo-
cusing on pinning intermittent synchronization of coupled
neural networks. Recently, in the work of [43], the authors
have first concerned with the pinning syn-chronization of
linear coupled neural networks with mixed delays via lin-
ear intermittent control. Due to the main results derived
in [43] based on the generalized Halanay inequality, two
restrictive conditions were imposed, one is the control
width should be larger than the time delay, and the other
is the time delay should be smaller than the non-control
width. The disadvantage of this approach is the difficulty
of choosing the control period and control width, which
would lead to restrict its scope of real applications. These
two conditions also involved in the intermittent synchro-
nization of delayed dynamical networks [27]. Although
there were some results for relaxing these two conserva-
tive conditions [25, 26], they can not be used to deal with
the systems with distributed delay. On the other hand, to
give a more precise and realistic description of coupled
networks, it is necessary and important to take the nonlin-
ear coupling into account in practical applications [10,28].
It is still an interesting but difficult task to investigate the
synchronization of nonlinearly coupled neural networks
with by using the intermittent pinning control.

Motivated by the above discussions, this paper devotes
to investigate the pinning synchronization problem of non-
linearly coupled neural networks with mixed delays by us-
ing periodically intermittent control. By adding linear and
adaptive periodically intermittent controllers to a small
fraction of nodes respectively, some conditions are devel-
oped based on a novel differential inequality. Moreover,
we can find that the minimum number of pinned nodes
is determined by using high-degree pinning scheme. In
addition, for the linear feedback pinning scheme, we can
obtain the domain of the feedback gains. Two numerical
examples are given to demonstrate the effectiveness of the
proposed methods.

2. PROBLEM FORMULATION

Consider an array of nonlinearly coupled neural net-
works with mixed delays, which is characterized by

ẋi(t) =−Dxi(t)+A f (xi(t))+B f (xi(t − τ1(t)))

+E
∫ t

t−τ2(t)
f (xi(v))dv+ J(t)

+ c
N

∑
j=1

gi jΓh(x j(t))+ui(t), i = 1,2, · · · ,N,

(1)

where xi = (xi1,xi2, · · · ,xin)
T ∈ Rn is the state variable

of the ith neural network. D = diag{d1,d2, ...,dn} > 0,
A = (ai j) ∈ Rn×n, B = (bi j) ∈ Rn×n, and E = (ei j) ∈ Rn×n

are, respectively, the connection weight matrix, the dis-
cretely delayed connection weight matrix and the dis-
tributively delayed connection weight matrix. f (xi(t)) =
( f1(xi1(y)), f2(xi2(t)), ..., fn(xin(t))T is the neuron activa-
tion function. J(t) = (J1(t),J2(t), ...,Jn(t))T is the ex-
ternal input vector of each neural network. τ1(t) ∈
[0,τ1] and τ2(t) ∈ [0,τ2] denote the discrete delay and
distributed delay, respectively. ui(t) ∈ Rn is the con-
trol input to be designed later. c > 0 is the coupling
strength, and Γ = diag{γ1,γ2, ...,γn} > 0 is the inner-
coupling matrix between neural network nodes. h(xi(t))=
(g(xi1(t)),g(xi2(t)), ...,g(xin(t))T is the nonlinear coupling
function. G = (gi j) ∈ RN×N denotes the coupling con-
figuration matrix. If there is a connection between node
i and node j (i ̸= j), then gi j = g ji > 0; otherwise,
gi j = g ji = 0. The diagonal elements of G is defined as
gii =−∑N

j=1, j ̸=i gi j.
Remark 1: In the work of [43], a neural network with

mixed delays (discrete delay and distributed delay) was
considered as node. The two delays were assumed to be
the same constant. In this paper, the mixed delays are not
only time-varying but also different. What is more, we
consider the nonlinear coupling phenomenon, which has
not been considered in [43]. In this regards, the coupled
neural networks (1) is an extension of [43].

In this paper, we assume that s(t) be the isolated neural
network of system (1), which is described by

ṡ(t) =−Ds(t)+A f (s(t))+B f (s(t − τ1(t)))

+E
∫ t

t−τ2(t)
f (s(v))dv+ J(t), (2)

where s(t) = (s1(t),s2(t), · · · ,sn(t))T ∈ Rn.
Denote τ = max{τ1, τ2}. Let C([−τ,0], Rn) be the Ba-

nach space of continuous functions mapping the interval
[−τ,0] into Rn with the norm ∥ϕ∥ = sup−τ≤θ≤0 ∥ϕ(θ)∥,
where ∥·∥ is the Euclidean norm. Then the rigorous math-
ematical definition of exponential synchronization of cou-
pled networks (1) is defined as follows:

Definition 1: Let xi(t; t0;ϕ), i = 1, ..., N be a solution of
coupled network (1), where ϕ = (ϕ T

1 ,ϕ T
2 , · · · ,ϕ T

N )
T , ϕi =

ϕi(θ) ∈ C([−τ,0], Rn) are the initial conditions. If there
exist constants ε > 0, λ > 0 and a non-empty subset Λ ⊆
Rn such that ϕi take values in Λ and xi(t; t0;ϕ) ∈ Rn for all
t ≥ t0 and

lim
t→∞

∥xi(t; t0;ϕ)− s(t; t0;s0)∥

≤ εe−λ t sup
−τ≤θ≤0

∥ϕi(θ)− s0∥ . (3)



1560 Jian-An Wang and Xin-Yu Wen

Then coupled neural networks (1) is said to realize expo-
nential synchronization.

To proceed further, the following assumptions and use-
ful lemmas are needed.

Assumption 1 [43]: Assume that there exist positive
constants li > 0 (i = 1, 2, · · · , n), such that

| fi(x)− fi(y)| ≤ li |x− y| (4)

hold for any x, y ∈ R.
Assumption 2 [10]: Assume that there exist positive

constants α and β , such that

α ≤ h(x)−h(y)
x− y

≤ β (5)

holds for any x, y ∈ R.
Remark 2: Assumption 1 is the usual Lipschitz-type

condition [43] for activation function, and Assumption 2
is as same as that in [10]. These two assumptions are rea-
sonable and frequently used in the study of synchroniza-
tion of coupled neural networks.

Lemma 1 [23]: Assume that A, B are N by N Hermitian
matrices. Let α1 ≥ α2 ≥ ·· · ≥ αN , β1 ≥ β2 ≥ ·· · ≥ βN ,
and γ1 ≥ γ2 ≥ ·· · ≥ γN be eigenvalues of A, B and A+B,
respectively. Then, one has αi +βN ≤ γi ≤ αi +β1, i = 1,
2, · · · , N.

Lemma 2 [23]: For a diagonal matrix K =
diag(k1, ...,kl ,0, ...,0︸ ︷︷ ︸

N−l

) with ki > 0 (i = 1, ..., l, 1 ≤ l ≤ N)

and a symmetric matrix M ∈ RN×N , let M − K =(
E − K̄ S

ST Ml

)
, where Ml is the minor matrix of M

by removing its first l (1 ≤ l < N) row-column pairs,
E and S are matrices with appropriate dimensions,
K̄ = diag(k1, ...,kl). If ki > λmax(E − SM−1

l ST ), then
M−K < 0 is equival-ent to Ml < 0.

Lemma 3 [17]: If G = (gi j) ∈ RN×N satisfies gi j = g ji

and gii = −∑N
j=1, j ̸=i gi j, i, j = 1, 2, · · · , N, then for any

two vectors x = [x1,x2, · · · ,xN ]
T and y = [y1,y2, · · · ,yN ]

T ,
we have

xT Gy =
N

∑
i=1

N

∑
j=1

xigi jy j =−∑
j>1

gi j(xi − x j)(yi − y j).

(6)

Lemma 4 Suppose that function y(t) is continuous and
non-negative when t ∈ [−τ, ∞] and satisfies the following
condition

ẏ(t) =−r1y(t)+ r3y(t − τ1(t))+ r4

∫ t

t−τ2(t)
y(s)ds,

mT ≤ t < mT +θT,

ẏ(t) = r2y(t)+ r3y(t − τ1(t))+ r4

∫ t

t−τ2(t)
y(s)ds,

mT +θT ≤ t < (m+1)T,
(7)

where r1, r2, r3, r4, T and 0 < θ < 1 are some positive
constants, and m = 0, 1, 2, · · · . If

r1 > r3,

ρ = ζ − γ(1−θ)> 0, (8)

then y(t)≤ sup
−τ≤s≤0

y(s)exp{−ρt}, t ≥ 0, where γ = r1+r2

and ζ > 0 is the unique positive solution of the equation
ζ − r1 + r3 exp{ζτ}− r4

ζ + r4
ζ exp{ζτ}= 0.

The explicit proof of Lemma 4 is given in the Appendix.
It is noted that, Lemmas 3 and 4 in [43] provided the solu-
tion for different integral inequalities with distributed de-
lay, respectively. There were two restrictive conditions at-
tached while deriving the main results under intermittent
strategy in [43]. In comparison with the lemmas used in
[43], the proposed Lemma 4 makes two working states of
intermittent strategy to unify in together. When the dis-
tributed time-delay is not involved in (8), Lemma 4 re-
duces to Lemma 1 of [26]. Therefore, the conclusion of
Lemma 4 contains some previous results as special case.

3. MAIN RESULTS

In this section, we will investigate the exponential syn-
chronization of coupled neural networks (1) via differ-
ent pinning intermittent control schemes: linear feedback
control and adaptive control, which will be stated below in
different subsections. Before giving the main results, for
the sake of presentation simplicity, we denote

Q =−D+
AAT +BBT +EET

2
+

1
2

L2In,

L = max
1≤i≤n

{li}, ρ1 =
λmax(Q)+ 1

2 a1

λmin(Γ)
,

ρ2 =
λmax(Q)− 1

2 (a2 −a1)

λmin(Γ)
,

M = ρ1IN + cαG, M̃ = ρ2IN + cαG,

M−K =

(
F − K̄ S

ST Ml

)
,

where IN be an N-dimensional identity matrix, λmax(Q)
is the maximal eigenvalue of Q, λmin(Γ) is the mini-
mum eigenvalue of Γ, a1 and a2 are positive constants
to be designed latter, K = diag(k1, ...,kl ,0, ...,0︸ ︷︷ ︸

N−l

), K̄ =

diag(k1, ...,kl), Ml is the minor matrix of M by remov-
ing its first l (1 ≤ l < N) row-column pairs, F and S are
matrices with appropriate dimensions.

3.1. Pinning exponential synchronization via the lin-
ear intermittent control

Let ei(t) = xi(t)− s(t) be the synchronization error. With-
out loss of generality, assume that the first l nodes are se-
lected and pinned with the linear intermittent controllers,



Pinning Exponential Synchronization of Nonlinearly Coupled Neural Networks with Mixed Delays via Intermittent ... 1561

which are defined as follows:

ui(t) =


−kiΓei(t), t ∈ [mT, mT +T1) , 1 ≤ i ≤ l,

0, t ∈ [mT, mT +T1) , l +1 ≤ i ≤ N,

0, t ∈ [mT +T1, (m+1)T ) , 1 ≤ i ≤ N,

(9)

where ki > 0 are control gains, T > 0 is the control pe-
riod, 0 < T1 < T is the control width, and m = 0, 1, 2, ....
Let θ = T1/T be the ratio between T1 and T . The error
dynamics is governed by

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t))

− kiei(t), t ∈ [mT, mT +θT ) , 1 ≤ i ≤ l,

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t)),

t ∈ [mT, mT +θT ) , l +1 ≤ i ≤ N,

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t)),

t ∈ [mT +θT, (m+1)T ), 1 ≤ i ≤ N,

(10)

where f̂ (ei(t)) = f (xi(t))− f (s(t)).
Theorem 1: If the control gains can be sufficiently

large and there exist positive constants a2 > a1 > 0 such
that

ρ1 + cαλmax(Gl)< 0, (11)

ρ2 < 0, (12)

a1 > L2, (13)

ρ = ζ −a2(1−θ)> 0, (14)

ki > λmax(F −SM−1
l ST ), (15)

where ζ > 0 is the unique positive solution of the equa-
tion ζ −a1+L2 exp{ζτ}− L2

ζ + L2

ζ exp{ζτ}= 0. Then the
synchronization of coupled networks (1) can be achieved
under the linear pinning intermittent controllers (9).

Proof: Construct the following standard Lyapunov
function

V (t) =
1
2

N

∑
i=1

eT
i (t)ei(t). (16)

When mT ≤ t < mT +θT , taking the derivative of V(t)
with respect to time t along the solutions of error system
(10) yields

V̇ (t) =
N

∑
i=1

eT
i (t)[−Dei(t)+A f̂ (ei(t))

+B f̂ (ei(t − τ1(t)))+E
∫ t

t−τ2(t)
f̂ (ei(v))dv]

+ c
N

∑
i=1

N

∑
j=1

eT
i (t)gi jΓh(e j(t))−

l

∑
i=1

kieT
i (t)Γei(t).

(17)

Let W (t) = ∑N
i=1 eT

i (t)[−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t −
τ1(t))) + E

∫ t
t−τ2(t) f̂ (ei(v))dv]. In view of assumption 1

and the Jensen inequality, we have

W (t)≤−
N

∑
i=1

eT
i (t)Dei(t)

+
1
2

N

∑
i=1

[eT
i (t)AAT ei(t)+ f̂ T (ei(t)) f̂ (ei(t))]

+
1
2

N

∑
i=1

[eT
i (t)BBT ei(t)

+ f̂ T (ei(t − τ1(t))) f̂ (ei(t − τ1(t)))]

+
1
2

N

∑
i=1

[eT
i (t)EET ei(t)

+(
∫ t

t−τ2(t)
f̂ (ei(v))dv)T

∫ t

t−τ2(t)
f̂ (ei(v))dv]

≤−
N

∑
i=1

eT
i (t)Dei(t)

+
1
2

N

∑
i=1

[eT
i (t)AAT ei(t)+L2eT

i (t)ei(t)]

+
1
2

N

∑
i=1

[eT
i (t)BBT ei(t)

+L2eT
i (t − τ1(t))ei(t − τ1(t))]

+
1
2

N

∑
i=1

[eT
i (t)EET ei(t)

+L2
∫ t

t−τ2(t)
eT

i (v)ei(v)dv]

≤λmax(Q)eT (t)e(t)

+
1
2

L2eT (t − τ1(t))e(t − τ1(t))

+
1
2

L2
∫ t

t−τ2(t)
eT (v)e(v)dv, (18)

where e(t) = (eT
1 (t),e

T
2 (t), ...,e

T
n (t))

T .
Denote ẽk(t) = [e1k(t), e2k(t), · · · , eNk(t)]T , and

h̃(ẽk(t)) = [g(x1k(t))− g(sk(t)), g(x2k(t))− g(sk(t)), · · · ,
g(xNk(t))−g(sk(t))]T . It follows from Lemma 3 that

N

∑
i=1

N

∑
j=1

eT
i (t)gi jΓh(e j(t))

=
n

∑
k=1

γkẽT
k (t)Gh̃(ek(t))

=−
n

∑
k=1

γk ∑
j>i

Gi j(xik(t)− x jk(t))(g(xik(t))−g(x jk(t)))
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≤−α
n

∑
k=1

γk∑
j>i

Gi j(xik(t)−x jk(t))(g(xik(t))−g(x jk(t)))

= α
n

∑
k=1

γkẽT
k (t)Gẽk(t) = α

N

∑
i=1

N

∑
j=1

eT
i (t)gi jΓe j(t).

(19)

From (18) and (19), we have

V̇ (t)≤
λmax(Q)+ 1

2 a1

λmin(Γ)
eT (t)(IN ⊗Γ)e(t)

− a1

2
eT (t)e(t)+

1
2

L2eT (t − τ1(t))e(t − τ1(t))

+
1
2

L2
∫ t

t−τ2(t)
eT (v)e(v)dv

+ eT (t)((cαG−K)⊗Γ)e(t)

=eT (t)((M−K)⊗Γ)e(t)−a1V (t)

+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv (20)

It is obvious to see that M is symmetric. According
to Lemma 2, if one can select ki > λmax(F − SM−1

l ST ),
then M −K < 0 is equivalent to Ml < 0. Based on the
condition (11) and Lemma 1, we have λmax(Ml) ≤ ρ1 +
cαλmax(Gl)< 0, which implies that Ml < 0. Then, we can
obtain

V̇ (t)≤−a1V (t)+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv.

(21)

When mT +θT ≤ t < (m+1)T , by differentiating V(t)
along the trajectories of error system (10), we have

V̇ (t)≤eT (t)(M̃⊗Γ)e(t)+(a2 −a1)V (t)

+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv. (22)

By using Lemma 1 and Lemma 1 in [8], we have
λmax(M̃) ≤ ρ2 + cαλmax(G) = ρ2. If the given condition
in (12) is satisfied, it is easy to have M̃ < 0. Then we can
obtain

V̇ (t)≤(a2 −a1)V (t)+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv.

(23)

Together with (21) and (23), we have

V̇ (t)≤−a1V (t)+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv,

mT ≤ t < mT +θT,

V̇ (t)≤(a2 −a1)V (t)+L2V (t − τ1(t))

+L2
∫ t

t−τ2(t)
V (v)dv,

mT +θT ≤ t < (m+1)T.
(24)

By using Lemma 4 and the conditions (12) and (13),
we have V̇ (t)≤ ( sup

−τ≤s≤0
V (s))exp{−ρt}, t ≥ 0. Hence, the

zero solution of the error system (10) is globally exponen-
tially stable according to Definition 1, this ends the proof.

□
Remark 3: In the work of [43], two restrictive condi-

tions, T1 ≥ τ and T −T1 ≥ τ , were involved to derive the
main results. By employing the useful Lemma 4, these
two restrictions are removed. From (13) of Theorem 1, we
find that the proposed conditions relies on the rate between
the control widthT1 and the control period T , but not the
actual values of T1 or T. If the control rate is fixed, we can
choose randomly the control period T for achieving syn-
chronization. Therefore, our results are less conservative
and more practically applicable than [43].

3.2. Pinning exponential synchronization via the
adaptive intermittent control

In this subsection, considering that the theoretical lin-
ear feedback gains ki > λmax(F −SM−1

l ST ) may be much
larger than the practical needed values, we introduce an
adaptive strategy to adjust the feedback gains. The adap-
tive periodically intermittent controllers are designed to be

ui(t) =


− ki(t)Γei(t), t ∈ [mT, mT +θT ) ,

1 ≤ i ≤ l,

0, t ∈ [mT, mT +θT ) , l +1 ≤ i ≤ N,

0, t ∈ [mT +θT, (m+1)T ) , 1 ≤ i ≤ N,

(25)
with the updating laws

k̇i(t) =

{
αi exp(a1t)eT

i (t)Γei(t), t ∈ [mT, m+θT ),

0, t ∈ [mT +θT1, (m+1)T ),
(26)

where αi are positive constants to be designed latter.
From (1) and (25), the following error state equations

can be obtained

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t))

− ki(t)ei(t), t ∈ [mT, mT+θT ) , 1 ≤ i ≤ l,

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t)),

t ∈ [mT, mT +θT ) , l +1 ≤ i ≤ N,

ėi(t) =−Dei(t)+A f̂ (ei(t))+B f̂ (ei(t − τ1(t)))

+E
∫ t

t−τ2(t)
f̂ (ei(v))dv+ c

N

∑
j=1

gi jΓh(e j(t)),

t ∈ [mT +θT, (m+1)T ), 1 ≤ i ≤ N.

(27)
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Theorem 2: If there exist positive constants a2 > a1 > 0
such that (11)-(14) are satisfied, then the pinning synchro-
nization of coupled neural networks (1) can be achieved
under the adaptive intermittent controllers (25) and updat-
ing laws (26).

Proof: Consider a Lyapunov function as follows:

V (t) =
1
2

N

∑
i=1

eT
i (t)ei(t)+

1
2

l

∑
i=1

exp(−a1t)
(ki(t)− k∗i )

2

αi
,

(28)

where k∗i > 0 are some positive constants to be determined
below.

When mT ≤ t < mT +θT , taking the derivative of V(t)
with respect to time t along the solutions of error system
(27) yields

V̇ (t)≤eT (t)((M−K∗)⊗Γ)e(t)−a1V (t)

+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv, (29)

where K∗ = diag(k∗1, ...,k
∗
l ,0, ...,0︸ ︷︷ ︸

N−l

). Using the similar

analysis of Theorem 1, if the given condition (11) is satis-
fied, we can obtain

V̇ (t)≤−a1V (t)+L2V (t − τ1(t))+L2
∫ t

t−τ2(t)
V (v)dv.

(30)

When mT +θT ≤ t < (m+1)T , using (12) and the sim-
ilar peocess of Theorem 1, we have

V̇ (t)≤(a2 −a1)V (t)+L2V (t − τ1(t))

+L2
∫ t

t−τ2(t)
V (s)ds. (31)

Thus we have

V̇ (t)≤−a1V (t)+L2V (t − τ1(t))

+L2
∫ t

t−τ2(t)
V (v)dv, mT ≤ t < mT +θT,

V̇ (t)≤(a2 −a1)V (t)+L2V (t − τ1(t))

+L2
∫ t

t−τ2(t)
V (v)dv,

mT +θT ≤ t < (m+1)T.
(32)

In virtue of Lemma 4 and the conditions (13) and (14),
we have V̇ (t)≤ ( sup

−τ≤s≤0
V (s))exp{−ρt}, t ≥ 0. This ends

the proof. □
Remark 4: Theorems 1 and 2 give some sufficient con-

ditions to ensure pinning synchronization of coupled neu-
ral networks (1) via linear or adaptive intermittent control,
respectively. The first condition (11) can be regarded as

the pinning condition, because it provides a theoretical an-
swer to the question of how many nodes should be pinned.
It is worth nothing that the value of λmax(Gl) relies on the
pinning scheme. For a given undirected network with N
nodes, a simple high-degree pinning scheme is presented
based on [20] as bellows.

Step 1: Let di = ∑N
j=1, j ̸=i Gi j be the total weights be-

tween node i and all the other nodes, where di is the de-
gree of node i. Define a degree vector: Deg(i) = di, i =
1, · · · ,N.

Step 2: Rearrange the network nodes according to the
decrease of degree. For the nodes with the same degree,
we sort them in descending order according to their initial
order. Let l = 1.

Step 3: Select the first l network nodes as pinned can-
didates. Evaluate and check if pinning condition (11) is
satisfied.

Step 4: If pinning condition (11) is not satisfied, let
l = l +1, go to Step 3. Otherwise, end.

Remark 5: In Theorems 1 and 2, there are many pa-
rameters to be determined. In the following, a simple algo-
rithm is presented for how to choose appropriate parame-
ters such that the nonlinearly coupled neural networks can
realize exponential synchronization under linear intermit-
tent pinning control strategy.

Algorithm 1 (A parameter selection algorithm for lin-
ear intermittent pinning controller design):

Step 1: For a given network model, rearrange nodes
by using the high-degree selection scheme, and calculate
λmax(Q), λmax(Γ), and ρ1, respectively.

Step 2: Choose a1 and a2 such that a1 > L2 and ρ2 < 0,
respectively.

Step 3: Solving the equation ζ − a1 + L2 exp{ζτ}−
L2

ζ + L2

ζ exp{ζτ}= 0 to obtain the unique positive solution
ζ .

Step 4: Choose θ such that ρ = ζ −a2(1−θ)> 0.
Step 5: Determine the minimum number of pinned

nodes l such that λmax(Gl−1) ≥ −ρ1/cα and λmax(Gl) <
−ρ1/cα .

Step 6: Choose the control period T and control width
T1 according to θ .

Step 7: Choose ki such that ki > λmax(F −SM−1
l ST ).

Once these parameters are determined, the proposed
synchronization criterions are satisfied. Moreover, the pa-
rameter selection algorithm 1 is also applicable for the
adaptive intermittent pinning controller design by just
choosing steps 1-6.

Remark 6: Recently, many researches have appeared
on the H∞ synchronization for delayed system [29–31,
46, 47], H∞ control for Markovian jump systems [44, 45],
or output feedback control problems [48–50]. For a cou-
pled network with external disturbance or the states are
note available, the proposed results are not applicable. A
meaningful question is how to achieve synchronization for
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coupled dynamical networks with more complicated cir-
cumstance under intermittent control.

4. NUMERICAL EXAMPLES

In this section, we consider the following delayed neu-
ral network with mixed delays as the node of coupled net-
works (1),

ẋ(t) =−Dx(t)+A f (x(t))+B f (x(t − τ1(t)))

+E
∫ t

t−τ2(t)
f (x(v))dv+ J(t), (33)

where x(t) = (x1(t), x2(t))T , f (x(t)) = (tanh(x1(t)),

tanh(x2(t)))T , D =

[
1 0
0 1

]
, A =

[
1.8 −0.15
−5.2 3.5

]
,

B =

[
−1.7 −0.12
−0.26 −2.5

]
, E =

[
0.6 0.15
−2 −0.12

]
. It is

assumed that J(t) = [0, 0]T , τ1(t) = et/(1 + et) and
τ2(t) = 0.5sin2 t. A straightforward calculation gives
that τ1 = 1, τ2 = 0.5, and L = 1. The chaotic attractor
of neural network (33) is shown in Fig. 1 with the initial
state x(0) = [0.5 0.6]T .

We assume that the coupling configuration matrix G is
determined by the free-scale network with N = 100 and
m0 = m = 3, and the inner coupling matrix is taken as
Γ = diag{2, 2}. The orbits of λmax(Gl) as functions of
the number of pinned nodes by high-degree, low-degree
and random pinning schemes are shown in Fig. 2.

To simplify the analysis, the nonlinear coupling func-
tion is chosen as h(x) = 3x+ sinx, which implies α = 2
and β = 4. Choosing θ = 0.95, c = 8, a1 = 5 and a2 = 60,
we can check that the conditions (12)-(14) are satisfied.
Some simple calculations give that −ρ1/αc = −0.8748.
From Fig. 2, we only need to pin 28, 22 and 7 nodes
by using low-degree, random and high-degree pinning
schemes, respectively. In what follows, we will adopt the
linear and adaptive feedback controllers to achieve syn-
chronization under the high-degree pinning scheme, re-
spectively.

To measure the extent to which synchronization of
nonlinearly coupled neural networks (1) is achieved, we
introduce a quantity, E(t) = max{||xi(t) − s(t)||, i =
1,2, ...,100}, for t ∈ [0,+∞).

4.1. Pinning synchronization via the linear feedback
control

For c = 8, we can obtain the linear feedback gain ki >
3991.8 (i = 1, · · · , 7) by testing the condition (11). For
convenience, we take ki = 3992 (i = 1, · · · , 7).

According to θ = 0.95, one can choose T = 0.2and
T1 = 0.19 in the simulation analysis. The initial values
of the dynamical coupled networks are set to be xi(0) =
(2+0.3i,3+0.5i)T , 1 ≤ i ≤ 100, and s(0) = (2, 3)T . The
evolution of synchronization error quantity is illustrated

Fig. 1. Chaotic attractor of neural network (33).

Fig. 2. Orbits of λmax(Gl) as functions of the number of
pinned nodes by high-degree, low-degree and ran-
dom pinning schemes.

in Fig. 3. Obviously, the synchronization of coupled neu-
ral networks (1) is achieved under the pinning intermittent
control scheme with l = 7.

5. PINNING SYNCHRONIZATION VIA THE
ADAPTIVE FEEDBACK CONTROL

We take the same parameters as the above subsection and
ki(0) = 2+ i, where 1 ≤ i ≤ 7. The evolution of the syn-
chronization error quantity E(t) is illustrated in Fig. 4.
The adaptive feedback gains are shown in Fig. 5, which
are much smaller than the linear feedback gain. The nu-
merical simulation results demonstrate the validity of our
theoretical analysis.
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Fig. 3. Synchronization error quantity E(t) via linear
feedback control.

Fig. 4. Synchronization error quantity E(t) via adaptive
feedback control.

Fig. 5. Evolution of adaptive feedback gains.

6. CONCLUSION

In this paper, the exponential synchronization problem
has been investigated for an array of nonlinearly coupled

neural networks with mixed time-varying delays. By us-
ing the intermittent control approach, linear and adap-
tive pinning controllers are added to a fraction of network
nodes, respectively. Based on a new differential inequal-
ity, several sufficient conditions are obtained to ensure that
the coupled nerual networks can achieve synchronization
exponentially. Numerical simulations show the validity of
the proposed methodology.

It is known that Markovian jump is a suitable mathe-
matical pattern to represent a class of complex networks
subject to random abrupt variations in the structures. The
extensions of the current results to the underlying systems
with Markovian jumping parameters are also interesting,
which constitutes a future research direction.

APPENDIX A

A.1. Proof of Lemma 4
Proof: Denote

f (ζ ) =


ζ − r1 + r3 exp{ζτ}− r4

ζ
+

r4

ζ
exp{ζτ},

ζ > 0,

− r1 + r3, ζ = 0.
(A.1)

Since r1 > r3, we have f (0) < 0, f (+∞) > 0, and
f
′
(ζ ) > 0 for ζ > 0. Using the continuity and mono-

tonicity of f (ζ ), the equation ζ − r1 + r3 exp{ζτ} − r4
ζ +

r4
ζ exp{ζτ}= 0 has an unique positive solution for ζ > 0.
Take M = sup

−τ≤t≤0
y(t), W (t) = exp{ζ t}y(t), where t ≥ 0.

Let Q(t) = W (t)− hM, where h > 1 is a constant. It is
easy to see that for all t ∈ [−τ, 0],

Q(t)< 0, (A.2)

In the following, we will prove that for all t ∈ [0, θT ),

Q(t)< 0, (A.3)

If it is not true, by (A.1) and the continuity of y(t) as
t ∈ [−τ, ∞), then there exist a t0 ∈ [0, θT ) such that

Q(t0) = 0, Q̇(t0)≥ 0, (A.4)

Q(t)< 0, − τ ≤ t < t0. (A.5)

According to (A.3) and (A.4), it is easy to verify that

Q̇(t0)≤ζW (t0)− r1W (t0)

+ r3 exp{ζτ1(t0)}W (t0 − τ1(t0))

+ r4 exp{ζ t0}
∫ t0

t0−τ2(t0)
y(s)ds. (A.6)

Note that W (t0) = hM. From (A.4), we have W (t0 −
τ1(t0)) < W (t0), and y(t) < W (t0)exp{−ζ t} for all t ∈
[t0 − τ2(t0), t0]. It follows from (A.5) that

Q̇(t0)≤ζW (t0)− r1W (t0)+ r3 exp{ζτ1(t0)}W (t0)
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+ r4W (t0)exp{ζ t0}
∫ t0

t0−τ2(t0)
exp{−ζ s}ds

≤(ζ − r1 + r3 exp{ζτ}− r4

ζ
+

r4

ζ
exp{ζτ})W (t0)

= 0. (A.7)

This contradicts the second inequality in (A.3), and so
(A.2) holds. Together with (A.1), we can obtain that for
all t ∈ [−τ, θT ),

y(t)< hM exp{−ζ t}. (A.8)

Now, we prove that for t ∈ [θT, T )

H(t) =W (t)−hM exp{γ(t −θT )}< 0. (A.9)

Otherwise, there exists t1 ∈ [θT, T ) such that

H(t1) = 0, Ḣ(t1)≥ 0, (A.10)

H(t)< 0, θT ≤ t < t1. (A.11)

If θT ≤ t1 − τ < t1, it follows from (A.9) and (A.10)
that

y(t1 − τ1(t1))< exp{ζτ)}y(t1), (A.12)

and for all t ∈ [t1 − τ2(t1), t1)

y(t)< hM exp{γ(t1 −θT )}exp{−ζ t

=W (t1)exp{−ζ t}. (A.13)

If −τ ≤ t1 − τ < θT , from (A.7), (A.9) and (A.10), we
get

y(t1 − τ1(t1))< exp{ζτ)}y(t1), (A.14)

and for all t ∈ [t1 − τ2(t1), t1)

y(t)<W (t1)exp{−ζ t}. (A.15)

Hence, for τ > 0, we always have

y(t1 − τ1(t1))< exp{ζτ)}y(t1), (A.16)

and for t ∈ [t1 − τ2(t1), t1)

y(t)<W (t1)exp{−ζ t}. (A.17)

Then we have

Ḣ(t1)≤
(

ζ − r1 + r3 exp{ζτ}− r4

ζ
+

r4

ζ
exp{ζτ}

)
W (t1)

= 0, (A.18)

which contradicts the second inequality in (A.9). Hence
(A.8) holds. Consequently, for t ∈ [θT, T ),

W (t)< hM exp{γ(t −θT )} ≤ hM exp{γ(1−θ)T}.

Together with (A.1) and (A.2), we get that for all t ∈
[−τ, T ),

W (t)< hM exp{γ(1−θ)T}. (A.19)

Similarly, we can prove that for t ∈ [T, (1+θ)T ),

W (t)< hM exp{γ(1−θ)T},

and for t ∈ [(1+θ)T, 2T ),

W (t)< hM exp{γ(t −2θT )}.

By using mathematical induction, we can derive the fol-
lowing estimation of W (t) for any integer m.

For t ∈ [mT, (m+θ)T ),

W (t)< hM exp{mγ(1−θ)T}, (A.20)

and for t ∈ [(m+θ)T, (m+1)T ),

W (t)< hM exp{γ(t − (m+1)θT )}. (A.21)

Since for any t ≥ 0, there exists a nonnegative integer k,
such that kT ≤ t < (k+1)T , we can deduce the following
estimation of W (t) for any t by (A.19) and (A.20).

For t ∈ [kT, (k+θ)T ),

W (t)< hM exp{kγ(1−θ)T} ≤ hM exp{γ(1−θ)t},

and for t ∈ [(k+θ)T, (k+1)T ),

W (t)< hM exp{γ(t − (k+1)θT )}
≤ hM exp{γ(1−θ)t}.

Let h → 1, from the definition of W (t), we obtain

y(t)< M exp{−(ζ − γ(1−θ))t}= M exp{−ρt}.

This completes the proof. □
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