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Enhancement on Stability Criteria for Linear Systems with Interval Time-
varying Delays
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Abstract: In this paper, the problem of stability for linear systems with interval time-varying delays is investigated.
By constructing a suitable augmented Lyapunov-Krasovskii functional and utilizing Wirtinger-based integral in-
equality, two sufficient conditions for guaranteeing the asymptotic stability of the concerned systems are derived
within the framework of linear matrix inequalities (LMIs). The superiority and validity of the proposed criteria are
verified by comparing maximum delay bounds under various conditions via two numerical examples.
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1. INTRODUCTION

Time-delay has gained considerable attentions due to
one of the constraints in many fields such as physical, in-
dustrial and engineering systems such as aircrafts, biolog-
ical systems, population dynamics, neural networks, net-
worked control systems, and so on. For examples, see
[1–3] and references therein. It is well known that time-
delay often causes undesirable dynamic behaviors such
as oscillation and instability of systems. One major is-
sue in stability analysis of time-delay systems is to de-
velop less conservative delay-dependent stability condi-
tions, which provide upper bounds of time-delay guaran-
teeing the asymptotic stability. In general, stability anal-
ysis for time-delay systems can be classified into two cat-
egories. One is delay-dependent analysis which includes
the information about the size of time-delay, and the other
is delay-independent analysis which do not use the infor-
mation. Generally, when the size of time-delay is small,
the delay-dependent case is less conservative than the
delay-independent case. Therefore, in regard to this, a
lot of results on delay-dependent stability conditions for
time-delay systems have been addressed in the literature
[4–8].

Naturally, in the past few years, in order to find im-
proved stability criteria, various techniques such as Jensen’s
inequality application [9], cross terms [10–13], free-weight-
ing matrices [14], the reciprocally convex approach [15,
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16], bounding techniques [17] and delay-range-dependent
method [18] were introduced. Sun et al. [19] proposed the
triple integral forms of Lyapunov-Krasovskii functional
and showed their effectiveness in reducing the conserva-
tism of stability criteria, and after this, many researchers
utilize the Lyapunov-Krasovskii functional containing
triple integral form in stability analysis for time-delay sys-
tems. Above this, the meaningful approaches were pro-
posed in [20–26]. Recently, the Wirtinger-based integral
inequality [27] was presented to find more tighter lower
bound of integral of single state quadratic term than the
lower bound of Jensen’s inequality [3], and the inequality
was also addressed in [28]. Very recently, based on the re-
sult of Wirtinger-based integral inequality, the Wirtinger-
based double integral inequality was presented by [29] for
the quadratic double integral form. Moreover, in [30], var-
ious forms of the Wirtinger-based integral inequality were
generalized by the auxiliary function. In [31], the new re-
fined Jensen-based inequalities which are the same with
the inequality in Remark 4 [30] were proposed. However,
the constructed double integral in Lyapunov-Krasovskii
functional is single state quadratic form. Therefore, there
is room for further enhancement in stability analysis of
time-delay systems. In this regard, we address question
“how to construct the Lyapunov-Krasovskii functional?"
Notably, it can be remarkable that there are various forms
of the functional. In this paper, two types of the functional
are proposed to the use of the various cross terms to im-
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prove the stability conditions for time-delay systems.
Motivated by the discussion above, this paper deals with

the problem of stability criteria for linear systems with
time-varying delays. Here, we consider an interval time-
varying delays containing the lower and upper bounds of
time-delay. To solve the problem mentioned above, by
construction of an augmented Lyapunov-Krasovskii func-
tional and utilization of some mathematical techniques, a
stability criterion will be derived in Theorem 1. Based on
the result by Theorem 1, a more enhanced stability cri-
terion which utilizes the triple integral functional will be
proposed in Theorem 2. In deriving lower bound of double
integral terms, Wirtinger-based double integral inequality
[29] will be utilized. Through two examples, it will be
shown that the stability criteria introduced in Theorems
1 and 2 can improve the feasible region guaranteeing the
asymptotic stability for such systems by comparing the re-
sults in some recent papers [16, 17, 25, 26, 31–35].

Notation: R, Rn and Rm×n denote the sets of real num-
bers, n-vectors with the l2-norm ∥ · ∥ and m× n matrices,
respectively. Cn,h = C([−h,0],Rn) denotes the Banach
space of continuous functions mapping the interval [−h,0]
into Rn, with the topology of uniform convergence. Sn and
Sn
+ are the sets of symmetric and positive definite n× n

matrices, respectively. In, 0n and 0m·n denote n×n identity
matrix, n×n and m×n zero matrices, respectively. X > 0
(< 0) represents positive (negative) definite matrix. X⊥

denotes a basis for the nullspace of X . diag{· · ·}, sym{X}
and col{x1, . . . ,xn} stand for, respectively, the (block) di-
agonal matrix, the sum X +XT with the square matrix X ,
and the column vector with the vectors x1, . . . ,x2. The
symmetric blocks will be readily denoted by ⋆ when nec-
essary. X[ f (t)] means that its elements include the scalar
value of f (t) affinely.

2. PRELIMINARIES

Consider the following linear systems with time-varying
delays

ẋ(t) = Ax(t)+Adx(t −h(t)), ∀ t > 0,

x(s) = ϕ(s), ∀s ∈ [−hU ,0], hU > 0, (1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n and Ad ∈
Rn×n are known constant matrices, ϕ(s) ∈Cn,hU is a given
continuous vector valued initial function, and h(t) is a
time-varying delay satisfying

0 ≤ hL ≤ h(t)≤ hU , ḣ(t)≤ hD, ∀t > 0, (2)

in which hL and hU are known positive scalars and hD is
any constant one.

The aim of this paper is to investigate the stability anal-
ysis for systems (1). Moreover, to derive a main result, the
following lemmas are used.

Lemma 1: For any matrix R ∈ Sn
+, given scalars a and

b satisfying a < b, the following inequalities hold for all
continuously differentiable function x in [a,b]→ Rn:

i) Wirtinger-based inequality [27]

(b−a)
∫ b

a
xT (s)Rx(s)ds

≥
(∫ b

a
x(s)ds

)T

R
(∫ b

a
x(s)ds

)
+3J T

1 (x)RJ1(x),

ii) Wirtinger-based double inequality [29]

(b−a)2

2

∫ b

a

∫ b

s
xT (u)Rx(u)duds

≥
(∫ b

a

∫ b

s
x(u)duds

)T

R
(∫ b

a

∫ b

s
x(u)duds

)
+2J T

2 (x)RJ2(x),

where J1(x)=
∫ b

a x(s)ds− 2
b−a

∫ b
a
∫ s

a x(u)duds and J2(x)=
−
∫ b

a
∫ b

s x(u)duds+ 3
b−a

∫ b
a
∫ b

s
∫ b

u x(v)dvduds.

Lemma 2: For any vectors {xi ∈Rn}2
i=1, matrices R ∈

Sn
+, M ∈ Rn×n, real scalars {αi ≥ 0}2

i=1 satisfying Ψ =[
R M
⋆ R

]
> 0, α1 +α2 = 1, and xi = 0 if αi = 0, the

following inequality holds:

i) First-order reciprocally convex lemma [15]

1
α1

xT
1 Rx1 +

1
α2

xT
2 Rx2 ≥

[
x1

x2

]T

Ψ
[

x1

x2

]
,

ii) Second-order reciprocally convex lemma [16]

1
α2

1
xT

1 Rx1 +
1

α2
2

xT
2 Rx2 ≥

[
x1

x2

]T

Ψ
[

x1

x2

]
.

Lemma 3: Let x ∈ Rn, A ∈ Sn, B ∈ Rm×n such that
rank{B} < n, C ∈ Sm

+ and any matrix D ∈ Rn×m. The
following statements are equivalent:

i) Equivalence 1 (Finsler’s lemma) [36]

xT Ax < 0, ∀Bx = 0, x ̸= 0 ⇔ B⊥T
AB⊥ < 0,

ii) Equivalence 2 [9]

A−BTCB < 0 ⇔

 A+BT D
+DT B

⋆

D −C

< 0.
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3. MAIN RESULTS

In this section, two stability conditions for system (1)
are presented. For simplicity of matrix and vector nota-
tions, some scalars and matrices are defined as follows:

ζ (t) = col{x(t),x(t −h(t)),x(t −hL),x(t −hU),

ẋ(t), ẋ(t −hL), ẋ(t −hU),
1
hL

∫ t
t−hL

x(s)ds,

1
h(t)−hL

∫ t−hL
t−h(t)x(s)ds, 1

hU−h(t)

∫ t−h(t)
t−hU

x(s)ds,
1
hL

∫ t
t−hL

∫ t
s x(u)duds, 1

h(t)−hL

∫ t−hL
t−h(t)

∫ t−hL
s x(u)duds,

1
hU−h(t)

∫ t−h(t)
t−hU

∫ t−h(t)
s x(u)duds}

Π1,1[h(t)] = [e1,e3,e4,hLe8,

(h(t)−hL)e9 +(hU −h(t))e10],

Π1,2 = [e5,e6,e7,e1 − e3,e3 − e4],

Π2 = [e5,e1,e6,e3,e7,e4],

Π3,1 = [e1,013n·n,e3,e1 − e3],

Π3,2 = [e3,013n·n,e2,e3 − e2],

Π4 = [e1 − e3,hLe8,−e1 − e3 +2e8,hLe8 −2e11],

Π5,1[h(t)] = [e3 − e2,(h(t)−hL)e9,

− e3 − e2 +2e9,(h(t)−hL)e9 −2e12],

Π5,2[h(t)] = [e2 − e4,(hU −h(t)e10,

− e2 − e4 +2e10,(hU −h(t))e10 −2e13],

Ξ1[h(t)] = sym{Π1,1[h(t)]PΠT
1,2},

Ξ2 = Π2diag{N1,N2 −N1,−N2}ΠT
2 ,

Ξ3,1 = Π3,1diag{G1,−G1}ΠT
3,1

+sym{hL[e8,e1 − e8]G1[013n·n,e5]
T},

Ξ3,2[h(t)] = Π3,2diag{G2,−(1−hD)G2}ΠT
3,2

+sym{(h(t)−hL)[e9,e3 − e9]G2[013n·n,e6]
T},

Ξ4 = h2
L[e5,e1]Q1[e5,e1]

T −Π4diag{Q1,3Q1}ΠT
4 ,

Ξ5 = (hU −hL)
2[e6,e3]Q2[e6,e3]

T ,

Ξze = (hU −hL)[e3,e2,e4]diag{P1,P2 −P1,−P2}
× [e3,e2,e4]

T ,

Ξ̃[h(t)] = Ξ1[h(t)]+Ξ2 +Ξ3,1 +Ξ3,2[h(t)]

+Ξ4 +Ξ5 +Ξze,

Γ = AeT
1 +AdeT

2 − IneT
5 ,

Λ1[h(t)] = [Π5,1[h(t)],Π5,2[h(t)]],

Qi = Q2 +

[
0n Pi

Pi 0n

]
(i = 1,2),

Ω1 =

[
diag{Q1,3Q1} M1

⋆ diag{Q2,3Q2}

]
, (3)

where ei = [0n·(i−1)n, In,0n·(13−i)n]
T ∈R13n×n (i= 1,2, . . . ,13)

are the block entry matrices, e.g., eT
2 ζ (t) = x(t −h(t)).

Now, the first result is given by the following theorem:

Theorem 1: For given scalars hL, hU and hD satisfying
(2), the system (1) is asymptotically stable, if there exist

matrices R ∈ S5n
+ , Ni ∈ S2n

+ , Gi ∈ S2n
+ , Qi ∈ S2n

+ , Pi ∈ Sn

(i = 1,2), M1 ∈R4n×4n and F1 ∈R8n×12n satisfying the fol-
lowing LMIs:[

Γ⊥T Ξ̃[hL]Γ⊥+sym{Γ⊥T ΛT
1[hL]

F1} ⋆

F1 −Ω1

]
< 0,

(4)[
Γ⊥T Ξ̃[hU ]Γ⊥+sym{Γ⊥T ΛT

1[hU ]
F1} ⋆

F1 −Ω1

]
< 0.

(5)

Proof: Consider the Lyapunov-Krasovskii functional can-
didate given by

V (t) =
5

∑
i=1

Vi, (6)

where

V1 =ϖT
1 (t)Rϖ1(t),

V2 =
∫ t

t−hL

ϖT
2 (s)N1ϖ2(s)ds+

∫ t−hL

t−hU

ϖT
2 (s)N2ϖ2(s)ds,

V3 =
∫ t

t−hL

ϖT
3 (t,s)G1ϖ3(t,s)ds

+
∫ t−hL

t−h(t)
ϖT

3 (t −hL,s)G2ϖ3(t −hL,s)ds,

V4 =hL

∫ t

t−hL

∫ t

s
ϖT

2 (u)Q1ϖ2(u)duds,

V5 =(hU −hL)
∫ t−hL

t−hU

∫ t−hL

s
ϖT

2 (u)Q2ϖ2(u)duds

with ϖ1(t) = col{x(t), x(t − hL), x(t − hU),
∫ t

t−hL
x(s)ds,∫ t−hL

t−hU
x(s)ds}, ϖ2(t)= col{ẋ(t),x(t)} and ϖ3(t,s)= col{x(s),∫ t

s ẋ(u)du}.
In numerical order, time-differentiating V (t) leads to

V̇1 =2ϖT
1 (t)R


ẋ(t)

ẋ(t −hL)
ẋ(t −hU)

x(t)− x(t −hL)
x(t −hL)− x(t −hU)


︸ ︷︷ ︸

ϖ̇1(t)

=ζ T (t)Ξ1[h(t)]ζ (t),
V̇2 =ϖT

2 (t)N1ϖ2(t)−ϖT
2 (t −hL)N1ϖ2(t −hL)

+ϖT
2 (t −hL)N2ϖ2(t −hL)

−ϖT
2 (t −hU)N2ϖ2(t −hU)

=ζ T (t)Ξ2ζ (t),
V̇3 =ϖT

3 (t, t)G1ϖ3(t, t)−ϖT
3 (t, t −hL)G1ϖ3(t, t −hL)

+2
∫ t

t−hL

ϖT
3 (t,s)G1

∂ϖ3(t,s)
∂ t

ds

+ϖT
3 (t −hL, t −hL)G2ϖ3(t −hL, t −hL)

− (1− ḣ(t))ϖT
3 (t −hL, t −h(t))G2
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×ϖ3(t −hL, t −h(t))

+2
∫ t−hL

t−h(t)
ϖT

3 (t −hL,s)G2
∂ϖ3(t −hL,s)

∂ t
ds,

≤
[

x(t)
0n

]T

G1

[
x(t)
0n

]
−
[

x(t −hL)
x(t)− x(t −hL)

]T

G1

[
x(t −hL)

x(t)− x(t −hL)

]
+2

[ ∫ t
t−hL

x(s)ds
hLx(t)−

∫ t
t−hL

x(s)ds

]T

G1

[
0n

ẋ(t)

]
+

[
x(t −hL)

0n

]T

G2

[
x(t −hL)

0n

]
− (1−hD)

[
x(t −h(t))

x(t −hL)− x(t −h(t))

]T

G2

×
[

x(t −h(t))
x(t −hL)− x(t −h(t))

]

+2

[ ∫ t−hL
t−h(t)x(s)ds

(h(t)−hL)x(t −hL)−
∫ t−hL

t−h(t)x(s)ds

]T

×G2

[
0n

ẋ(t −hL)

]
=ζ T (t)(Ξ3,1 +Ξ3,2[h(t)])ζ (t),

V̇4 =h2
LϖT

2 (t)Q1ϖ2(t)−hL

∫ t

t−hL

ϖT
2 (s)Q1ϖ2(s)ds,

V̇5 =(hU −hL)
2ϖT

2 (t −hL)Q2ϖ2(t −hL)

− (hU −hL)
∫ t−hL

t−hU

ϖT
2 (s)Q2ϖ2(s)ds. (7)

Moreover, by combining the zero equality inspired by the
work [10]

xT (t −hL)P1x(t −hL)− xT (t −h(t))P1x(t −h(t))

−2
∫ t−hL

t−h(t)
xT (s)P1ẋ(s)ds+ xT (t −h(t))P2x(t −h(t))

− xT (t −hU)P2x(t −hU)−2
∫ t−h(t)

t−hU

xT (s)P2ẋ(s)ds

=0 (8)
with V̇5, we get

V̇5 =ζ T (t)(Ξ5 +Ξze)ζ (t)

− (hU −hL)
∫ t−hL

t−h(t)
ϖT

2 (s)Q1ϖ2(s)ds

− (hU −hL)
∫ t−h(t)

t−hU

ϖT
2 (s)Q2ϖ2(s)ds. (9)

Here, by Lemma 1 i), three integral terms in V̇4 and V̇5 of
(9) can be bounded as follows:
• The integral term in V̇4:

hL

∫ t

t−hL

ϖT
2 (s)Q1ϖ2(s)ds

≥
(∫ t

t−hL

[
ẋ(s)
x(s)

]
ds
)T

Q1

(∫ t

t−hL

[
ẋ(s)
x(s)

]
ds
)

+3
(∫ t

t−hL

[
ẋ(s)
x(s)

]
ds

− 2
hL

∫ t

t−hL

∫ t

s

[
ẋ(u)
x(u)

]
duds

)T

Q1 (⋆)

=

[
x(t)− x(t −hL)∫ t

t−hL
x(s)ds

]T

Q1

[
x(t)− x(t −hL)∫ t

t−hL
x(s)ds

]

+3

[
−x(t)− x(t −hL)+

2
hL

∫ t
t−hL

x(s)ds∫ t
t−hL

x(s)ds− 2
hL

∫ t
t−hL

∫ t
s x(u)duds

]T

Q1(⋆)

=ζ T (t)Π4diag{Q1,3Q1}ΠT
4 ζ (t). (10)

• The two integral terms in V̇5 of (9):

(hU −hL)
∫ t−hL

t−h(t)
ϖT

2 (s)Q1ϖ2(s)ds

≥ 1
α(t)

(∫ t−hL

t−h(t)

[
ẋ(s)
x(s)

]
ds
)T

Q1 (⋆)

+
3

α(t)

(∫ t−hL

t−h(t)

[
ẋ(s)
x(s)

]
ds

− 2
h(t)−hL

∫ t−hL

t−h(t)

∫ t−hL

s

[
ẋ(u)
x(u)

]
duds

)T

Q1(⋆)

=
1

α(t)

[
x(t −hL)− x(t −h(t))∫ t−hL

t−h(t)x(s)ds

]T

Q1
[
⋆
]

+
3

α(t)


−x(t −hL)− x(t −h(t))
+ 2

h(t)−hL

∫ t−hL
t−h(t)x(s)ds∫ t−hL

t−h(t)x(s)ds
− 2

h(t)−hL

∫ t−hL
t−h(t)

∫ t−hL
s x(u)duds


T

×Q1
[
⋆

]
=

1
α(t)

ζ T (t)Π5,1diag{Q1,3Q1}ΠT
5,1ζ (t) (11)

and

(hU −hL)
∫ t−h(t)

t−hU

ϖT
2 (s)Q2ϖ2(s)ds

≥ 1
1−α(t)

(∫ t−h(t)

t−hU

[
ẋ(s)
x(s)

]
ds
)T

Q2 (⋆)

+
3

1−α(t)

(∫ t−h(t)

t−hU

[
ẋ(s)
x(s)

]
ds

− 2
hU −h(t)

∫ t−h(t)

t−hU

∫ t−h(t)

s

[
ẋ(u)
x(u)

]
duds

)T

Q2(⋆)

=
1

1−α(t)

[
x(t −h(t))− x(t −hU)∫ t−h(t)

t−hU
x(s)ds

]T

Q2
[
⋆

]

+
3

1−α(t)


−x(t −h(t))− x(t −hU)

+ 2
hU−h(t)

∫ t−h(t)
t−hU

x(s)ds∫ t−h(t)
t−hU

x(s)ds
− 2

hU−h(t)

∫ t−h(t)
t−hU

∫ t−h(t)
s x(u)duds


T
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×Q2
[
⋆
]

=
1

1−α(t)
ζ T (t)Π5,2diag{Q2,3Q2}ΠT

5,2ζ (t), (12)

where α(t) = h(t)−hL
hU−hL

.
As a result, the upper bounds of V̇4 and V̇5 are obtained as

V̇4 ≤ζ T (t)Ξ4ζ (t), (13)

V̇5 ≤ζ T (t)(Ξ5 +Ξze)ζ (t)

− 1
α(t)

ζ T (t)Π5,1diag{Q1,3Q1}ΠT
5,1ζ (t)

− 1
1−α(t)

ζ T (t)Π5,2diag{Q2,3Q2}ΠT
5,2ζ (t).

(14)

Furthermore, from (12), by Lemma 2 i), if Ω1 > 0, then
the V̇5 can be rebounded as for any matrix M1

V̇5 ≤ζ T (t)(Ξ5 +Ξze)ζ (t)
−ζ T (t)Λ1[h(t)]Ω1ΛT

1[h(t)]ζ (t). (15)

Hence, an upper bound of V̇ (t) is obtained as follows:

V̇ (t)≤ ζ T (t)Ξ̃[h(t)]ζ (t)−ζ T (t)Λ1[h(t)]Ω1ΛT
1[h(t)]ζ (t),

(16)

where Ξ̃[h(t)] = Ξ1[h(t)] +Ξ2 +Ξ3,1 +Ξ3,2[h(t)] +Ξ4 +Ξ5 +
Ξze.
Here, the following condition is the stability condition for
system (1):

ζ T (t)Ξ̃[h(t)]ζ (t)−ζ T (t)Λ1[h(t)]Ω1ΛT
1[h(t)]ζ (t)< 0

s.t. Γζ (t) = 0, (17)

where Γ = AeT
1 +AdeT

2 − IneT
5 , which is equivalent to from

Lemma 3 i)

Γ⊥T Ξ̃[h(t)]Γ⊥−Γ⊥T Λ1[h(t)]Ω1ΛT
1[h(t)]Γ

⊥ < 0. (18)

In succession, since the inequality (18) is not affinely de-
pendent on h(t), using Lemma 3 ii) changes from (18) to
the following LMI form Γ⊥T Ξ̃[h(t)]Γ⊥

+sym{Γ⊥T Λ1[h(t)]F1}
⋆

F1 −Ω1

< 0 (19)

for any matrix F1 with an appropriate dimension.
Therefore, if the LMI (19) holds then the condition (17)
is satisfied, which means that system (1) is asymptotically
stable. Hence, in order to hold the LMI (19), we only
have to solve the LMIs (4) and (5), which correspond to
two vertices of LMI (19). It should be noted that if LMIs
LMIs (4) and (5), then Ω1 > 0 is satisfied. This completes
our proof. □

Remark 1: By constructing the integral terms (V4 and
V5) of augmented state quadratic form in Lyapunov-
Krasovskii functional V (t), their time-derivative values
were estimated by utilizing Wirtinger-based integral in-
equality, respectively. Very recently, further improved in-
equality than Wirtinger-based integral inequality was pro-
posed in [31] which is the same with Remark 4 in [30].
However, the constructed double integral terms in
Lyapunov-Krasovsii functional are based on single-state
quadratic form. Furthermore, the terms ẋ(t−hL) and ẋ(t−
hU) have not been considered as elements of augmented
vector ζ (t). In next section, it will be shown that Theo-
rem 1 can provide larger delay bounds than those of [31],
which shows the effectiveness in reducing the conservatism
of stability criteria when the double integral terms of aug-
mented state quadratic form are chosen even though
Wirtinger-based integral inequality which provide more
loose bound than the integral inequality [31] is utilized.

To improve the result of the stability criterion of system
(1) more, the following two functionals

V6 =
h2

L

2

∫ t

t−hL

∫ t

s

∫ t

u
ẋT (v)Q3ẋ(v)dvduds,

V7 =
(hU −hL)

2

2

×
∫ t−hL

t−hU

∫ t−hL

s

∫ t−hL

u
ẋT (v)Q4ẋ(v)dvduds, (20)

will be considered in addition to the Lyapnov-Krasovskii
functional (6) employed in Theorem 1. Then, the follow-
ing theorem is introduced as the result with the functional
(20).

Theorem 2: For given scalars hL, hU and hD satisfying
(2), the system (1) is asymptotically stable, if there exist
matrices R ∈ S5n

+ , Ni ∈ S2n
+ , Gi ∈ S2n

+ , Qi ∈ S2n
+ , Qi+2 ∈ Sn

+,
Pi ∈ Sn (i = 1,2), M1 ∈R4n×4n, M2 ∈R2n×2n, F1 ∈R8n×12n

and F2 ∈ R4n×12n satisfying the following LMIs:
Γ⊥T Ξ̂[hL]Γ⊥

+sym{Γ⊥T ΛT
1[hL]

F1}
+sym{Γ⊥T ΛT

2[hL]
F2}

⋆ ⋆

F1 −Ω̂1[hL] ⋆

F2 04n·8n −Ω2

< 0,

(21)
Γ⊥T Ξ̂[hU ]Γ⊥

+sym{Γ⊥T ΛT
1[hU ]

F1}
+sym{Γ⊥T ΛT

2[hU ]
F2}

⋆ ⋆

F1 −Ω̂1[hU ] ⋆

F2 04n·8n −Ω2

< 0,

(22)where

Π6,1[h(t)] = [(h(t)−hL)e3 − (h(t)−hL)e9,

h(t)−hL

2
e3 +(h(t)−hL)e9 −3e12],
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Π6,2[h(t)] = [(hU −h(t))e2 − (hU −h(t))e10,

hU −h(t)
2

e2 +(hU −h(t))e10 −3e13],

Ξ6 =

(
h2

L

2

)2

e5Q3eT
5 − (hLe1 −hLe8)Q3(hLe1 −hLe8)

T

−2
(

hL

2
e1 +hLe8 −3e11

)
Q3

(
hL

2
e1 +hLe8 −3e11

)T

,

Ξ7 =

(
(hU −hL)

2

2

)2

e6Q4eT
6 ,

Ξ̂[h(t)] = Ξ̃[h(t)]+Ξ6 +Ξ7,

Λ2[h(t)] = [Π6,1[h(t)],Π6,2[h(t)]],

Ω̂1[h(t)] = Ω1 +diag

{
(hU −hL)(hU −h(t))

2
Q4,07n

}
,

Ω2 =

[
diag{Q3,2Q3} M2

⋆ diag{Q4,2Q4}

]
.

Proof: With Lemmas 1 ii) and 2 ii), the following pro-
cesses driving the upper bounds of V̇6 and V̇7 are similar to
the processes for V̇4 and V̇5 in Theorem 1:

V̇6 =

(
h2

L

2

)2

ẋT (t)Q3ẋ(t)

− h2
L

2

∫ t

t−hL

∫ t

s
ẋT (u)Q3ẋ(u)duds

≤
(

h2
L

2

)2

ẋT (t)Q3ẋ(t)−
(∫ t

t−hL

∫ t

s
ẋ(u)duds

)T

×Q3 (⋆)−2
(
−
∫ t

t−hL

∫ t

s
ẋ(u)duds

+
3
hL

∫ t

t−hL

∫ t

s

∫ t

u
ẋ(v)dvduds

)T

Q3(⋆)

=

(
h2

L

2

)2

ẋT (t)Q3ẋ(t)−
(

hLx(t)−
∫ t

t−hL

x(s)ds
)T

×Q3 (⋆)−2
(

hL

2
x(t)+

∫ t

t−hL

x(s)ds

− 3
hL

∫ t

t−hL

∫ t

s
x(u)duds

)T

Q3(⋆)

=ζ T (t)Ξ6ζ (t) (23)

and

V̇7 =

(
(hU −hL)

2

2

)2

ẋT (t −hL)Q4ẋ(t −hL)

− (hU −hL)
2

2

∫ t−hL

t−h(t)

∫ t−hL

s
ẋT (u)Q4ẋ(u)duds

− (hU −hL)
2

2

∫ t−h(t)

t−hU

∫ t−h(t)

s
ẋT (u)Q4ẋ(u)duds

− (hU −hL)
2

2
(hU −h(t))

∫ t−hL

t−h(t)
ẋT (s)Q4ẋ(s)ds

≤
(
(hU −hL)

2

2

)2

ẋT (t −hL)Q4ẋ(t −hL)

−
(

1
α(t)

)2

ψ1(t)−
(

1
1−α(t)

)2

ψ2(t)

− (hU −hL)
2

2
(hU −h(t))

∫ t−hL

t−h(t)
ẋT (s)Q4ẋ(s)ds

≤ζ T (t)Ξ7ζ (t)−ζ T (t)Λ2[h(t)]Ω2ΛT
2[h(t)]ζ (t)

− (hU −hL)
2

2
(hU −h(t))

∫ t−hL

t−h(t)
ẋT (s)Q4ẋ(s)ds,

(24)

where α(t) was defined in (12), and

ψ1(t) =


∫ t−hL

t−h(t)

∫ t−hL
s ẋ(u)duds

−
∫ t−hL

t−h(t)

∫ t−hL
s ẋ(u)duds+ 3

h(t)−hL

×
∫ t−hL

t−h(t)

∫ t−hL
s

∫ t−hL
u ẋ(v)dvduds


T

︸ ︷︷ ︸
ζ T (t)Π6,1[h(t)]

×diag{Q4,2Q4}ΠT
6,1[h(t)]ζ (t),

ψ2(t) =


∫ t−h(t)

t−hU

∫ t−h(t)
s ẋ(u)duds

−
∫ t−h(t)

t−hU

∫ t−h(t)
s ẋT (u)duds+ 3

hU−h(t)

×
∫ t−h(t)

t−hU

∫ t−h(t)
s

∫ t−h(t)
u ẋ(v)dvduds


T

︸ ︷︷ ︸
ζ T (t)Π6,2[h(t)]

×diag{Q4,2Q4}ΠT
6,2[h(t)]ζ (t).

By incorporating the last term − (hU−hL)
2

2 (hU −h(t))×∫ t−hL
t−h(t)ẋ

T (s)Q4ẋ(s)ds of (24) into the inequality (9) and uti-
lizing the result (16), an upper bound of V̇ (t) = ∑6

i=1 Vi is
newly estimated as follows:

V̇ (t)≤ζ T (t)Ξ̂[h(t)]ζ (t)

−ζ T (t)Λ1[h(t)]Ω̂1[h(t)]ΛT
1[h(t)]ζ (t)

−ζ T (t)Λ2[h(t)]Ω2ΛT
2[h(t)]ζ (t). (25)

Thus, the following inequality is the stability condition for
system (1):

ζ T (t)Ξ̂[h(t)]ζ (t)−ζ T (t)Λ1[h(t)]Ω̂1[h(t)]ΛT
1[h(t)]ζ (t)

−ζ T (t)Λ2[h(t)]Ω2ΛT
2[h(t)]ζ (t)

< 0 (26)

subject to Γζ (t) = 0.
By Lemma 3 i), the above condition is equivalent to

Γ⊥T Ξ̂[h(t)]Γ⊥−Γ⊥T Λ1[h(t)]Ω̂1[h(t)]ΛT
1[h(t)]Γ

⊥

−Γ⊥T Λ2[h(t)]Ω2ΛT
2[h(t)]Γ

⊥

< 0. (27)

In succession, since the inequality (27) is non-LMI form,
using Lemma 3 ii) changes from (27) to the following LMI
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Table 1. Upper bounds of time-varying delays with hD =
0.3 (Example 1).

hL 0.3 0.5 0.8 1
[26] 2.432 2.433 2.430 2.423
[17] 2.41 2.43 2.46 2.47

Theorem 1 2.5198 2.5290 2.5493 2.5705
Theorem 2 2.5198 2.5291 2.5505 2.5730

form
Γ⊥T Ξ̂[h(t)]Γ⊥

+sym{Γ⊥T ΛT
1[h(t)]F1}

+sym{Γ⊥T ΛT
2[h(t)]F2}

⋆ ⋆

F1 −Ω̂1[h(t)] ⋆

F2 04n·8n −Ω2

< 0

(28)

for any matrices F1 and F2 with appropriate dimensions.
The rest processes are similar to the proof of Theorem 1,
so it is omitted. □

Remark 2: Very recently, based in the result of [27],
Wirtinger-based double integral inequality was proposed
in [29]. However, this inequality was applied to systems
with only time-invariant delays. To show the effectiveness
in reducing the conservatism of Wirtinger-based double
integral inequality, V6 and V7 were considered and their
time-derivative were estimated by applying Wirtinger-based
double integral inequality. In next section, Theorem 2 can
provide slightly larger delay bounds than Theorem 1. by
comparing maximum delay bounds.

4. NUMERICAL EXAMPLES

In this section, two illustrative examples are introduced
to show the improvements of the proposed methods.

Example 1: Consider the following system

ẋ(t) =
[

0 1
−1 −2

]
x(t)+

[
0 0
−1 1

]
x(t −h(t)).

(29)

When hD = 0.3, maximum delay bounds obtained by
Theorems 1 and 2 are listed in Table 1 for various hL.
In Table 1, comparisons with those of existing results in
[17, 26] are conducted. From Table 1, it can be confirmed
that Theorem 1 provides larger delay bound than those of

[17, 26]. Furthermore, it can also be confirmed that The-
orem 2 provides slightly larger delay bounds than those
of Theorem 1. When hD is unknown, Table 2 shows the
results of Theorems 1 and 2, and some other results in
[16,17,25,31]. Table 2 also shows the superiority of Theo-
rems 1 and 2. Furthermore, as mentioned in Remark 1, our
proposed criteria provide larger delay bounds than those
of [31], which supports the statements of Remark 1.

Table 2. Upper bounds of time-varying delays with un-
known hD (Example 1).

hL 0.3 0.5 0.8 1
[25] 1.27 1.39 1.61 1.76
[16] 1.29 1.43 1.64 1.79
[17] 1.31 1.45 1.66 1.81
[31] 1.35 1.47 1.67 1.82

Theorem 1 1.4326 1.5325 1.7135 1.8502
Theorem 2 1.4347 1.5336 1.7140 1.8504

Table 3. Upper bounds of time-varying delays with differ-
ent conditions of hD and hL (Example 2).

Method hL hD = 0.1 hD = 0.5
[32] 1 4.1935 2.3058
[33] 4.4045 2.3513

Theorem 1 4.7560 2.4897
Theorem 2 4.7561 2.4904

[32] 2 4.4932 2.5663
[33] 4.5729 2.6987

Theorem 1 4.7726 2.7994
Theorem 2 4.7746 2.7994

[32] 3 4.3979 3.3408
[33] 4.5406 3.4186

Theorem 1 4.7931 3.4977
Theorem 2 4.8005 3.4977

[32] 4 4.1978 4.1690
[33] 4.2367 4.2097

Theorem 1 4.7554 4.2939
Theorem 2 4.7567 4.2939

[32] 5 5.0275 5.0275
[33] 5.0440 5.0440

Theorem 1 5.1372 5.1372
Theorem 2 5.1372 5.1372

Table 4. Upper bounds of time-varying delays with un-
known hD and various hL (Example 2).

hL 0 0.3 0.6
[33] 1.70 1.78 1.89
[35] 1.95 2.02 2.08
[34] 2.02 2.08 2.15

Theorem 1 2.2322 2.2574 2.2718
hL 0.9 1.2 1.5
[33] 2.04 2.20 2.37
[35] 2.15 2.25 2.38
[34] 2.23 2.34 2.47

Theorem 1 2.3146 2.3999 2.5246

Example 2: Consider the following system

ẋ(t) =
[

−2 0
0 −0.9

]
x(t)+

[
−1 0
−1 −1

]
x(t −h(t)).

(30)

For the above system, which is the benchmark exam-
ple in this research field, the results of the upper bounds
of time-delay for different conditions of hD and hL are
compared with some existing results in Table 3. It can
be shown that the proposed criteria for system (30) pro-
vide enhanced feasible region for stability. Moreover, for
the unknown hD, the results of the upper bounds of time-
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delay obtained by Theorem 1 are listed in Table 4. From
Table 4, one can also see that our results for this system
give larger bounds than the ones in the existing works.

5. CONCLUSIONS

In this paper, the stability problem for linear systems
with interval time-varying delays has been investigated.
To improve the feasible region of stability criterion for
the systems, the compositions of the Lyapunov-Krasovskii
functional were pointed out through this work. To achieve
this, by constructing the augmented Lyapunov-Krasovskii
functional, sufficient conditions for guaranteeing asymp-
totic stability of the systems have been derived in Theorem
1 within the framework of LMIs. Furthermore, the effec-
tiveness of reducing the conservatism of Wirtinger-based
double integral inequality [29] was confirmed in Theorem
2. Two numerical examples have been given to show the
effectiveness of the proposed criteria.

REFERENCES

[1] S. I. Niculescu, Delay Effects on Stability: A Robust Con-
trol Approach, Springer, Berlin, 2001. [click]

[2] J. P. Richard, “Time-delay systems: an overview of some
recent advances and open problems,” Automatica, vol. 39,
pp. 1667-1694, 2003. [click]

[3] K. Gu, “A further refinement of discretized Lyapunov func-
tional method for the stability of time-delay systems,” In-
ternational Journal of Control, vol. 74, pp. 967-976, 2001.
[click]

[4] Y. S. Moon, P. G. Park, W. H. Kwon, and Y. S. Lee, “Delay-
dependent robust stabilization of uncertain state delayed
system,” International Journal of Control, vol. 74, pp.
1447-1455, 2001. [click]

[5] E. Fridman and U. Shaked, “An improved stabilization
method for linear time delay system,” IEEE Transactions
on Automatic Control, vol. 47, pp. 1931-1937, 2002. [click]

[6] M. Wu, Y. He, and J.H. She, “New delay-dependent sta-
bility criteria and stabilizing method for neutral systems,”
IEEE Transactions on Automatic Control, vol. 49, pp.
2266-2270, 2004. [click]

[7] Y.S. Lee, Y.S. Moon, and W.H. Kwon “Delay-dependent
Guaranteed Cost Control for Uncertain State-delayed Sys-
tems,” Proceedings of American Control Conference, Ar-
lington, USA, pp. 3376-3381, 2001. [click]

[8] M. N. Alpaslan Parlakçı, “Improved robust stability crite-
ria and design of robust stabilizing controller for uncertain
linear time-delay systems,” International Journal of Robust
and Nonlinear Control, vol. 16, pp. 599-636, 2006. [click]

[9] C. Briat, “Convergence and Equivalence Results for
the Jensen’s Inequality-Application to Time-Delay and
Sampled-Data Systems,” IEEE Transactions on Automatic
Control, vol. 56, pp. 1660-1665, 2011. [click]

[10] S. H. Kim, P. Park, and C. K. Jeong, “Robust H∞ stabili-
sation of networks control systems with packet analyser,”
IET Control Theory & Applications, vol. 4, pp. 1828-1837,
2010. [click]

[11] O. M. Kwon, J. H. Park, S. M. Lee, and E. J. Cha, “New
augmented Lyapunov-Krasovskii functional approach to
stability analysis of neural networks with time-varying de-
lays,” Nonlinear Dynamics, vol. 76, pp. 221-236, 2014.
[click]

[12] O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, and
E. J. Cha, “Stability and H∞ performance analysis for
Markovian jump systems with time-varying delays,” Jour-
nal of the Franklin Institute, vol. 351, pp. 4724-4748, 2014.
[click]

[13] O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, and E. J.
Cha, “Improved results on stability of linear systems with
time-varying delays via Wirtinger-based integral inequal-
ity,” Journal of the Franklin Institute, vol. 351, pp. 5386,
2014. [click]

[14] Y. He, Q. G. Wang, C. Lin, and M. Wu, “Delay-range-
dependent stability for systems with time-varying delay,”
Automatica, vol. 43, pp. 371-376, 2007. [click]

[15] P. Park, J. W. Ko, and C. K. Jeong, “Reciprocally convex
approach to stability of systems with time-varying delays,”
Automatica, vol. 47, pp. 235-238, 2011. [click]

[16] W. I. Lee and P. Park, “Second-order reciprocally convex
approach to stability of systems with interval time-varying
delays,” Applied Mathematics and Computation, vol. 229,
pp. 245-253, 2014. [click]

[17] W. Qian, T. Li, S. Cong, and S. Fei, “Stability analysis for
interval time-varying delay systems based on time-varying
bound integral method,” Journal of the Franklin Institute,
Vol. 351, pp. 4892-4903, 2014. [click]

[18] T. Li, L. Guo, and Y. Zhang, “Delay-range-dependent ro-
bust stability and stabilization for uncertain systems with
time-varying delay,” International Journal of Robust and
Nonlinear Control, vol. 18, pp. 1372-1387, 2008. [click]

[19] J. Sun, G. P. Liu, and J. Chen, “Delay-dependent stability
and stabilization of neutral time-delay systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol.15,
pp. 1364-1375, 2009. [click]

[20] P. G. Park and J. W. Ko, “Stability and robust stability for
systems with a time-varying delay,” Automatica, vol. 43,
pp. 1855-1858, 2007. [click]

[21] R. Dey, S. Ghosh, G. Ray, and A. Rakshit, “State feed-
back stabilization of uncertain linear time-delay systems:
A nonlinear matrix inequality approach,” Numerical Lin-
ear Algebra with Applications, vol. 18, pp. 351-361, 2011.
[click]

[22] J. H. Kim, “Note on stability of linear systems with time-
varying delay,” Automatica, vol. 47, pp. 2118-2121, 2011.
[click]

[23] J. W. Ko and P. G. Park, “Delay-dependent stability criteria
for systems with asymmetric bounds on delay derivative,”
Journal of the Franklin Institute, vol. 348, pp. 2674-2688,
2011. [click]

http://dx.doi.org/10.1007/1-84628-553-4
http://dx.doi.org/10.1016/S0005-1098(03)00167-5
http://dx.doi.org/10.1080/00207170110047190
http://dx.doi.org/10.1080/00207170110067116
http://dx.doi.org/10.1109/TAC.2002.804462
http://dx.doi.org/10.1109/TAC.2004.838484
http://dx.doi.org/10.1109/ACC.2001.946150
http://dx.doi.org/10.1002/rnc.1086
http://dx.doi.org/10.1109/TAC.2011.2121410
http://dx.doi.org/10.1049/iet-cta.2009.0346
http://dx.doi.org/10.1007/s11071-013-1122-2
http://dx.doi.org/10.1016/j.jfranklin.2014.07.014
http://dx.doi.org/10.1016/j.jfranklin.2014.09.021
http://dx.doi.org/10.1016/j.automatica.2006.08.015
http://dx.doi.org/10.1016/j.automatica.2010.10.014 
http://dx.doi.org/10.1016/j.amc.2013.12.025
http://dx.doi.org/10.1016/j.jfranklin.2014.07.015
http://dx.doi.org/10.1002/rnc.1280
http://dx.doi.org/10.1002/rnc.1384
http://dx.doi.org/10.1016/j.automatica.2007.02.022
http://dx.doi.org/10.1002/nla.731
http://dx.doi.org/10.1016/j.automatica.2011.05.023
http://dx.doi.org/10.1016/j.jfranklin.2011.08.001


20 Oh Min Kwon, Myeong Jin Park, Ju H. Park, and Sang Moon Lee

[24] C.-K. Zhang, Y. He, L. Jiang, and M. Wu, “Stability anal-
ysis for delayed neural networks considering both conser-
vativeness and complexity,” IEEE Transactions on Neural
Networks and Learning Systems, 2015. [click]

[25] W. Qian and Juan Liu, “New stability for systems with in-
terval time-varying delay,” Journal of the Franklin Insti-
tute, Vol. 350, pp. 890-897, 2013. [click]

[26] H.-B. Zeng, Y. He, M. Wu, and S.-P. Xiao, “Less conser-
vative results on stability for linear systems with a time-
varying delay,” Optimal Control Applications and Meth-
ods, vol. 34, pp. 670-679, 2013. [click]

[27] A. Seuret and F. Gouaisbaut, “Wirtinger-based integral in-
equality: application to time-delay systems,” Automatica,
vol. 49, pp. 2860-2866, 2013. [click]

[28] É. Gyurkovics, “A note on Wirtinger-type integral inequal-
ities for time-delay systems,” Automatica, vol. 61, pp. 44-
46, 2015. [click]

[29] M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, and E. J.
Cha, “Stability of time-delay systems via Wirtinger-based
double integral inequality,” Automatica, vol. 55, pp. 204-
208, 2015. [click]

[30] P. G. Park, W. I. Lee, and S. Y. Lee, “Auxiliary function-
based integral inequalities for quadratic functions and
their applications to time-delay systems,” Journal of the
Franklin Institute, vol. 352, pp. 1378-1396, 2015. [click]

[31] L. V. Hien and H. Trinh, “Refined Jensen-based inequality
approach to stability analysis of time-delay systems,” IET
Control Theory & Applications, vol. 9, no. 14, pp. 2188-
2194, 2015. [click]

[32] J. Sun, G. P. Liu, J. Chen, and D. Rees, “Improved delay-
range-dependent stability criteria for linear systems with
time-varying delays,” Automatica, vol. 46, pp. 466-470,
2010. [click]

[33] Y. Liu, L. S. Hu, and P. Shi, “A novel approach on stabiliza-
tion for linear systems with time-varying input delay,” Ap-
plied Mathematics and Computations, vol. 218, pp. 5937-
5947, 2012. [click]

[34] W. I. Lee, S. Y. Lee, and P. G. Park, “Improved criteria
on robust stability and H∞ performance for linear systems
with interval time-varying delays via new triple integral
functionals,” Applied Mathematics and Computation, vol.
243, pp. 570-577, 2014. [click]

[35] C. Jeong, P. Park, and S.H. Kim, “Improved approach to
robust stability and H∞ performance analysis for systems
with an interval time-varying delay,” Applied Mathematics
and Computation, vol. 218, pp. 10533-10541, 2012. [click]

[36] M.C. de Oliveira and R.E. Skelton, Stability Tests for Con-
strained Linear Systems, Springer-Verlag, Berlin, 2001.
[click]

Oh Min Kwon received the B.S. degree
in Electronic Engineering from Kyungbuk
National University, Daegu, Korea, in 1997,
and Ph.D. degree in Electrical and Elec-
tronic Engineering from POSTECH, Po-
hang, Korea, in 2004. From February 2004
to January 2006, he was a senior researcher
in Mechatronics Center of Samsung Heavy
Industries. He is currently working as an

associate professor in School of Electrical Engineering, Chung-
buk National University. His research interests include time-
delay systems, cellular neural networks, robust control and fil-
tering, large-scale systems, secure communication through syn-
chronization between two chaotic systems, complex dynamical
networks, multi-agent systems, and so on. He has presented
more than 130 international papers in these areas. He is a mem-
ber of KIEE, ICROS, and IEEK. Currently, he serves as an edi-
torial member of ICROS, Nonlinear Analysis: Hybrid Systems,
and The Scientific World Journal.

Myeong Jin Park received the B.S. and
Ph.D. degrees both in Electrical Engineer-
ing from Chungbuk National University,
Cheongju, Korea, in 2009 and 2015, re-
spectively. His current research interests
include consensus problem in multi-agent
systems and stability analysis for systems
with time-delay.

Ju H. Park received the Ph.D. degree in
Electronics and Electrical Engineering
from POSTECH, Pohang, Republic of Ko-
rea, in 1997. From May 1997 to Febru-
ary 2000, he was a Research Associate in
ERC-ARC, POSTECH. In March 2000, he
joined Yeungnam University, Kyongsan,
Republic of Korea, where he is currently
a Full Professor. From December 2006 to

December 2007, he was a Visiting Professor in the Department
of Mechanical Engineering, Georgia Institute of Technology. His
research interests include robust control and filtering, neural net-
works, complex networks, and chaotic systems. He has pub-
lished a number of papers in these areas. He serves as an Editor
of International Journal of Control, Automation and Systems. He
is also an Associate Editor/Editorial Board member for several
international journals, including IET Control Theory and Appli-
cations, Applied Mathematics and Computation, Journal of The
Franklin Institute, Journal of Applied Mathematics and Comput-
ing, etc.

Sang Moon Lee received the B.S. degree
in Electronic Engineering from Kyung-
pook National University, and M.S. and
Ph.D. degrees at Department of Electronic
Engineering from POSTECH, Korea. Cur-
rently, he is an assistant professor at Di-
vision of Electronic Engineering in Daegu
University. His main research interests in-
clude robust control theory, nonlinear sys-

tems, model predictive control and its industrial applications.

http://dx.doi.org/10.1109/TNNLS.2015.2449898
http://dx.doi.org/10.1016/j.jfranklin.2012.12.017
http://dx.doi.org/10.1002/oca.2046
http://dx.doi.org/10.1016/j.automatica.2013.05.030
http://dx.doi.org/10.1016/j.automatica.2015.07.033
http://dx.doi.org/10.1016/j.automatica.2015.03.010
http://dx.doi.org/10.1016/j.jfranklin.2015.01.004
http://dx.doi.org/10.1049/iet-cta.2014.0962
http://dx.doi.org/10.1016/j.automatica.2009.11.002
http://dx.doi.org/10.1016/j.amc.2011.11.056
http://dx.doi.org/10.1016/j.amc.2014.05.116
http://dx.doi.org/10.1016/j.amc.2012.04.015
http://dx.doi.org/10.1007/BFb0110624

