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Mean Square Consensus of Multi-agent Systems with Multiplicative
Noises and Time Delays under Directed Fixed Topologies
Lei Song, Dan Huang*, Sing Kiong Nguang, and Shan Fu

Abstract: This paper investigates the mean square consensus problem of multi-agent systems impacted by the
combined uncertainty of multiplicative noises and time delays. Considering general network under directed fixed
topologies, we propose consensus protocol that take into account both the multiplicative noises and time delays.
Using tools from stochastic differential delay equation (SDDE), martingale theory and stochastic inequality, we
establish sufficient conditions and obtain the explicit consensus gain and delay upper bounds under which the
proposed protocol leads to mean square consensus. In addition, we compare the impact of multiplicative and
additive noise and reach the conclusion that multiplicative noises have the property of stabilizing effect. Simulations
demonstrate the theoretical results.
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1. INTRODUCTION

Consensus problems have a long history in distributed
computing [1], management science [2] and statistical
physics [3]. In the control systems society, the research
effort can be traced back to the work [4], where an asyn-
chronous agreement problem was studied for distributed
decision-making problems. Due to widespread applica-
tions, there has been a recent surge of interests in consen-
sus problems and the like, see the recent survey [5] and
extensive reference therein.

Naturally, consensus problems arise in the system with
distributed structure when different coupling parts are seek-
ing an agreement on some certain quantity. Therefore, in
multi-agent systems, the flow of information and control
among agents over a network plays a crucial role in deter-
mining consensus. This point is reflected by some foun-
dational work in different sides, e.g., [6] and [7] focus on
consensus protocol based on given strategy of informa-
tion interaction, [8] and [9] study the cases of switching
and dynamical changing network topology, respectively.
Nevertheless, in practical applications, many uncertainties
will unavoidably make some impact on the information
acquisition and transmission that should be considered in
protocol design. Except the factor of network topology
mentioned above, the noise and delay effects are equally
important and should be taken into consideration simulta-
neously when studying consensus problems.
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Specifically, noises often come from measurement er-
rors or communication disturbance during the interaction
process between any two agents, which can lead to the
divergence of consensus value. Significant earlier stud-
ies about this topic are the case of consensus with addi-
tive noise. In the discrete-time setting, Huang and Manton
develop a stochastic approximation type of algorithm to
tackle noises in [10], and further investigate the cases with
fixed or randomly varying topology in [11] and Markovian
or arbitrary switching topology in [12]. In the continuous-
time setting, Li and Zhang propose convergence and ro-
bustness conditions of the control weights and obtain nec-
essary and sufficient conditions for mean square average
consensus under a fixed topology in [13], and then ap-
ply the algorithm to networks with quantized data and
packet losses in [14]. Other works are mainly motivated
by those above, e.g., [15] propose a new algorithm to reach
an (ε,δ ) consensus based on the conclusion of [10]. How-
ever researchers have paid more attention on the case of
consensus with relative-state-dependent noises or lin-
earized multiplicative noises more recently, where the noise
intensities are assumed as a function of relative states.
Physically, the typical examples are the logarithmic quan-
tization model in the stochastic framework and the dis-
tributed averaging system with Gaussian fading commu-
nication channels [16]. In [16] and [17], Li et al. develop
several small gain consensus gain theorems to give suffi-
cient conditions to ensure mean square and almost sure
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consensus of high-dimensional first-order agents with
relative-state-dependent noises and matrix-valued inten-
sity function. In [18], Ni and Li give a constant consen-
sus gain that can resolve the consensus problem that the
measurement noises are proportional to the relative states.
In [19], Long et al. deal with the case in the discrete-time
settings and give sufficient conditions for mean square and
almost sure consensus under fixed, dynamically switching
and random switching topologies. Some practical applica-
tions of the noisy setting can be found recently, e.g., con-
sensus of leader-following multi-agent systems [20] and
cooperative simultaneous attack of multi missiles [21].

On the other hand, all the aforementioned references do
not consider the co-existence of delays and noises while
time delays almost surely appear in multi-agent systems
due to the communication or measurement limit. Two
types of time delays, have been considered in the litera-
ture, i.e., communication delay and input delay [5], which
model the effect of communication and measurement re-
spectively. There have been only a few researchers focus-
ing on the topic both with noises and time delays which
poses significant challenges to the analysis of consensus.
In the study of discrete-time setting [22], Liu, Xie, and
Zhang introduce an auxiliary system for the first time to
overcome the the challenges induced by both the trans-
mission delays and noises. Meanwhile, in the study of
continuous-time setting [23], Liu et al. develop intensely
beneficial method to overcome the challenges induced by
the co-existence of additive delays and noises. By in-
troducing a Gronwall-Bellman-Halanay type inequality
firstly, the tools of stochastic differential delay equation
(SDDE) are taken to establish the sufficient conditions of
mean square average consensus. Based on this, further in
[24], Liu et al. derive the conditions of almost sure av-
erage consensus and pth moment average consensus. In
[25], by adopting the method proposed in [23], Djaidja
and Wu study the leader-following multi-agent systems
with additive delays and noises. Moreover, in [26], Sun
et al. propose the sufficient and necessary condition of
mean square average consensus under additive delays and
noises, while the proof based on the second-order Tay-
lor expansion is much more conservative. None of the
above mentioned work, however, has investigated stochas-
tic consensus problems of networks with relative-state-
dependent noises or multiplicative noises and delays. To
our best knowledge, there is still lack of good results in
this case.

In this paper, we aim to investigate the mean square
consensus problem of multi-agent systems with multiplica-
tive noises and time delays under directed fixed topolo-
gies. Following the known results in two aspects of re-
search, i.e., the impact of multiplicative noises and the co-
existence of additive noises and time delays, we take the
tools of SDDE, martingale theory and stochastic inequal-
ity to provide sufficient conditions under which the pro-

posed consensus protocol leads to mean square consen-
sus. Explicit consensus gain and delay upper bounds for
guaranteeing consensus are obtained, which is our main
contribution. In addition, we compare the impact of multi-
plicative and additive noises and reach the conclusion that
multiplicative noises have the property of stabilizing ef-
fect.

The following notations will be used throughout this pa-
per: In denotes the n× ndimensional identity matrix. 1n

denotes the n dimensional one vector . For a vector or ma-
trix A, AT denotes its transpose, if A is a vector then |A|
denotes its modulus, if A is a matrix then tr(A) denotes
its trace, ∥A∥ denotes its operator norm, and λmax(A) and
λmin(A) are its maximum and minimum eigenvalues, re-
spectively. For a given random variable X E [X] denotes
its mathematical expectation.

2. PROBLEM FORMULATION

We consider the consensus seeking problem of multi-
agent systems with multiplicative noises and time delays.
In our case, the dynamics of each agent is the continuous-
time first-order integrator

ẋi = ui, i = 1, . . . ,n, (1)

where xi, ui are the state and control input of agent i. ui is
designed based on the information of itself and its local in-
formation of neighbors under a communication network.

Denote the network topology as a weighted directed
graph (digraph) G = (V ,E ,A ) composed of set of nodes
V = (v1, . . . ,vn), set of edges E ⊂ V ×V , and a weighted
adjacency matrix A = [ai j]n×n with nonnegative adjacency
elements ai j. An edge of G is denoted by ei j =(vi,v j)∈ E .
The adjacency elements associated with the edges of the
graph are positive, i.e., ei j ∈ E ⇔ ai j > 0. It is assumed
that aii = 0 for i = 1, . . . ,n. The set of neighbors of node
vi is denoted by Ni = {v j = V : (v j,vi) ∈ E }. The graph
Laplacian L of the network is defined by L = D −A ,
where D = diag(d1, . . . ,dn) is the in-degree matrix of G
with elements di = ∑ j ̸=i ai j. A digraph is strongly con-
nected if there is a directed path connecting any two arbi-
trary nodes in the graph.

To tackle the multiplicative noises and time-delays, we
firstly model the information received by agent from its
neighbors by

y ji =x j(t − τi j(t))

+σ ji |x j(t − τi j(t))− xi(t − τi j(t))|ξ ji(t), j ∈ Ni,
(2)

where the noise processes {ξ ji(t) : i, j = 1, . . . ,n} are as-
sumed as independent standard white noises, that is,∫ t

0
ξ ji(s)ds = w ji(t), t ≥ 0,

where {w ji(t) : i, j = 1, . . . ,n} are independent Brownian
motions, and σ ji ≥ 0 represent the noise intensity. The
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time-varying delays τi j(t) lie in [0,τ] for some τ > 0 and
assumed to be continuous in t. Thus an admissible con-
sensus protocol should be designed as such a group of
controls {ui, i = 1, . . . ,n} under this mode of information
exchange, to make all the states of all agents asymptoti-
cally approach a common value in some sense . For the
ith agent we consider the following consensus controller
with its own measurement time-delays:

ui = α ∑
j∈Ni

ai j[y ji − xi(t − τi j(t))], (3)

where α > 0 is the consensus gain which will be deter-
mined. In this paper, we focus on the case where the time
delays are uniform for all i, j = 1, . . . ,n, i.e.,

τi j(t) = τ(t). (4)

By (1)-(4), we have

ẋi = α ∑
j∈Ni

ai j (x j(t − τ(t))− xi(t − τ(t)))

+α ∑
j∈Ni

ai jσ ji |x j(t − τ(t))− xi(t − τ(t))|ξ ji(t),
(5)

i = 1, . . . ,n.

To get the compact form of the entire system, define two
matrix

Θ = diag(Θ1, . . . ,Θn)

with

Θi = [ai1σ1i,ai2σ2i, . . . ,ainσni]

and

y(t − τ(t)) = diag(y1(t − τ(t)), . . . ,yn(t − τ(t)))

with

yi(t − τ(t)) =diag(|x1(t − τ(t))− xi(t − τ(t))| ,
. . . , |xn(t − τ(t))− xi(t − τ(t))|).

The collective dynamics of system can be written in the
form of the SDDE

dx(t) =−αLx(t − τ(t))dt +αΘy(t − τ(t))dW (t), (6)

where {W (t), t > 0} is the Rn2
-valued standard Brownian

motion defined on a probability space (Ω,F ,P)
We introduce the notion of mean square consensus for

the multi-agent system (1) under consensus protocol (3) in
an uncertain environment.

Defination 1 (mean square consensus [10]): The multi-
agent system is said to reach mean square consensus if
E|xi(t)|2 < ∞ for all t ≥ 0, i = 1, . . . ,n and there exists a
random variable x∗ such that lim

t→∞
E|xi(t)− x∗|2 = 0 for all

i = 1, . . . ,n.

As mentioned, Liu, Xie, and Zhang [22], Liu et al.
[23, 24] and related work have investigated the stochastic
consensus problem with noises and time delays but with-
out multiplicative noises involved, either in discrete or
continuous setting, while the works referring to the topic
of multiplicative noises [16–20] do not consider the ef-
fect of time delays. We aim to develop a consensus al-
gorithm and corresponding conditions to tackle the con-
sensus problem of multi-agent systems with multiplicative
noises and time delays.

3. MAIN RESULTS

In this paper, we deal with the case that the network
topology is directed fixed. To achieve our perspective, we
make the following assumptions.

Assumption 1: The fixed digraph G contains a span-
ning tree.

Assumption 2: The interaction mode between agents
is cooperative rather than competitive for all i, j = 1, . . . ,n,
i.e. a > 0.

Note that −L is not Hurwitz and may be interpreted as
the generator of a continuous time Markov chain. There-
fore, we could make state transformation and system de-
composition for the simplification of analysis by relevant
method. According to some known results in [11] and
[18], there exists a nonsingular matrix ϕ = [1n,φ ] to make

ϕ−1(−L)ϕ =

(
0 0
0 −L̄

)
, (7)

where −L̄∈ R(n−1)×(n−1) is Hurwitz and φ is a n× (n−1)
matrix. Denote ϕ−1 = [ π ψ ]T , where π is the unique
invariant probability measure of the Markov chain with
the generator −L and ψ is a (n−1)×n matrix. Obviously,
there exist a positive definite matrix P such that

P(−L̄)+(−L̄T )P =−In−1. (8)

Further, let x̃(t) = ϕ−1x(t)≡ [x̃1(t), x̄(t)T ]T , where x̃1(t) ∈
R and x̄(t)∈ Rn−1, and we get

x(t) = ϕ x̃(t) = x̃1(t)1n +φ x̄(t). (9)

For each agent, xi(t) = x̃1(t)+φix̄(t), where φi is the ith
row of φ . Clearly,

|xi(t − τ(t))− x j(t − τ(t))|= |(φi −φ j)x̄(t − τ(t))| .
(10)

By those above, we finally get the equivalent system of
(6), i.e.,

dx̃1(t) = απΘy(t − τ(t))dW (t), (11)

dx̄(t) =−αL̄x̄(t − τ(t))dt +αψΘy(t − τ(t))dW (t).
(12)
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Before starting the main result of this paper, we give the
following Lemmas.

Lemma 1 [27]: Let B, C and D be real matrices of
appropriate dimensional with ∥D∥ ≤ 1. Then, we have,
for any scalar ζ>0

BDC+CT DT BT ≤ ζ BBT+ζ−1CTC. (13)

Lemma 2: Let t0 and r be non-negative constants. Let
m : [t0 − r,∞) 7→ R+ be continuous and satisfy

D+m(t) : = limsup
h→0+

m(t +h)−m(t)
h

≤−µm(t)+λ sup
−r≤s≤0

m(t + s)

on [t0,∞), where µ and λ are constants satisfying µ > λ >
0. Then,

m(t)≤ m0 exp [−ρ(t − t0)]

hold on [t0,∞) , where ρ > 0 is the root of −ρ = −µ +
λeρr and m0 = sup−τ≤s≤0m(t0 + s).

Proof: The proof is similar to Lemma 5.1 [23] by set-
ting the parameters as γ(t) = 0 and c(t) = 1. Hence it is
omitted. □

Lemma 3: Applying the protocol to the system (1)
and (2), if Assumption 1 and Assumption 2 hold, then∫ t

τ 2α x̄T (t)PψΘy(t − τ(t))dW (t) is a martingale and

E
∫ t

τ
2α x̄T (t)PψΘy(t − τ(t))dW (t)=0. (14)

Proof: Firstly, we aim to obtain the estimation of the
solution of the SDDE (12). Denote f (x̄(t), x̄(t−τ(t)), t) =
−αL̄x̄(t−τ(t)) and g(x̄(t), x̄(t−τ(t)), t)=αψΘy(t−τ(t)).
Obviously, there exist a positive constant k1 such that

| f (x̄(t1), x̄(t1 − τ(t1)), t1)− f (x̄(t2), x̄(t2 − τ(t2)), t2)|2

≤ k1|x̄(t1 − τ(t1))− x̄(t2 − τ(t2))|2.
(15)

Notice that

Θ(y(t − τ(t)))(Θy(t − τ(t)))T

=diag

(
n

∑
j=1

(a j1σ1 j |x j(t)− xi(t)|)2,

. . . ,
n

∑
j=1

(a jnσn j |x j(t)− xn(t)|)2

)
which is a diagonal matrix. Then, for g(x̄(t), x̄(t−τ(t)), t),
we have

|g(x̄(t1), x̄(t1 − τ(t1)), t1)−g(x̄(t2), x̄(t2 − τ(t2)), t2)|2

=|αψΘ(y(t1 − τ(t1))− y(t2 − τ(t2)))|2

≤α2tr
(
ψT ψ

)
tr [Θ(y(t1 − τ(t1))− y(t2 − τ(t2)))×

(Θy(t1 − τ(t1))− y(t2 − τ(t2)))T

≤α2tr
(
ψT ψ

) n

∑
i=1

∑
j∈Ni

(σ ji |(φi −φ j)×

(x̄(t1 − τ(t1))− x̄(t2 − τ(t2)))|)2

≤

(
α2tr

(
ψT ψ

) n

∑
i=1

∑
j∈Ni

(σ ji |(φi −φ j)|)2

)
×

|x̄(t1 − τ(t1))− x̄(t2 − τ(t2))|2

=α2c1|x̄(t1 − τ(t1))− x̄(t2 − τ(t2))|2

≤k1|x̄(t1 − τ(t1))− x̄(t2 − τ(t2))|2,

(16)

where
c1=tr

(
ψT ψ

) n

∑
i=1

∑
j∈Ni

(σ ji |(φi −φ j)|)2. (17)

By (15) and (16), the Lipschitz condition is satisfied. Then,∣∣x̄T (t) f (x̄(t), x̄(t − τ(t)), t)
∣∣= ∣∣−α x̄T (t)L̄x̄(t − τ(t))

∣∣
≤ α

2

(∣∣x̄T (t)
∣∣2 +∥L̄∥|x̄(t − τ(t))|2

)
≤ k2

(
1+
∣∣x̄T (t)

∣∣2 + |x̄(t − τ(t))|2
)
,

where k2 is a positive constant.
By Theorem 7.14 in [28], the solution x̄(t) obeys , for

any p ≥ 2

E
(

sup
−τ≤t≤T

|x̄(t)|p
)

≤ 2
1
2 (p+2) (1+E|x̄(0)|p)e2K1 p(10p+1)T ≡ cT,p,

(18)

where cT,p is a positive constant and then we have

E
(

sup
0≤t≤T

|x̄(t − τ(t))|p
)
≤ cT,p. (19)

By (18) and (19), we have

E
∫ t

τ
∣∣2α x̄T (t)PψΘy(t − τ(t))

∣∣2ds

≤ 2E
∫ t

τ

(∣∣α x̄T (t)P
∣∣4 + |ψΘy(t − τ(t))|4

)
ds

≤ 2(α ∥P∥)4 ∫ t
τ E|x̄(s)|4ds+K2

1
∫ t

τ E|x(t − τ(t))|4ds < ∞.

Therefore
∫ t

τ 2α x̄T (t)PψΘy(t − τ(t))dW (t) is a martingale.
By the property of Itô’s integral, we have (14). □

Theorem 1: If Assumption 1 and Assumption 2 hold,
then the consensus protocol (3) leads to mean square con-
sensus for the agents in (1), if the consensus gain satisfies

α<
λmin(P)

(2+ ε)c2λmax(P)
, (20)

and for a given α , the time-delay satisfies

τ <
−cτ+

√
c2

τ −4cτ2 cτ0

2cτ2
, (21)

where the included parameters are determined as follows:
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c2=
n

∑
i=1

(ψT Pψ)ii ∑
i∈Ni

(σ ji |φi −φ j|)2, (22)

cτ2=
2ε−1α2

∥∥P2
∥∥∥∥L̄2

∥∥2

c1λmin(P)
+

4c1α4
∥∥L̄2
∥∥

λmin(P)
, (23)

cτ=
2ε−1α2c1

∥∥P2
∥∥∥∥L̄2

∥∥
c2λmin(P)

+
4c1c2α4

λmin(P)
, (24)

cτ0=− α
λmax(P)

+
(2+ ε)c1α2

λmin(P)
, (25)

and ε is a positive constant and arbitrarily selected.

Proof: Let V (t) = x̄T (t)Px̄(t). By applying Itô’s for-
mula, we have

dV (t) =α x̄T (t)(−L̄T P−PL̄)x̄(t)dt

+2α x̄T (t)PL̄ [x̄(t)− x̄(t − τ(t))]dt

+α2Tr[ψT Pψ(Θy(t − τ(t)))(Θy(t − τ(t)))T ]dt

+2α x̄T (t)PψΘy(t − τ(t))dW (t)
(26)

By (8), (24) can be simplified as

dV (t) =−α x̄T (t)x̄(t)dt

+2α x̄T (t)PL̄ [x̄(t)− x̄(t − τ(t))]dt

+α2Tr[ψT Pψ(Θy(t − τ(t)))(Θy(t − τ(t)))T ]dt

+2α x̄T (t)PψΘy(t − τ(t))dW (t).
(27)

Simple calculation shows that

Tr
[
ψT Pψ(Θy(t − τ(t)))(Θy(t − τ(t)))T

]
=

n

∑
i=1

[ψT Pψ]ii ∑
i∈Ni

(σ ji |(φi −φ j)x̄(t − τ(t))|)2

≤

(
n

∑
i=1

(ψT Pψ)ii ∑
i∈Ni

(σ ji |φi −φ j|)2

)
|x̄(t − τ(t))|2

≡ c2|x̄(t − τ(t))|2.

(28)

We have V (t)
λmax(P)

≤ x̄T (t)x̄(t). Therefore,

dV (t)≤

− α
λmax(P)

V (t)dt +2α x̄T (t)PL̄ [x̄(t)− x̄(t − τ(t))]dt

+ c2α2|x̄(t − τ(t))|2dt +2α x̄T (t)PψΘy(t − τ(t))dW (t),
(29)

By using Lemma 1, for any ζ > 0, we have

2x̄T (t)PL̄ [x̄(t)− x̄(t − τ(t))]

≤ ζ x̄T (t)P2x̄(t)+ζ−1[L̄(x̄(t)− x̄(t − τ(t)))]2,
(30)

and by discrete Hölder inequality,

|x̄(t − τ(t))|2 = |x̄(t)− (x̄(t)− x̄(t − τ(t)))|2

≤ 2|x̄(t)|2 +2|x̄(t)− x̄(t − τ(t))|2.
(31)

Inserting (30) and (31) in (29) gives

dV (t)≤− α
λmax(P)

V (t)dt +αζ x̄T (t)P2x̄(t)dt

+αζ−1[L̄(x̄(t)− x̄(t − τ(t)))]2dt +2c2α2|x̄(t)|2dt

+2c2α|x̄(t)− x̄(t − τ(t))|2dt

+2α x̄T (t)PψΘy(t − τ(t))dW (t).
(32)

Now, by integrating (32) from τ to t, and taking the
mathematical expectation for both sides and using Lemma
3 yields

E [V (t)]−E [V (τ)]

≤− α
λmax(P)

∫ t

τ
E [V (s)]ds

+αζ
∫ t

τ
E
[
x̄T (s)P2x̄(s)

]
ds+2c2α2

∫ t

τ
E|x̄(s)|2ds

+αζ−1
∫ t

τ
E[L̄(x̄(s)− x̄(s− τ(s)))]2ds

+2c2α2
∫ t

τ
E|x̄(s)− x̄(s− τ(s))|2ds.

(33)

Rewriting (33) in differential form gives

D+E [V (t)] = lim
h→0

sup
E [V (t+h)]−E [V (t)]

h

≤− α
λmax(P)

E [V (t)]+αζ E
[
x̄T (t)P2x̄(t)

]
+αζ−1E[L̄(x̄(t)− x̄(t − τ(t)))]2 +2c2α2E|x̄(t)|2

+2c2α2E|x̄(t)− x̄(t − τ(t))|2.
(34)

We aim to obtain an estimate of the right-hand side of
(34). Note that

E
[
x̄T (t)P2x̄(t)

]
≤

∥∥P2
∥∥

λmin(P)
E [V (t)] , (35)

and

E|x̄(t)|2 ≤ E [V (t)]
λmin(P)

. (36)

On the other hand, from (12) we have

x̄(t)− x̄(t − τ(t)) =−α
∫ t

t−τ(t)
L̄x̄(s− τ(s))ds

+α
∫ t

t−τ(t)
ψΘy(s− τ(s))dW (s).

This implies

E|x̄(t)− x̄(t − τ(t))|2 =E
∣∣∣∣−α

∫ t

t−τ(t)
L̄x̄(s− τ(s))ds+

α
∫ t

t−τ(t)
ψΘy(s− τ(s))dW (s)

∣∣∣∣2.
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Further,

E|x̄(t)− x̄(t − τ(t))|2

≤2E
∣∣∣∣−α

∫ t

t−τ(t)
L̄x̄(s− τ(s))ds

∣∣∣∣2
+2E

∣∣∣∣α ∫ t

t−τ(t)
ψΘy(s− τ(s))dW (s)

∣∣∣∣2
≤2α2τ

∫ t

t−τ(t)
E|L̄x̄(s− τ(s))|2ds

+2α2E
∫ t

t−τ(t)
|ψΘy(s− τ(s))|2ds

≤2α2τ
∥∥L̄2
∥∥∫ t

t−τ
E|x̄(s− τ(s))|2ds

+2α2c1

∫ t

t−τ
E|x̄(s− τ(s))|2ds

=
(
2α2τ

∥∥L̄2
∥∥+2α2c1

)∫ t

t−τ
E|x̄(s− τ(s))|2ds

≤
2α2τ

∥∥L̄2
∥∥+2α2c1

λmin(P)

∫ t

t−τ
E [V (s− τ(s))]ds

≤
2α2τ2

∥∥L̄2
∥∥+2α2c1τ

λmin(P)
Sup

−2τ≤s≤0
E [V (t + s)] ,

(37)

while the first inequality above is a direct application of
discrete Hölder inequality, the second inequality has used
Hölder inequality and Itô’s formula and the third inequal-
ity has used the result of (16). Similarly, we have

E|L̄(x̄(t)− x̄(t − τ(t)))|2

≤ 2α2τ2∥L̄2∥2
+2α2c1τ∥L̄2∥

λmin(P)
Sup

−2τ≤t≤0
E [V (t + s)] .

(38)

Then we obtain

D+E [V (t)]

≤

(
− α

λmax(P)
+

αζ
∥∥P2
∥∥

λmin(P)
+

2c2α2

λmin(P)

)
E [V (t)]

+
(
αζ−1

∥∥L̄2
∥∥+2c2α2)× 2α2τ2

∥∥L̄2
∥∥+2α2c1τ

λmin(P)

× Sup
−2τ≤t≤0

E [V (t + s)] .

(39)

Substitute another arbitrary constant ε= (αc2)
−1
∥∥P2
∥∥ζ

into (39) , it can be simplified as

D+E [V (t)]≤
(
− α

λmax(P)
+

(2+ ε)c2α2

λmin(P)

)
E [V (t)]

+

(
ε−1
∥∥P2
∥∥∥∥L̄2

∥∥
αc2

+2c2α2

)
×

2α2τ2
∥∥L̄2
∥∥+2α2c1τ

λmin(P)

× Sup
−2τ≤t≤0

E [V (t + s)] .

(40)

Therefore, Lemma 2 can be used in (40), where the m(t)
is E [V (t)]. Firstly, we have

− α
λmax(P)

+
(2+ ε)c2α2

λmin(P)
< 0, (41)

and
− α

λmax(P)
+ (2+ε)c2α2

λmin(P)
+

(
ε−1∥P2∥∥L̄2∥

αc2
+2c2α2

)
× 2α2τ2∥L̄2∥+2α2c1τ

λmin(P)
< 0,

(42)

which is a simple quadratic inequality about the time-delay
τ . Substitute parameters (22)-(25) into (41) and (42), we
have

cτ0 < 0, (43)

cτ2 τ2+cτ τ+cτ0 < 0. (44)

By (43), the condition of the consensus gain is given in
(20). By Assumption 2, we have cτ2>0 and cτ>0. Ac-
cording to the property of quadratic equation, the condi-
tion of the time-delay is given in (21).

Then there exists a positive constant ρ such that −ρ =
cτ0 +(cτ2 τ2+cτ τ)eρτ and E [V (t)] on [τ,∞) satisfies

E [V (t)]≤ Sup
−τ≤t≤τ

E [V (s)]exp [−ρ(t − t0)] , (45)

which gives lim
t→∞

E [V (t)]= 0, combing this with (36) yields

lim
t→∞

E|x̄(t)|2 = 0.
Next, by (11), note that

x̃1(t) = x̃1(0)+
∫ t

0
απΘy(s− τ(s))dW (s). (46)

By (19) and Itô’s formula, it follows that

sup
0≤t≤T

E|x̃1(t)|2

≤ 2 sup
0≤t≤T

(
E|x̃1(0)|2 +E

∣∣∫ t
0 απΘy(s− τ(s))dW (s)

∣∣2)
≤ 2E|x̃1(0)|2 +2sup

t≥0

(∫ t
0 E|απΘy(s− τ(s))|2

)
ds

≤ 2E|x̃1(0)|2 +2k3
∫ t

0 E
(

sup
0≤t≤T

|x̄(t − τ(t))|p
)

ds

≤ 2E|x̃1(0)|2 + k3cT,2 < ∞

for some positive constant k3. Due to the martingale con-
vergence theorem, we know that as t →∞, x̃1(t) converges
to a random variable with finite second-order moment both
in mean square and almost surely. Denote the limit vari-
able by

x∗= x̃1(0)+
∫ ∞

0
απΘy(s− τ(s))dW (s).

Thus,

lim
t→∞

E|x(t)− x∗1n|2

≤ lim
t→∞

2
(

E|x̃1(t)1n − x∗1n|2 +E|φ x̄(t)|2
)
= 0.
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Therefore, we conclude that the consensus protocol (3)
is a mean square consensus protocol. This completes the
proof. □

Remark 1: By analyzing the effects of the multiplica-
tive and additive noises, we can see the sufficient condi-
tions under multiplicative noises and delays are relatively
weaker, which the consensus gain can be a positive con-
stant, see the results in [23]. The reason is that the noise of
one agent can be diminished by the noises of its neighbors
by the communication network. Therefore the multiplica-
tive noises have the property of stabilizing effect.

4. SIMULATIONS

In this section, we conduct numerical simulations to
demonstrate the effectiveness of our main results to show
the consensus protocol (3) can lead to mean square con-
sensus of multi-agent systems with multiplicative noises
and time delays under directed fixed topologies. On the
other hand, the stabilizing effect of multiplicative noises
has been demonstrated by the comparison with the con-
sensus problem under additive noises and delays.

Consider a dynamic network of four agents under di-
rected fixed topology with

E = {(1,3),(2,1),(3,2),(3,1),(4,3)}

which there is a spanning tree, see Fig. 1. Take the ini-
tial states as x1(0) = 1, x2(0) = 2, x3(0) =−4, x4(0) = 0,
and the corresponding noise intensities are taken as σ31 =
σ12 = σ23 = σ13 = σ34 = 0.5. Under this topology, the
positive-definite matrix satisfying (8) can be deduced as

P =

 0.5 0 0
0 0.2812 −0.0625
0 −0.0625 0.25

, with λmax(P) = 0.5

and λmin(P) = 0.2012. By setting the arbitrary positive
constant ε = 1, we can derive that α<0.0634. Then α can
be chosen as α = 0.05 to satisfy (20), leading to the result
of (21)), i.e., τ < 0.2403. Three cases are simulated for
the analysis and comparison, see Figs. 2–4. In Fig. 2, the
setting is α = 0.05 and τ(t) = 0.2 |cos(t)|, and the effec-
tiveness of Theorem 1 is verified for the convergence of
states of all the agents. In Fig. 3, the setting is α = 0.05
and τ(t) = 26 |cos(t)|, the movement of states has been
obvious periodic and divergent in the end, which reveals
that allowable time-delay is limit under a certain consen-
sus gain. Fig. 4 shows the consensus scenario of states of
multi-agent system with additive noises and time-delays
under the same parameter setting with Fig. 2. According
to the known conclusion [23], the constant consensus gain
α , cannot eliminate noise effects while it is beneficial to

the analysis of the property of noises. By the comparison
between Fig. 2 and Fig. 4, we can see that under the same
setting, the states of agents under additive noises cannot

Fig. 1. The digraph of the multi-agent system having a
spanning tree.
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Fig. 2. States of agents with multiplicative noises and time
delays ( α = 0.05,τ(t) = 0.2 |cos(t)|).
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Fig. 3. States of agents with multiplicative noises and time
delays ( α = 0.05,τ(t) = 26 |cos(t)|).

achieve the consensus, which illustrate the stabilizing ef-
fect of the multiplicative noises to some extent.

5. CONCLUSIONS

In this paper, the mean square consensus problem of
multi-agent systems with multiplicative noises and time
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Fig. 4. States of agents with additive noises and time de-
lays (α = 0.05,τ(t) = 0.2 |cos(t)|).

delays under directed fixed topologies has been consid-
ered. By taking the tools from SDDE, martingale the-
ory and stochastic inequality, together with the property
of quadratic inequality, the sufficient conditions composed
of the upper bounds of consensus gain and time-delays are
obtained for the first time in this case. In addition, by com-
paring the impact of multiplicative and additive noises, we
reach the conclusion that multiplicative noises have the
property of stabilizing effect. In future work, the case with
multiplicative noises and time delays under switching or
stochastic topology is worth investigating.
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