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Auxiliary Particle Bernoulli Filter for Target Tracking
Bo Li* and Jianli Zhao

Abstract: Target tracking is a popular topic in various surveillance systems. As a data association free method,
the Bernoulli filter can directly estimate target state from plenty of uncertain measurements. However, it is not
obvious for existing Bernoulli filters to select proposal distribution with small variance of weights. To address this
problem, a novel auxiliary particle (AP) Bernoulli filter and its implementation are proposed in this paper. We
employ the AP method in the Bernoulli filtering framework in order to choose robust particles from a discrete
distribution defined by an additional set of weights, which reflect the ability to represent measurements with high
probability. Limitation to the number of particles, the promising particles are used to propagate by extracting
indices. On the other hand, the particles without significant contribution to approximation are discarded. In such
case, the computational complexity of this filter is reduced. With the unscented transform (UT), the dynamics of
maneuvering target are effectively estimated. The simulation results show advantages in comparison to the standard
Bernoulli filter for general target tracking.
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1. INTRODUCTION

Target tracking is to sequentially estimate both state and
number of the time-varying target with passive sensors
from noise-corrupted measurements [1, 2]. So far, the tar-
get tracking continues to spur research interests in many
surveillance applications, especially for the maneuvering
target among plenty of ambiguous measurements [3–5].
However, the measurement uncertainty brings about un-
reliable estimations and unstable results. In the past
decades, some scholars have studied target tracking with
a great deal of success and many papers addressing the
well established filtering algorithms have been published
in the important international journals [6–8], such as the
integrated probabilistic data association (IPDA), the joint
probabilistic data association (JPDA), the multiple hy-
pothesis tracking (MHT), etc. Nevertheless, these meth-
ods involve complex operation of data association when a
large number of clutters appear around the true track or the
detection probability of passive sensors is unsatisfactory
[9]. The tracking performance would deteriorate because
of the erratic estimations.

In order to reduce computational complexity, the
Bernoulli filter has been derived in [10]. As for the gen-
eral nonlinear non-Gaussian assumption, the particle filter
(PF) method is more competent. Employed the tools of
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finite set statistics (FISST), the Bernoulli filter in [11] was
under the assumption that the target state was a random
finite set (RFS). Since it has no closed-form solution, the
Bernoulli filter is usually achieved using the PF method.
In [12], B. Ristic and S. Arulampalam discussed the im-
plementation of the Bernoulli PF for observer control with
excellent performance. For the sake of reduction in the
number of particles, [13] presented the Bernoulli box-PF
with more cost efficient. Subsequently, [14] described the
multi-sensor Bernoulli filter in exact closed form to detect
and track road-constrained targets using time different of
arrival and frequency different of arrival measurements.
In [15], a box-particle cardinality balanced multi-target
multi-Bernoulli (CBMeMBer) filter was presented, which
reduced both the number of particles and the running time
under the similar accurate results. In [16], a Bernoulli
PF was proposed for tracking maritime radiation source
in the presence of measurement uncertainty, where the
tracking performance under various conditions was still
robust and effective. Among these filters, the basic idea is
the sequential Monte Carlo (SMC) recursion on the basis
of importance sampling (IS) [17]. This process limits
tracking performance of the Bernoulli filter. As a result,
the filter suffers from lacking of some efficient techniques
for boosting its efficiency.

Traditional SMC method usually samples particles

c⃝ICROS, KIEE and Springer 2017

http://www.springer.com/12555


1250 Bo Li and Jianli Zhao

based on the proposal distribution defined by their
weights. It is important to ensure the variance of weights
minimized in the process of the IS [18]. Once the weights
with high variance rapidly degenerate with time, the asso-
ciated particle can yield poor estimations. In this case, the
resampling must be frequently performed, which further
leads to increasing variance of weights. Therefore, the
proposal distribution should be considered as a metrics of
practical efficiency of the SMC method. However, it is not
obvious to choose the proposal distribution for minimiz-
ing variance in the existing Bernoulli filters. To address
this problem, one of the most prominent methods is the
auxiliary particle (AP) implementation [19], where the
particles are propagated from a discrete distribution de-
fined by a set of weights that reflect the ability to express
available measurements with high probability [20, 21]. In
2016, H. Chen and C.Z. Han proposed a new SMC imple-
mentation of the CBMeMBer filter [22]. Combined AP
filtering method with progressive correction algorithm,
the filter improves the solving accuracy of sampling dis-
tribution function. As we know, the filtering principle
of the Bernoulli filter is essentially different from that of
[20–22]. Especially, the decomposition method of the
proposal distributions cannot be directly applicable to the
Bernoulli filter, where the probability hypothesis density
(PHD) and the prior density component are approximated
respectively. Inspired by excellent performance of the AP
implementation for target tracking, this paper presents a
novel AP-Bernoulli filter and its implementation. It boosts
tracking efficiency for the Bernoulli filter by providing the
proposal distribution. The filter distinctly exhibits a new
mechanism for choice of particles to propagate based
on measurements to which they are assigned. More im-
portantly, the filter has lower computational complexity
because the effective sample size (ESS) is utilized to limit
the number of particles, and the state estimates of the
maneuvering target are estimated based on the unscented
transform (UT).

The remainder of this note is organized as follows: In
Section 2, the problem of the target tracking is briefly
formulated. In Section 3, the principle of the standard
Bernoulli filter is reviewed. In Section 4, we present
the improvements of the proposed Bernoulli filter and il-
lustrate its AP implementation. The numerical study is
showed with results to verify tracking performance of the
proposed filter in Section 5. In the last section, the con-
clusions are drawn by providing the future work.

2. PROBLEM FORMATION

Assume nk is the dimension of states in the space X ⊆
Rnk , the target motion at time k is modeled by:

xk = Fk|k−1xk−1 +ΓΓΓkvk, (1)

where Fk|k−1 is the state transition matrix, ΓΓΓk is the state
noise input matrix, vk is the state noise vector with zero
mean and variance Qk, and xk−1 is the target state vector
at time k−1.

Assume mk is the number of measurements in the space
Z ⊆ Rmk , and the conventional measurement zk in the set
Zk = {z1,k, · · · ,zmk ,k}. The measurement model at time k
is given by the nonlinear equation [23–26]:

zk = hk (xk)+wk, (2)

where wk is the measurement noise vector with zero mean
and variance Rk, and hk (·) is a known deterministic map-
ping from X to Z:

hk (xk) = atan2(xk,yk) , (3)

where atan2(·) denotes the arctangent function with two
arguments. The main idea is to gather the sign information
of inputs and to return appropriate quadrant of computed
angle in radians between the positive x-position of a plane
and the point given in x-y coordinates. Then, hk (xk) can
be considered as a four-quadrant inverse tangent function,
taking values from Z .

Remark 1: In general, the passive sensor cannot collect
all measurements generated from targets due to the imper-
fect characteristics. It reports that there is a closed interval
which contains the target originated measurement with the
detection probability pD (xk). The false detections from
clutters are independent of the target state, where the num-
ber of false alarms follows the Poisson distribution with
the mean λ , and the prior probability is modeled by c(zm).
Therefore, Zk is characterized by two sources of uncer-
tainty: i) the additive Gaussian noise wk has stochastic
uncertainty; ii) the existence of false alarms and the ab-
sence of target originated detection have data association
uncertainty.

3. STANDARD BERNOULLI FILTER

3.1. Filtering principle
As we know, the Bernoulli filter models the state

of targets at time k as a Bernoulli RFS in the set Xk

for the nonlinear and non-Gaussian estimation of dy-
namic system. If the state of the target is given by a
Bernoulli RFS, the Bernoulli filter can estimate two pos-
teriors: the posterior probability of the target existence
qk|k = P{|Xk|= 1|Z1:k} and the posterior spatial proba-
bility density function (PDF) of the target state sk|k (xk) =
p(xk|Z1:k). The Bernoulli Markov process Xk is com-
pletely specified by a pair

(
qk|k,sk|k (xk)

)
and the associ-

ated PDF is defined as:

f (Xk|Z1:k)

=


1− pb,k|k−1, Xk =∅
ps,k|k−1 (xk−1) fk|k−1 (xk|xk−1) , Xk = {xk}
0, |Xk| ≥ 2,

(4)
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where pb,k|k−1 and ps,k|k−1 (xk−1) are the probabilities of
target birth and target survival, and fk|k−1 (xk|xk−1) is the
target transition density from time k−1 to k.

Due to the Bernoulli filter propagation two quantities
versus time, Xk can be characterized by the transitional
PDF f (Xk|Xk−1):

f (Xk|Xk−1)

=



1− pb,k|k−1,

Xk =∅, Xk−1 =∅,

1− ps,k|k−1 (xk−1) ,

Xk =∅, Xk−1 = {xk−1},
pb,k|k−1bk|k−1 (xk) ,

Xk = {xk} , Xk−1 =∅,

ps,k|k−1 (xk−1) fk|k−1 (xk|xk−1) ,

Xk = {xk} , Xk−1 = {xk−1},
0, |Xk| ≥ 2,

(5)

where bk|k−1 (xk) is the target birth density.
Conditioned upon the cardinality of Xk, the likelihood

function of Zk is given by:

gk (Zk|Xk)

=

{
Lc (Zk) , Xk =∅
Lc (Zk)

(
1− pD + pD ∑|Zk |

m=1
gk(zm|xk)
λc(zm)

)
, Xk = {xk},

(6)

where gk (zm|xk) is the likelihood of the single target, and
Lc (Zk) is the probability density of clutters, i.e.,

Lc (Zk) = e−λ
|Zk |

∏
m=1

λc(zm) . (7)

Subsequently, we have the prediction equations of the
Bernoulli filter:

qk|k−1 = pb,k|k−1
(
1−qk−1|k−1

)
+ ps,k|k−1 (xk)qk−1|k−1,

(8)

sk|k−1 (xk)

=
1

qk|k−1

 pb,k|k−1
(
1− pk−1|k−1

)
bk|k−1 (xk)

+qk−1|k−1

∫
ps,k|k−1 (xk−1) fk|k−1 (xk|xk−1)
×sk−1|k−1 (xk−1)dxk−1

 ,

(9)

qk|k =
qk|k−1 −qk|k−1∆k

1−qk|k−1∆k
, (10)

sk|k (xk)

=
sk|k−1 (xk)

1−∆k

(
1− pD (xk)+ pD (xk)

|Zk |

∑
m=1

gk (zm|xk)

λc(zm)

)
,

(11)

where the quantity ∆k is given by:

∆k = pD (xk)

(
1−

|Zk |

∑
m=1

∫
gk (zm|xk)sk|k−1 (xk)dxk

λc(zm)

)
.

(12)

Remark 2: When the detection probability of sensor is
pD (xk) = 1 and no false alarm is assumed, Zk only con-
tains the target originated measurements. At this time, we
can find that λc(zm) is canceled out in both (11) and (12).
The Bernoulli filter simplifies to conventional Bayes filter
in terms of pb,k|k−1 = 0 and ps,k|k−1 (xk−1) = 1.

3.2. Particle implantation
The general implementation of the Bernoulli filter is

based on the SMC-based method, where a set of the
weighted particles is recursively propagated as the ap-
proximation of the posterior density. The Bernoulli
PF can approximate sk|k(xk) by a weighted particle set{

x(i)
k ,w(i)

k

}Nk

i=1
, where x(i)k is the state of the ith particle

and w(i)
k is related normalized weight, i.e., ∑Nk

i=1 w(i)
k = 1.

Then, sk|k(xk) is approximated as:

sk|k (xk) =
Nk

∑
i=1

w(i)
k δx(i)k

(dxk) , (13)

where Nk is the total number of particles at time k and
δx(i)k

(·) is the Dirac delta function concentrated at x(i)
k .

Regarding qk−1|k−1 and
{

x(i)k−1,w
(i)
k−1

}Nk−1

i=1
at time k−1,

the recursion of the standard Bernoulli PF at time k is sum-
marized in Algorithm 1. Note that the predicted particles
x(i)

s,k and x(i)b,k as well as their weights w(i)
s,k|k−1 and w(i)

b,k|k−1
are based on the time-updated parameters. For each up-
dated measurement, the normalized weight w(i)

k should
be computed again. By resampling Nk times from the

set
{

x(i)k|k−1,w
(i)
k|k−1

}Nk

i=1
, we can achieve qk|k, sk|k(xk) and{

x(i)
k ,w(i)

k

}
.

Remark 3: Note that the particle implementation of
the Bernoulli filter is on the basis of the sequential IS
method. It is important to minimize the variance of
weights. If the degeneracy of weights would be avoided,
the SMC method should take into account available mea-
surements to drive particles into the region of probabili-
ties. However, we hardly choose the proposal distributions
fk|k−1

(
xk|x(i)k−1

)
and fk|k−1

(
xk|x(i)

b,k−1

)
when drawing the

particles x(i)
s,k and x(i)

b,k. Then, the sampling operation must
be performed frequently and effectively. Once the parti-
cles with high weights rapidly degenerate versus time, the
error of dynamic estimates would further increase. The
numbers Ns,k−1 and Nb,k−1 can cause higher computational
complexity in practice.
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Algorithm 1: Pseudo-code of standard Bernoulli filter
Input:
1. Given qk−1|k−1, {x(i)k−1,w

(i)
k−1}

Nk−1
i=1 , Zk−1 and Zk;

Time update:
2. Compute qk|k−1:

qk|k−1

= pb,k|k−1
(
1−qk−1|k−1

)
+ ps,k|k−1

(
x(i)k−1

)
qk−1|k−1;

3. for i = 1 to Nx,k−1

4. Draw survival particle x(i)s,k: x(i)
s,k ∼ fk|k−1

(
xk|x(i)k−1

)
;

5. Predict weight of survival particle w(i)
s,k|k−1:

w(i)
s,k|k−1 =

ps,k|k−1qk−1|k−1

qk|k−1
w(i)

k−1;
6. end for
7. for i = 1 to Nb,k−1

8. Draw newborn particle x(i)b,k:

x(i)
b,k ∼ fk|k−1

(
xk|x(i)

b,k−1

)
;

9. Predict weight of survival particle w(i)
b,k|k−1:

w(i)
b,k|k−1 =

pb,k|k−1(1−qk−1|k−1)
qk|k−1Nb,k−1

;
10. end for
11. Let Nk = Ns,k−1 +Nb,k−1 and union of particles:{

x(i)
k|k−1,w

(i)
k|k−1

}Nk

i=1

=
{

x(i)
s,k,w

(i)
s,k|k−1

}Ns,k−1

i=1

∪{
x(i)b,k,w

(i)
b,k|k−1

}Nb,k−1

i=1
;

Measurement update:
12. for zm ∈ Zk

13. Compute ∆k:

∆k = pD (xk)

(
1−∑|Zk |

m=1 ∑Nk
i=1

gk

(
zm|x(i)k|k−1

)
λc(zm)

w(i)
k|k−1

)
;

14. end for
15. Update qk|k using (10);
16. Update weight of particle ŵ(i)

k :

ŵ(i)
k =

w(i)
k|k−1

1−∆k

(
1− pD (xk)+ pD (xk)∑|Zk |

m=1
gk(zm|xk)
λc(zm)

)
;

17. Normalize weight w̄(i)
k : w̄(i)

k = ŵ(i)
k /Nk;

18. Resampling Nk times from
{

x(i)k|k−1, w̄
(i)
k

}Nk

i=1
to

obtain particle set
{

x(i)k ,w(i)
k

}Nk

i=1
, where

w(i)
k = 1/Nk;

19. Compute sk|k(xk) using (13);

Output:
20. Report qk|k, sk|k(xk) and

{
x(i)k ,w(i)

k

}
.

4. AUXILIARY PARTICLE BERNOULLI FILTER

Since the weight can reflect the ability of particles to
explain the measurement [20, 27], the proposed filter will
select the promising particles to propagate by drawing par-
ticle indices from a discrete distribution of particle set. At

the same time, the particles without significant contribu-
tion to the approximation of probability density are dis-
carded immediately.

4.1. Filtering principle

Drawing on the basic ideas from the AP method, we

first extend the particle set
{

x(i)k−1,w
(i)
k−1

}Nk−1

i=1
and insert an

extra particle x(Nk−1+1)
k−1 and its weight w(Nk−1+1)

k−1 based on
the statistical characteristics:

w(Nk−1+1)
k−1 =

∫
bk|k−1 (xk)dxk, (14)

fk−1

(
xk|x(Nk−1+1)

k−1

)
=

1−qk−1|k−1

qk−1|k−1

bk|k−1 (xk)

w(Nk−1+1)
k−1

, (15)

ps,k|k−1

(
x(Nk−1+1)

k−1

)
= 1. (16)

Note that x(Nk−1+1)
k−1 is assigned to any point in X ow-

ing to its irrelevant in the higher dimensional space X ×
{1, · · · ,Nk−1 +1}× {1, · · · , |Zk|}. Subsequently, we de-
fine the test function φ (·), whose integral in X at time k
is given by the following equation:∫

X
ϕ (xk)sk|k (xk)dxk

=
|Zk |

∑
m=1

Nk−1+1

∑
i=1

∫
X

ϕ (xk)
qk−1|k−1 pD (xk)

qk|k−1

(
1−∆k,m

) gk (zm|xk)

λc(zm)

×
ps,k|k−1

(
x(i)k−1

)
fk|k−1

(
xk|x(i)

k−1

)
w(i)

k−1

π1

(
xk,x

(i)
k−1,m

)
×δx(i)k−1

(dxk−1)π1

(
dxk,x

(i)
k−1,m

)
+

Nk−1+1

∑
i=1

∫
X

ϕ (xk)
qk−1|k−1 (1− pD (xk))

qk|k−1

(
1−∆k,m

)
×

ps,k|k−1

(
x(i)k−1

)
fk|k−1

(
xk|x(i)k−1

)
w(i)

k−1

π2

(
xk,x

(i)
k−1

)
×δx(i)k−1

(dxk−1)π2

(
dxk,x

(i)
k−1

)
. (17)

We have in hand the card parameter ϒn,u = {i ∈ {1,2, · · · ,
Nk−1} : m(i)

n = u
}

and Nm = #ϒn,m, where #(·) denotes the
ordinal operation, and ∆k,m is:

∆k,m =
pD (xk)

Nm

1− ∑
i∈ϒn,m


gk (zm|xk)

λc(zm)

qk−1|k−1

qk|k−1

× ps,k|k−1

(
x(i)

k−1

)
× fk|k−1

(
xk|x(i)k−1

)
w(i)

k−1



 .

(18)



Auxiliary Particle Bernoulli Filter for Target Tracking 1253

Given that the proposal distribution π1

(
xk,x

(i)
k−1,m

)
can be extended to the higher dimension space of the de-
tected targets, we can factorize it as follows:

π1

(
xk,x

(i)
k−1,m

)
= π1

(
xk|x(i)

k−1,m
)

π1

(
x(i)k−1|m

)
π1 (m) ,

(19)

where

π1

(
xk|x(i)

k−1,m
)
= N

(
xk|µk|k,1,σ 2

k|k,1

)
, (20)

π1

(
x(i)k−1|m

)
=

∑Nk−1+1
i=1 γ1

(
x(i)k−1

)
w(i)

k−1δx(i)k−1
(xk−1)

∑Nk−1+1
i=1 γ1

(
x(i)k−1

)
w(i)

k−1

,

(21)

π1 (m) =
qk−1|k−1(

1−∆Nk−1
k

)
qk|k−1

∑Nk−1+1
i=1 γ1

(
x(i)k−1

)
w(i)

k−1

λc(zm)

∝
∑Nk−1+1

i=1 γ1

(
x(i)k−1

)
w(i)

k−1

λc(zm)
. (22)

In (20), π1

(
xk|x(i)

k−1,m
)

follows the Gaussian distribution

N
(

xk|µk|k,1,σ 2
k|k,1

)
, where µk|k,1 and σ 2

k|k,1 are the mean
vector and covariance matrix. Further, the bounded poten-
tial function γ1

(
x(i)k−1

)
is:

γ1

(
x(i)k−1

)
=
∫
X

 pD (xk)gk (zm|xk) ps,k|k−1

(
x(i)k−1

)
× fk|k−1

(
xk|x(i)k−1

)
dxk.

(23)

Similarly, the proposal distribution π2

(
xk,x

(i)
k−1

)
can be

extended to the higher dimension space of the undetected
targets, which can be factorized as:

π2

(
xk,x

(i)
k−1

)
= π2

(
xk|x(i)

k−1

)
π2

(
x(i)k−1

)
, (24)

where

π2

(
xk|x(i)

k−1

)
= N

(
xk|µk|k,2,σ 2

k|k,2

)
, (25)

π2

(
x(i)k−1

)
=

qk−1|k−1

(1−∆k,m)qk|k−1

×
∑Nk−1+1

i=1 γ2

(
x(i)k−1

)
w(i)

k−1δx(i)k−1
(xk−1)

∑Nk−1+1
i=1 γ2

(
x(i)k−1

)
w(i)

k−1

∝

Nk−1+1
∑

i=1
γ2

(
x(i)k−1

)
w(i)

k−1δx(i)k−1
(xk−1)

Nk−1+1
∑

i=1
γ2

(
x(i)k−1

)
w(i)

k−1

. (26)

In (25), we note that π2

(
xk|x(i)

k−1

)
follows the Gaussian

distribution N
(

xk|µk|k,2,σ 2
k|k,2

)
, and the bounded potential

function γ2

(
x(i)k−1

)
in (26) can be written as:

γ2

(
x(i)k−1

)
=
∫
X

 (1− pD (xk)) ps,k|k−1

(
x(i)

k−1

)
× fk|k−1

(
xk|x(i)k−1

)
dxk.

(27)

In (19) and (24), we can draw Nk−1,1 independent, identi-

cally distribution (IID) samples
{

x(n)k,1,x
(in)
k−1,1,m

(n)
}

from

π1

(
xk,x

(i)
k−1,m

)
and Nk−1,2 IID samples

{
x(l)k,2,x

(il)
k−1,2

}
from π2

(
xk,x

(i)
k−1

)
, where in and il denote the parent in-

dices of the nth particle and the lth particle respectively.
Then, the important weights according to them can be
rewritten as:

wk,1

(
x(n)k,1,x

(in)
k−1,1,m

(n)
)

=
1

Nk−1,1

qk−1|k−1(
1−∆k,m

)
qk|k−1

gk

(
zm(n) |x(n)k,1

)
λc(zm(n))

×
pD

(
x(n)k,1

)
ps,k|k−1

(
x(in)k−1,1

)
fk|k−1

(
x(n)

k,1|x
(in)
k−1,1

)
w(in)

k−1

π1

(
x(n)k,1,x

(in)
k−1,1,m(n)

) ,

(28)

wk,2

(
x(l)k,2,x

(il)
k−1,2

)
=

1
Nk−1,2

qk−1|k−1(
1−∆k,m

)
qk|k−1

× 1

π1

(
x(l)k,2,x

(il)
k−1,2

) ((1− pD

(
x(l)k,2

))
ps,k|k−1

(
x(il)

k−1,2

)
× fk|k−1

(
x(l)k,2|x

(il)
k−1,2

)
w(il)

k−1

)
. (29)

Remark 4: In the special case of the linear dynamics
with the Gaussian perturbations, the Kalman filter (KF)
is used as an optimal estimator. However, for the nonlin-
ear dynamics, the KF is difficult because the state estima-
tion is infinite dimensional. In general, a truncation is per-
formed to arrive at the finite dimensional designs, where
the UT is the most popular method that has been applied
in the nonlinear systems. In this note, we employ the UT
method to capture the posterior mean vector and covari-
ance matrix for any nonlinearity in the AP-Bernoulli filter
for the maneuvering target tracking:

γ1

(
x(i)k−1

)
= ps,k|k−1

(
x(i)

k−1

) r

∑
j=1

εk, j pD (χk, j)gk (zm|χk, j) ,

(30)

γ2

(
x(i)k−1

)
= pS,k|k−1

(
x(i)

k−1

) r

∑
j=1

εk, j (1− pD (χk, j)) , (31)
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where the UT can pick a minimal set of the sigma points
{χk, j}r

j=1 and their weights {εk, j}r
j=1 around the mean

vector and the covariance matrix of fk|k−1

(
xk|x(i)k−1

)
.

4.2. Particle implementation
Algorithm 2 presents the implementation of proposed

filter. In time update, Steps 3-9 describe selection of dis-
crete distribution when Nk−1,1 particles are drawn. After

γ1

(
x(i)k−1

)
is computed, we can obtain the particles x(n)k,1

and the related proposal distribution π1

(
x(n)k,1,x

(in)
k−1,1,m

(n)
)

.

Similarly, the particles x(l)
k,2 and the related proposal dis-

tributions π2

(
x(l)k,2,x

(il)
k−1,2

)
are achieved in steps 10∼15

based on γ2

(
x(i)k−1

)
. We have in hand ∆k,m in measurement

update, and then estimate qk|k using m measurements. In
step 20, we get the important weights of detected tar-

gets
{

wk,1

(
x(n)

k,1,x
(in)
k−1,1,m

(n)
)}Nk−11

n=1
that are expressed by

π1

(
x(n)k,1,x

(in)
k−1,1,m

(n)
)

. Further, the ESS is used as a mea-
sure of performance of important weights. As a simple
method to capture effect of variance inflations [19], the
ESS can reach the maximal value that equals to total num-
ber of sampling particles, that is:

Neff =
1

∑Nk
i=1

(
w(i)

k

)2 (32)

In Step 22, we select the minimal validate between Neff,k,1

and Nk−1,1 as Nk,1. The same method is applied for com-
puting the weights defined by undetected targets. Then,{

wk,2

(
x(l)

k,2,x
(il)
k−1,2

)}Nk2

l=1
and Nk,2 are computed in Steps

23-25, and sk|k (xk) can be obtained in Step 27.

5. SIMULATIOM RESULTS AND DISCUSSIONS

In the numerical study, two typical scenarios are per-
formed to validate the tracking performance of the pro-
posed filter. The experimental environment was: IntelTM

CoreTM i5, 4 GB memory and MATLABTM V8.0.
The target moves in a 2-dimension surveillance region

[−2000,2000]× [0,2000] m2, and the passive sensor is lo-
cated on (0,0) m with the probability of detection PD =
98%. Two scenarios of different motions of a target during
the whole period are simulated, where the duration is 100
s and the sampling period is T =1 s. The clutter is mod-
eled as the Poisson distribution with uniform density in the
surveillance region. Meanwhile, the averaged number of
clutters returns per scan is 20. At each time, 250 particles
are sampled, with 100 being assigned to Nb,0 in standard
filter. For the proposed filter, N0,2 is set to 50. Finally, the
optimal subpattern assignment (OSPA) distance is used to
measure two filters. Let X = {xi}g

i=1 be the ground truth

Algorithm 2: Pseudo-code of proposed Bernoulli fil-
ter
Input:

1. Given qk−1|k−1,
{

x(i)k−1,w
(i)
k−1

}Nk−1

i=1
, Zk−1 and Zk;

Time update:
2. Compute qk|k−1: qk|k−1 =

pb,k|k−1
(
1− pk−1|k−1

)
+ ps,k|k−1

(
x(i)k−1

)
qk−1|k−1;

3. for n = 1 to Nk−1,1

4. Compute γ1

(
x(i)k−1

)
using (23);

5. Draw m(n) ∼ π1 (m) using (22);
6. Draw x(in)k−1,1 ∼ π1

(
xk−1|m(n)

)
using (21);

7. Draw x(n)k,1 ∼ π1

(
xk|x(in)

k−1,1,m
(n)
)

using (20);

8. Compute π1

(
x(n)k,1,x

(in)
k−1,1,m

(n)
)

using (19);
9. end for
10.for l = 1 to Nk−1,2

11. Compute γ2

(
x(i)k−1

)
using (27);

12. Draw x(il)
k−1,2 ∼ π2 (xk−1) using (26);

13. Draw x(l)
k,2 ∼ π2

(
xk|x(il)

k−1,2

)
using (25);

14. Compute π2

(
x(l)k,2,x

(il)
k−1,2

)
using (24);

15. end for

Measurement update:
16. for m = 1 to |Zk|
17. Compute ∆k,m using (18);
18. end for
19. Compute qk|k: qk|k = ∑|Zk |

m=1
qk|k−1−qk|k−1∆k,m

1−qk|k−1∆k,m
;

20. Compute
{

wk,1

(
x(n)k,1,x

(in)
k−1,1,m

(n)
)}Nk−11

n=1
using

(28);
21. Compute Neff,k,1 using (32);
22. Compute Nk,1: Nk,1 = min(Neff,k,1,Nk−1,1);

23.Compute
{

wk,2

(
x(l)

k,2,x
(il)
k−1,2

)}Nk2

l=1
using (29);

24. Compute Neff,k,2 using (32);
25. Compute Nk,2: Nk,2 = min(Neff,k,2,Nk−1,2);
26. Select Nk,1 and Nk,2 particles based on their

weights in a descending order, let Nk = Nk1 +Nk2

and union of particles:{
x(i)

k ,w(i)
k

}Nk

i=1

=
{

wk,1

(
x(n)

k,1,x
(in)
k−1,1,m

(n)
)
,x(n)k,1

}Nk1

n=1∪{
wk,2

(
x(l)

k,2,x
(il)
k−1,2

)
,x(l)

k,2

}Nk2

l=1
;

27. Compute sk|k (xk) using (13);
Output:

28. Report qk|k, sk|k (xk) and
{

x(i)k ,w(i)
k

}Nk

i=1
.

track set and let X̂ = {x̂i}e
i=1 be the estimated track set,

then the OSPA distance is usually given by the following
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equation:

d̄(c)
p

(
X , X̂

)
=



 1∣∣X̂∣∣
 min

π∈Π|X̂|

|X |

∑
i=1

d(c) (xi, x̂π(i)
)p

+ cp (∣∣X̂∣∣−|X |
)




1/p

,

|X | ≤
∣∣X̂∣∣ ,

min(c,∥x− x̂∥) ,
|X |>

∣∣X̂∣∣ ,
(33)

where Π|X̂| is the set of permutations in
∣∣X̂∣∣, c is the cut-

off parameter that determines the sensitivity of divergence
from the cardinality error, pis the order parameter that de-
termines sensitivity of the localization error. Here, we set
p = 2 and c = 70 m.

5.1. Scenario 1: CV motion model
In this scenario, the target keeps a CV motion of ve-

locity (10,20) m s−1 for 60 s from the initial position
(120,230) m on the 21st s. We use the state matrix
xk = [xk, ẋk,yk, ẏk]

T to represent the position (xk,yk) and
the velocity (ẋk, ẏk), where [·]Tdenotes the transposed ma-
trix. As for the CV motion model, the related matrices in
(1) are further defined as follows:

Fk|k−1 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 and Γk =


0.5 0
1 0
0 0.5
0 1

 .
Additionally, the target dynamics are observed based on

the standard deviation diag(100,20,100,20). The standard
deviation for the measurement noise is diag(0.0349,10) ,
where diag(·) denotes the diagonal matrix.

Fig. 1 demonstrates the track of the moving target and
the related measurements in a dense clutter area under 100
Monte Carlo trials. It can be seen that the surveillance is
a top half-disc of radius 2000 m. As expected, the track is
a straight line that reflects the target with the CV motion
throughout the surveillance time. In addition, it is obvious
that the measurements become more concentrated around
the passive sensor.

Fig. 2 illustrates the true track, measurements, and po-
sition estimates in both x and y coordinates during the
21st-80th s. Note that the position estimates of the pro-
posed filter make a stealthy approach to the true position.
The tracking performance of it is compared with that of
the standard filter that subsumes many traditional track-
ing methods in clutter environments. Further, the standard
filter based on the UT method tends to seriously drift off
the true track and erroneously follows the position of ex-
traneous clutter-generated measurements. However, the
proposed filter correctly identifies the estimated position,
which does not suffer from multi-measurements generated

Fig. 1. Target track and measurements.

Fig. 2. Target state estimates.

Fig. 3. Target number estimates.

by clutters. Simultaneously, it inherently overcomes the
defects of standard filter on the CV motion model.

In Fig. 3, the summary statistics of the cardinality esti-
mates are shown. This figure reports both filters can con-
verge to the ground truth number. The estimated number
is not affected by heuristic clustering because it is made
on the basis of total mass of the particle set. Note that
the proposed filter adheres to its confidence in the number
estimates with smaller variance.
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Fig. 4. OSPA distance.

Fig. 4 demonstrates the OSPA distance of two filters.
In terms of the OSPA distance, the filters are penalized
in the unequal amounts. The standard filter settles to the
distance error consistent with the standard deviation of the
measurement noise, whilst the proposed filter achieves the
lower error as a direct result of always approaching the
true position. Due to employing natural mechanism for
obtaining state estimates, the proposed filter gives more
advantage to the localization component.

5.2. Scenario 2: CT motion model
The maneuvering target executes an anticlock CT mo-

tion of velocity (10,20) m s−1 for 60 s from the initial
position (95,220) m on the 21st s. The state matrix is
xk = [xk, ẋk,yk, ẏk,ωk]

T, where the turn rate at time k is
ωk = 0.02 rad s−1, the standard deviation of isotropic
Gaussian noise is diag(100,10,100,10,1), and the stan-
dard deviation for the measurement noise stays the same
with Scenario 1. Then, the related matrices in (1) are given
by:

Fk|k−1 =


1 0.9999 0 −0.0100 0
0 0.9998 0 −0.0200 0
0 0.0100 1 0.9999 0
0 0.0200 0 0.9998 0
0 0 0 0 1


and

Γk =


0.5 0 0
1 0 0
0 0.5 0
0 1 0
0 0 1

 .

Fig. 5 shows the track of target and measurements. Note
that the track is a curve in the top half-disc of the ra-
dius 2000 m, which means the target moves with the CT
motion during the surveillance period. Simultaneously, a

Fig. 5. Target track and measurements.

Fig. 6. Target state estimates.

large number of measurements are randomly generated in
the surveillance region.

In Fig. 6, the true track and the outputs of two filters are
shown in both x and y coordinates during the 21st-80th s.
The preliminary results suggest that the proposed filter is
suitable for the maneuvering target tracking in the pres-
ence of clutters, whereas the standard filter has estimation
bias. It is clear that the proposed filter provides a lower
variance than the standard filter by propagating entire dis-
tribution.

The estimated number versus time is demonstrated in
Fig. 7. As expected, it can be observed that the proposed
filter produces results essentially in agreement with the
ground truth number. On the contrary, the standard filter
has unstable number estimates. The explanation is that the
standard filter’s number estimates have high variance with
low confidence. Its estimates are easily influenced by new
measurements especially when the target is moving with
maneuvering dynamics.

Fig. 8 compares the OSPA distance of two filters. In
this figure, we note that the OSPA distance of the pro-
posed filter during the whole surveillance period is lower
than that of the standard filter. The results indicate a dra-
matic improvement in tracking accuracy. Many particles
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Fig. 7. Target number estimates.

Fig. 8. OSPA distance.

Table 1. Comparison of tracking performance.

Target
number

OSPA
distance (m) ESS (%)

Standard filter 0.9806 17.5691 18.77
Proposed filter 0.9872 11.6870 62.02

concentrate on the target when employing the UT scheme.
In view of the OSPA distance sensitive to the localization
error, the improvement derives mainly from the reduction
in the localization error.

Finally, Table 1 shows the average comparison results
of two filters under 1000 Monte Carlo trials, where con-
sists the time-averaged OSPA distance, estimated number
and ESS during the 21st-80th s. In this table, it can be
found that the proposed filter keeps perfect number esti-
mates and saves 33.48% OSPA distance, which indicates
the proposed filter boosts the accuracy of state estimation.
Regarding the ESS, the standard filter has only 30.26%
EES of the proposed filter. As a result, the OSPA distance
of the standard filter is larger. The investigation further
shows that two filters are roughly similar for the computa-

tional cost. Although it incurs extra costs related to com-
puting the related parameters of the proposal distributions,
the proposed filter consists of simply computing estimates
from smaller number of particles by which measurements
they are effectively assigned to, which also balances total
costs by inexpensive scheme of the state estimates. From
this table, we can conclude that the proposed filter has ex-
pected improvements.

6. CONCLUSION

This paper has developed an AP implementation of the
Bernoulli filter. The challenges are to handle inefficient
tracking and imprecise estimates of the standard Bernoulli
filter in noisy set of measurements. Our work employs
the AP method to minimize the variance of the important
weight in order to obtain low variance estimates. More-
over, the AP method provides guidance on selection of the
proposal distributions using the potential particles. Af-
terwards, the famous UT scheme further implements the
maneuvering target tracking. The numerical study shows
that the AP-Bernoulli filter has remarkable improvement
in the tracking performance with promising results. As the
future developments of this work, we will shorten running
time under the current tracking accuracy.
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