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Elongation Prediction of Steel-strips in Annealing Furnace with Deep
Learning via Improved Incremental Extreme Learning Machine
Chao Wang*, Jian-Hui Wang, Shu-Sheng Gu, Xiao Wang, and Yu-Xian Zhang

Abstract: The elongation of steel-strips in annealing furnace is an important factor that affects the position of
welding line and safety of air-knife since there is no extra space to install welding line detector in field conditions.
Therefore, predicting the elongation of steel-strips in the annealing process is important to fulfill the requirements
of eliminating security risks and improving economic performance. In this paper, we propose a deep architectures
called I-ELM/MLCSA autoencoders with the concept of stacked generalization philosophy to solve large and com-
plex data mining problems. The comparison results of the case studies indicate that D-ELMs-AE/MLCSA is a
promising prediction algorithm and can be employed for steel-strips elongation predictions with excellent perfor-
mance.

Keywords: Baldwinian learning, Clone selection algorithm, deep learning, elongation prediction, incremental ex-
treme learning machine, Lamarckian learning.

1. INTRODUCTION

In recent years, deep learning techniques have received
a great deal of attention for its advantages on capturing rel-
evant high-level abstractions and characterizing the data
representations. Deep learning is a learning algorithm
based on artificial networks which has multilayer percep-
tions [1–5]. Deep learning is capable to approximate com-
plex functions and alleviate optimization difficulties asso-
ciated with the deep models. Motivated by the remarkable
success of deep learning techniques, recently, many algo-
rithms based on deep learning have been implemented in a
variety of practical applications and shown a state-of-the-
art performance in pattern recognition, computer vision,
wind speed predictions, moving object detection, wireless
localization, and so forth [6–10]. The main interest of this
work is to integrate multi-learning clonal selection theo-
ries into deep learning architecture to predict the position
of welding line to improve the safety of air-knife in critical
situations and the rate of capacity utilization.

In this paper, we design a new stacked deep learning ar-
chitecture through multi-learning clonal selection theories
and incremental extreme learning machine, which incor-
porates the clonal selection theories, including Baldwinian
learning and Lamarckian learning, with I-ELM and ex-
tends the model into deep learning architecture. The pro-
posed method performs excellent effects when solve large
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and complex data problems, which can be applied in the
elongation prediction of steel-strips in annealing furnace.
We implemented I-ELM/MLCSA autoencoder in each it-
eration of deep incremental extreme machine. The multi-
learning clonal selection learning (D-ELMs/MLCSA) is
applied to reconstruct the input data and estimate the er-
rors of the prediction functions with t layer-by-layer archi-
tectures. Both of the supervised and unsupervised data can
be regarded as the pertaining input of the proposed deep
network. Moreover, the I-ELM/MLCSA autoencoder-
based deep network (D-ELMs-AE/MLCSA) is capable to
obtain the improvement for generalization performance
and outperforms the deep models compared in the pa-
per, including DNN, ML-ELM, DSVDD, AE-S-ELMs
and PWDNN.

2. PRELIMINARIES

In this section, the main concepts and theories of clonal
selection algorithm (CSA) are briefly reviewed. Then, a
new multi-learning clonal selection algorithm combined
with Baldwinian learning and Lamarckian learning is pro-
posed in the rest of this subsection.

2.1. Clonal selection algorithm (CSA)
Clonal selection theory proposed by Burnet [13, 14] is
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the fundamental of artificial immune system (AIS), which
introduces the mechanism biological immune system and
creates a new antibody population with the affinity cal-
culation to expand the search scope. Besides, it recom-
bines the population by updating the low affinity antibod-
ies to increase the diversity of antibody population. Sub-
sequently, Castro claimed the Clonal Selection Algorithm
(CSA) [15] based on the clonal selection theory for op-
timization problems, which established the framework of
the searching paradigm through immune clonal selection
and affinity maturation with the concept of hypermuta-
tion. According to CSA, the following implementations
are conducted to antibody population A(t) after the selec-
tion operator is defined: Clonal Proliferation TC, Hyper-
mutation T M , Clonal Selection T S. Thus, the state transfer
of antibody population can be expressed as the following
evolution process.

2.2. Multi-learning clonal selection algorithm (ML
CSA)

With the principle of Baldwinian Learning and Lamarck-
ian Learning, the multi-learning clonal selection strategy
is established, which expands the search space of anti-
bodies information and enhances the reproduction ability
of antibody population with high affinity. The antibody
parameters with best fitness values are obtained . The
state transfer of antibody population generated by multi-
learning clonal selection strategy can be expressed as fol-
lows:
A(t)clone(HC)

−−−−−−→
X(t)B-Learning(HB

L )−−−−−−−−−−−→
Y (t)L-Learning(HL

L )−−−−−−−−−−−→
Z(t)recombination(Z(t)∪A(t))

−−−−−−−−−−−−−−−−−−−→
D(t)selection(HS)

−−−−−−−−−→
A(t +1)

The framework of multi-learning clonal selection algo-
rithm is summarized in Algorithm 1. The four main oper-
ators, Clonal Proliferation, Baldwinian Learning, Lamar-
ckian Learning and Clonal Selection, are explained as fol-
lows:

2.2.1 Clonal proliferation
Define the antibody population A(t) = {A1(t),A2(t), ...,

An(t)}), thus the clonal proliferation is implemented as
follows: X(t) = HC(A(t) = {HC(A1(t),HC(A2(t), ...,HC

(An(t))}),where, xi(t) = HC(Ai(t) = {Xi1(t),Xi2(t), ...,
Xiqi(t)}), Xi j(t) = Ai(t), i=1,2,...,n , j = 1,2, ...,qi, qi is the
clonal scale of antibody population.

2.2.2 Baldwinian learning
Baldwinian Learning can acquire the best solutions

with the better evolutionary method via transforming the
shape of search space, which is based on Baldwin effect.
Define X(t) = {X1(t),X2(t), ...,Xn(t)}, Xi(t) = {xi1(t),
xi2(t), ...,xiqi(t)}, the specific implementation of Bald-
winian Learning is as follows:

Yi j(t) = HB
L (xi j(t))

Algorithm 1 Multi-learning Clonal Selection Algorithm
(MLCSA)

Step 1 (Initialization): Randomly generate the initial
antibody population A(t), set N = 0 and initialize the
termination criterion;

Step 2 (Clonal Proliferation HC): According to the affinity,
generate amplificatory X(t) from A(t) with clonal
proliferation operator, and scale of clone is a monotone
increasing function of antibody affinity;

Step 3 (Multi-learning operation)
Step 3.1 (Baldwinian Learning HB

L ): Apply Baldwinian
learning strategy on every antibody in X(t), and
generate the antibody population Y (t), according to (1)
and (2);

Step 3.2 (Lamarckian Learning HL
L ): Apply Lamarckian

learning strategy on every clonal antibody in Y (t), and
generate the population Z(t), according to (3);

Step 4 (Evaluation): Calculate the affinity of each antibody
in Z(t);

Step 5 (Recombination operation): Implement recombina-
tion operation with Z(t) and A(T ) to form antibody
population D(t);

Step 6 (Clonal Selection HS): Generate new antibody popu-
lation A(t +1) by applying clonal selection operator to
D(t);

Step 7 (Termination): If termination criterion is satisfied,
stop the algorithm and obtain antibody with the highest
affinity in A(t +1) as the output; otherwise, t = t +1,
go to Step 2.

Endwhile

=

{
xi j(t)+ s · (xl(t)− xm(t)), if rand ≤ pl

xi j(t), else,
(1)

where l,m∈{1,2, ...,n}, l ̸=m ̸= i, xl(k) and xm(t) denotes
the antibodies randomly selected from Xl(k) and Xm(t), re-
spectively, and F(xl(k))> F(xm(k)) ; s > 0 is the strength
of Baldwinian learning, pl ∈ (0,1] is the probability of
Baldwinian learning, and rand denotes a random number
chosen from a uniform distribution on the interval [0,1].
With Baldwinian learning, the population becomes:

Y (t) = {Y1(t),Y2(t), ...,Yn(t)}, (2)

where, Yi(t) = {yi1(t), ...,yiqi(t)},yi j(k) = HB
L (xi j(t)), j =

1,2, ...,q, i = 1,2, ...,n.

2.2.3 Lamarckian learning HL
L

Randomly generate qi stochastic direction vectors, and
set the initial directions for the local searching and individ-
ual −→ai as the initial point, search the local optimal solution
in the neighborhood of −→ai with local search method. The
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process can be expressed as follows:

HL
L (Y (t)) = Z(t)

= {HL
L (
−→
Y 1

1(t),
−→
d 1

1)+ ...+HL
L (
−→
Y q1

1 (t),
−→
d q1

1 )}

+ ...+{HL
L (
−→
Y 1

n(t),
−→
d 1

n)+ ...+HL
L (
−→
Y q1

n (t),
−→
d q1

n )},
(3)

where d j
i (i = 1,2, ...,n, j = 1,2, ...,qi) denote direction

vectors.

2.2.4 Clonal selection HS

Define z∗(t) ∈ Zi(t), i = 1,2, ...,n, z∗(t)is the antibody
with the highest affinity in Zi(t),furthermore, Implement
the recombination operation with population and to form ,
which populations have applied with multi-learning oper-
ation. Generate the new antibody population by applying
clonal selection operator to . The process is implemented
as follows:

a(t +1) = HC(Zi(t)∪ai(t))

=

{
z∗i (t), if F(z∗i (t))> F(ai(t))
ai(t), else,

(4)

where Ai(t +1) = HC(Zi(t)∪Ai(t)), i = 1,2, ...,n.
The major aim is to enhance the antibody information

including other antibodies’ information to alert the search
space with the help of Baldwinian learning and utilize the
information of each individual to reinforce the exploita-
tion with the help of Lamarckian learning.

2.3. Experimental studies on function optimization
problems

In this section, experiments are carried out to evaluate
the performance of MLCSA by solving 5 commonly used
global optimization problems. MLCSA is compared with
MLCSA, as well as other state-of-the-art evolutionary
computing models. The parameters of BCSA are set as
follows: the population size n = 50, the total clonal scale
nc =200, the probability of Baldwinian learning pl=0.8,
and the mutation probability pm = 1/D, where D is the
number of variables. Furthermore, the performance of
MLCSA is analyzed. Table 1 gives the test functions in the
experiments, which can be categorized into two types: f1

is unimodal functions, f2 ∼ f5 are unrotated multi-modal
functions.

The experiments contain two parts in this subsection.
(1) We compare MLCSA with the traditional CSA on the
5 test problems with 2 dimensions, 10 dimensions and
30 dimensions mentioned above, respectively ; (2) experi-
ments are conducted for the proposed MLCSA model and
other six evolutionary algorithms on the same optimiza-
tion problems. The six representative evolutionary algo-
rithms are listed as follows:

• Baldwinian Clonal Selection Algorithm (BCSA)
[16];

• Lamarckian Clonal Selection Algorithm (LCSA)
[17];

• Improved Chaotic Particle Swarm Optimization
(ICPSO) [18];

• Improved MOEA/D with Baldwinian Learning
(MOEA/
D/BL) [19];

• Differential Evolutionary Algorithm (DEA) [20];
• Hybrid Learning Clonal Selection Algorithm

(HLCSA) [21];

Table 2 show the statistical results of traditional CSA
and MLCSA. To evade possible biased comparisons, the
experiments are designed to optimize the 5 test func-
tions with 2, 10 and 30 dimensions (D=2, D=10 and
D=30) respectively, based on 50 independent trials the
maximum, minimum, mean and standard deviation are
calculated. The best mean values and standard devi-
ation values are shown in bold face. As the results
show, MLCSA performs much better than traditional
CSA. From the results, we can observe that HLCSA per-
forms much better than CLONALG for all these test in-
stances. MLCSA can find the exact global optima of func-
tions f1 (D=2), f5 (D=10) and f5(D=30) with probabil-
ity 1 and the approximate global optima of functions f3

(D=10) and f4 (D=10). From the statistical results, we
can obtain the conclusion that the solutions of different
optimization problems solved by MLCSA are outstand-
ing and stable, due to the learning mechanism based on
multi-learning with Baldwinian learning and Lamarck-
ian learning strategies. Table 3 shows the results for
BCSA, MOEA/D/BL, HLCSA, DMDE and MLCSA with
2, 10 and 30 dimensions (D=2, D=10 and D=30) respec-
tively. Taking functions f3, f4 and f5 as example, when
D=10, Mean±Std values are 3.0295E-015±2.6618E-016,
4.3811E-016±7.2761E- 017, 0±0 respectively, which in-
dicates that MLCSA scales well in dealing with high-
dime-nsional optimization problems.

In this section, we propose MLCSA by incorporat-
ing two learning mechanisms, Baldwinian learning and
Lamarckian learning, into CSA to guide the immune re-
sponse process. The Baldwinian learning works for explo-
ration (global search) by using the phenotype to guide the
evolutionary search for good genotypes, and the Lamar-
ckian learning works for reinforce the exploitation (local
search) by replacing the locally improved individual back
into the population to compete for reproductive oppor-
tunities. The Baldwinian learning operator allows learn-
ing antibodies to evolve much faster than the non-learning
ones. The Lamarckian learning is applied to all the clones,
which substitutes for the mutation operator in CSA to en-
hance the performance of local convergence and reduce
the blindness of mutation. The performance of MLCSA
outperforms other state-of-the-art evolutionary computing
models with no degeneration for all the test problems.
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Table 1. Benchmark functions used in our experimental study.

Name Test function D S
Goldstein-Price f1(x) =

(1+(x1 + x2 +1)2 · (19−14x1 +3x2
1 −14x2 +6x1x2 +3x2

2)) ·
(30+(2x1 −3x2)

2 · (18−32x1 +12x2
1 +48x2 −36x1x2 +27x2

2))

2 x1,x2 ∈ [−2,2]

Schaffer F6 f2(x) = 0.5+[(sin
√

x2
1 + x2

2)
2 −0.5]/[1.0+0.001(x2

1 + x2
2)]

2 2 x1,x2 ∈ [−100,100]
Ackley f3(x) =

−20∗ exp(−0.2
√

1
D ∑D

i=1 x2
i )− exp(− 1

D ∑D
i=1 cos(2πxi))+20+ e

10/30 [-5,5]

Rastrigrin f4(x) = ∑D−1
i=1 [x2

i −10 · cos(2πxi)+10] 10/30 [-5.12,5.12]
Weierstrass f5(x) = ∑D−1

i=1 {∑20
k=1[0.5

k cos(2π ·3k(xi +0.5))]}}−
D∑20

i=1{0.5k cos(2π ·3k ·0.5)}
10/30 [-0.5,0.5]

Table 2. Results of traditional clonal selection algorithm and MLCSA when D=30.

Funs D CSA MLCSA
Max Min Mean Std Max Min Mean Std

f1 2 9.1862E+004 1.4730E+003 1.3203E+004 2.8781E+001 0 0 0 0
f2 2 9.3722E-001 5.5207E-001 8.0023E-001 1.6563E-002 4.6211E-001 3.8905E-001 3.4407E-001 1.2152E-021

f3
10 4.4102E-002 5.2736E-005 2.8554E-003 8.3013E-003 3.2017E-015 0 3.1025E-015 2.6993E-016
30 9.1202E-002 1.0704E-004 1.0762E-002 2.9982E-002 9.6213E-011 4.4205E-013 7.8201E-015 3.5831E-015

f4
10 3.4038E+001 8.2219E+000 3.2883E+001 4.4651E+000 5.4847E-002 0 4.6925E-016 7.2879E-017
30 1.2950E+002 2.1981E+001 7.5816E+001 3.8504E+000 9.1024E-002 4.0101E-002 8.6322E-003 1.1363E-004

f5
10 5.2318E-002 4.3801E-003 4.3676E-002 8.2209E-003 0 0 0 0
30 6.7837e-001 4.0722e-001 5.4479e-001 5.8425e-002 0 0 0 0

Table 3. Results (mean ± std) of MLCSA and other state-of-the-art evolutionary algorithms when D=30.

Funs D BCSA MOEA/D/BL HLCSA DMDE MLCSA

Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

f1 2 2.8182E+000±3.4013E+000 4.3122E+003±3.5796E+001 0±0 1.7276E+000±2.8823E+000 0±0
f2 2 4.1845E-001±2.5478E-016 5.1041E-001±7.4544E-004 7.4982E-001±1.6283E-018 0±0 3.8732E-001±1.2086E-021

f3
10 4.9882E-015± 0 5.1314E-014±3.5846E-016 2.9514E-013±2.7069E-015 7.5102E-009±7.8325E-011 3.0295E-015±2.6618E-016

30 1.1640E-011±3.5996E-013 5.8612E-010±6.7021E-013 8.4078E-012± 0 7.0048E-013±4.8912E-015 8.0576E-015±3.2762E-015

f4
10 4.3070E-015±2.6925E-014 4.6602E-015±6.4486E-014 3.0524E-013±9.3926E-015 3.5127E-014±8.2676E-015 4.3811E-016±7.2761E-017
30 0±0 8.1793E-001±2.4890E-004 0±0 4.0305E-005±1.6402E-007 4.4046E-002±7.2603E-005

f5
10 0±0 0±0 0±0 0±0 0±0
30 0±0 3.5018E-002±3.5737E-001 7.4027E-002±2.4759E-001 6.2408E-001±9.9214E-001 0±0

Utilizing the multi-learning mechanism, MLCSA success-
fully avoids antibodies falling into deep local optimal so-
lutions and effectively guide the evolutionary process to-
wards the global optima.

3. DEEP NETWORK BASED ON STACKED
I-ELM/MLCSA

AUTOENCODERS(D-ELMS-AE/MLCSA)

3.1. Incremental extreme learning machine (I-ELM)
Extreme learning machine (ELM) proposed by Huang

et al. [22] is a special type of single-hidden layer feedfor-
ward networks (SLFNs) with randomly generated additive
or RBF hidden nodes and hidden node parameters, which
has recently been extensively studied by many researchers
in various areas of scientific research and engineering due
to the excellent approximation capability [23]. Incremen-
tal extreme learning machine, termed as I-ELM, is pro-

posed by Huang et al. [24], which randomly adds nodes to
the hidden layer one by one and freezes the output weights
of the existing hidden nodes when a new hidden node is
added. The output weights of the new added node are cal-
culated by a simple formula analytically. I-ELM is fully
automatic in that there is no need to intervene the learning
process by tuning control parameters manually for users
except for target errors and the allowed maximum number
of hidden nodes. But, there still exists some issues to be
tackled.

The motivation for the work in this section comes
from the selection of ΩN(aL,bL) that there are some in-
put weights aL and biases bL at each learning step which
make residual error reduce more. Therefore, our aim is
to propose a simple improved implementation of ELM in
order to find ΩN(aL,bL), meanwhile, to achieve a more
compact network architecture. In this section, we propose
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an improved I-ELM algorithm (I-ELM/MLCSA) based on
Multi-learning CSA, and prove the I-ELM/MLCSA algo-
rithm in theory.

3.2. Proposed I-ELM based on multi-learning CSA (I-
ELM/MLCSA)

In this section, we propose an improved I-ELM algorithm
(I-ELM/MLCSA) based on Multi-learning CSA, and
prove the I-ELM/MLCSA algorithm in theory. Moreover,
we construct the deep architectures with I-ELM/MLCSA,
and obtain the better performance than other state-of-the-
art deep models.

Given N arbitrary distinct samples {(xi, ti) | xi ∈ Rn, ti ∈
Rm,1 ≤ i ≤ N}, activation function G(x), number L of
hidden nodes, expected learning accuracy η ,the max-
imum number of hidden nodes Lmax.The details of I-
ELM/MLCSA are described in Algorithm 2.

We design the I-ELM/MLCSA with the parameters ai

and bi as the variables which need to be optimized, where
i = 1,2, ..,n. The objective function is the expected resid-
ual error of network η . The population size is N, and
antibody population is randomly generated. Meanwhile,
we conduct the encoding operation to all the antibodies
within population in binary format. And then, we can cal-
culate the best hidden parameters ai and bi according to
the multi-learning strategy. Increase the number of hid-
den nodes by one or more: L = L+λ , generate the an-
tibody population with the population size M. Obtain the
approximate optimum solution by cross-validation, until
the residual error of network is equal to the termination
criterion, the process of multi-learning clonal selection is
stop. The encoding principle of network parameters based
on MLCSA is shown in Fig. 1.

3.3. Implementation of stacked I-ELM /MLCSA au-
toencoders in deep network

As a branch of machine learning based on a set of algo-
rithms, deep learning can obtain the high level cognition
of distributed data structure and abstractions for the things,
which stimulates multiple processing layers with complex
structures of human brain to make decisions and acquire
the deep-level mode of thinking. The Autoencoder is a
kind of unsupervised neural networks, which is frequently
applied in the deep learning building blocks as an effective
method, using the qualification of the input of network is
equal to the output, then fine-tune the parameters of the
whole network [25, 26]. The ELM autoencoder (ELM-
AE) proposed by Kasun et al. [27] is constituted of input
layer, hidden layer and output layer. The input data is pro-
jected to a different or equal dimension space [28], the
expressions are following:

h = σ(a · x+b),aT a = 1,bT b = 1, (5)

h(xi)V = xT
i , i = 1,2, ...,N, (6)

Algorithm 2 I-ELM based on Multi-learning CSA
(I-ELM/MLCSA)

Stage 1: Calculate the best hidden nodes Lbest

Step 1: Initialization: Randomly generate the initial antibody
population A(t), set N = 0 and initialize the termination
criterion. Let L = 0, ΩN(ai,bi) = A and residual error
E = t, where t = [t1, t2, ..., tN ]

T ;
Step 2: While L < Lmax, ∥E∥< η , L = L+1;
Step 3: According to the affinity, generate amplificatory X(t)

from A(t) with clonal proliferation operator, and
scale of clone is a monotone increasing function of
antibody affinity;

Step 4: Multi-learning operation:
Step 4.1: Apply Baldwinian learning strategy on every

antibody in X(t), generate the antibody population Y (t);
Step 4.2: Apply Lamarckian learning strategy on every

clonal antibody in Y (t), generate the population Z(t);
Step 5: Calculate the affinity of each antibody in Z(t);
Step 6: Generate the new antibody population A(t +1) by

applying clonal selection operator to D(t);
Step 7: If termination criterion is satisfied, stop the algorithm

and obtain antibody with the highest affinity in A(t +1)
as the output; Otherwise, t = t +1, go to Step 2;

Step 8: Calculate the output weight a∗
L and residual error for

the new hidden nodes:
β =

EL ·HT
L (Ω∗

L)

HL(Ω∗
L)·H

T
L (Ω∗

L)
, EL = EL−1 −β ∗

L ∥ HL(Ω∗
L),x ∥;

Step 9: If criteria is satisfied EL < η , the process of multi-
learning is terminated. Otherwise, go to Step 3;

Stage 2: Online calculate the output of predictions Ŷtest

Step 10: Given G = [KELM + 1
C ] , for time t +1: Gt+1;

Step 11: The incremental form can be used to update the
matrix inverse process G−1

t+1 ;
Step 12: Update and output the Ŷtest :

Ŷtest =


K(xtest1,x1) · · · K(xtest1,xM)

...
. . .

...
K(xtestN ,x1) · · · K(xtestN ,xM)




A−1
M y1
...

A−1
M yM

.

Endwhile

where a = [a1, ...,aL]
T are the weights generated orthogo-

nally randomly, and b = [b1, ...,bL]
T are the biases gener-

ated orthogonally randomly between the input and hidden
nodes. There are three calculation approaches to obtain
the output weight β of ELM-AE:
1) For sparse ELM-AE representations, output weights β
can be calculated as follows:

β = (
I
C
+HT H)−1HT X . (7)

2) For compressed ELM-AE representations, output
weights β can be calculated as follows:

β = HT (
I
C
+HT H)−1X . (8)
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3) For equal dimension ELM-AE representations, output
weights β can be calculated as follows:

β = H−1X . (9)

In this section, we would like to use the idea of au-
toencoder to constitute deep learning architecture with im-
proved I-ELM, which incorporated with I-ELM autoen-
coder based on multi-learning clonal selection algorithm
(MLCSA) and deep architecture. The stop criterions of
autoencoder process is residual error E is equal to the
expected learning accuracy ε or the number of hidden
nodes L achieves Lmax are met. The model structure of
I-ELM-AE /MLCSA can randomly control the number of
the nodes without the computation accuracy.

Given a training set N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i =
1,2, ...,N}, where xi = (xi1,xi2, ...,xin),ti = (ti1, ti2, ..., tim)
, activation function σ(x), maximum number of hidden
nodes in single layer Lmax, the input data is reconstructed
at the output layer through the following function:
∑l

i=1 βiσ(ai · x j + b j) = x j, j = 1,2, . . . ,L, the output
weight can be obtained with the following:

β =
EL ·HT

L (Ω∗
L)

HL(Ω∗
L) ·HT

L (Ω∗
L)

(10)

EL = EL−1 −β ∗
L ∥ HL(Ω∗

L),x ∥ (11)

where ai = [ai1,ai2, ...,aid ]
T is the randomly generated

input weight, Ω∗
Ldenotes the best hidden parameters

Ω∗
L(ai,bi) and xi = (xi1,xi2, ...,xin)

T are the input and out-
put of the I-ELM-AE /MLCSA.

The D-ELMs-AE/MLCSA proposed in this paper uti-
lize the methodology of deep learning to construct the
deep architecture. Different from the deep model in ML-
ELM [25], D-ELMs-AE/MLCSA uses the individual im-
proved I-ELM (I-ELM/MLCSA) as the block, which can
be regarded as one layer of the multi-hidden layers. In-
stead of "randomly" generating only some parameters of
the hidden nodes based on the distribution of the train-
ing data or some probability space determined by the tar-
get functions f in each layer of ML-ELM, the D-ELMs-
AE/MLCSA inherits the advantages of incremental con-
structive feedforward networks model, which does not re-
calculate the output weights of the existing hidden nodes
after a new hidden node is added. In other words, once
the output weights of hidden nodes are calculated they
will remain frozen and will not be changed any more.
Meanwhile, the algorithm proposed retain the abilities of
deep learning algorithms on exactly capturing higher-level
abstractions and characterizing the data representations
mapped to I-ELM /MLCSA feature space , in each layer,
I-ELM-AE/MLCSA output weights with respect to input
data are the weight of the first layer, for the same reason,
the output weights of I-ELM-AE/MLCSA, with respect
to hidden layer output are the layer weights of D-ELMs-
AE/MLCSA.

Algorithm 3 I-ELM-AE/MLCSA in deep network
(D-ELMs-AE/MLCSA)

Stage 1: I-ELM-AE/MLCSA on layer 1

Step 1: Initialization: Randomly generate the initial antibody
population A(t), set N = 0 and initialize the termination
criterion. Let L = 0, ΩN(ai,bi) = A and residual error
E = t, where t = [t1, t2, ..., tN ]

T ;
Step 2: While L < Lmax, ∥E∥< η , L = L+1;
Step 3: According to the affinity, generate amplificatory X(t)

from A(t) with clonal proliferation operator, and scale
of clone is a monotone increasing function of antibody
affinity;

Step 4: Multi-learning operation:
Step 4.1: Apply Baldwinian learning strategy on every anti-

body in X(t), and generate antibody population Y (t);
Step 4.2: Apply Lamarckian learning strategy on every

clonal antibody in Y (t), and generate the population
Z(t);

Step 5: Calculate the affinity of each antibody in Z(t);
Step 6: Generate the new antibody population A(t +1) by

applying clonal selection operator to D(t);
Step 7: If termination criterion is satisfied, stop algorithm

and obtain antibody with the highest affinity in A(t +1)
as the output; Otherwise, t = t +1, go to Step 2;

Step 8: Calculate the output weight a∗
L and residual error for

the new hidden nodes with (10), (11);
Step 9: If criteria is satisfied EL < η , the process of multi-

learning is terminated. Otherwise, go to Step 3;
Step 10: Given G = [KELM + 1

C ] , For time t +1:Gt+1;
Step 11: The incremental form can be used to update the

matrix inverse process G−1
t+1 ;

Step 12: Update and output the Ŷtest = [y1,y2, ...,yM]
H

Stage 2: I-ELM-AE/MLCSA on layer 2 → N

Step 13: While L2→N < Lmax,∥ E ∥> ε;
Step 14: Calculate the output weight β ∗

(2→N)L for newly
added hidden node with the hidden layer output matrix:

H(2→N)L(Ω∗
L): β ∗

(2→N)L =
EL ·HT

(2→N)L(Ω
∗
L)

H(2→N)L(Ω∗
L)·H

T
(2→N)L(Ω

∗
L)

;

Step 15: Calculate the residual error after adding the new
hidden node L2→N :
EL = EL−1 −β ∗

(2→N)L ∥ H(2→N)L(Ω∗
L),x ∥.

Endwhile

As shown in Fig. 2, the interesting input data distribu-
tions in the reconstruction matrix β are then retained for
data pretraining in the new I-ELM, instead of randomly
generating input weights, β T is used as the input weights.
As demonstrated in [25], the output weight β can learn to
represent the input data via singular values and perform
better than manually calculated SVD basis. Therefore,
β T can be used for unsupervised pretraining of the data,
and will likely result in better generalization performance
when solving large unstructured data problems.

Given N arbitrary distinct samples {(xi, ti) | xi ∈ Rn, ti ∈
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Fig. 1. The encoding principle of network weights based on MLCSA.

Fig. 2. The model structure of D-ELMs-AE/MLCSA.

Rm,1 ≤ i ≤ N}, where xi = (xi1,xi2, ...,xin)
T , activation

function G(x), number L of hidden nodes, the maximum
number of hidden nodes in single layer Lmax, expected
learning accuracy η . The detailed algorithm of D-ELMs-
AE/MLCSA is shown in Algorithm 3.

4. CASE STUDY ON ELONGATION
PREDICTION OF STRIPS

4.1. Simulations
The process of continuous annealing as shown in Fig. 3.

The annealing treatment is considered the most important
process to steel-strips, in which the steel-strips can elimi-
nate the cold working hardening and internal stress, mean-
while, reduce the hardness of steel-strips. Furthermore,
the process also can improve the ability of plastic defor-
mation, stamping and technique mechanical. However,
during the annealing process, the dual physical and chem-
ical changes can make the steel-strips extend or shorten,
which pass through the preheating section (PHS), radi-
ation heating section (HS), slow cooling section (SCS),
rapid cooling section (RCS) and other temperature sec-
tions with the tension action of rollers in the furnace
[9, 10]. Moreover, the surface friction coefficient and the

Fig. 3. General scheme of strip steel in annealing process.

Table 4. Specification of 22 input variables.

No. Variables Description
x1 Speed Unit Speed
x2 Measure Steel-Strip Width
x3 Measure Steel-Strip Speed

x4−8 Temp SS, RCS, ES, TOP Temperature
x9−11 Tension SS, HS, RCS Section Tension
x12−16 Speed 2−6BR1 Roller Speed
x17−21 Speed 2−6BR2 Roller Speed

x22 Measure Elongation Value of Steel-Strip

rotational speed of the tension rolls also affect the elon-
gation of strips, which cause the weld position unable to
be tracked inaccurately. It have been demonstrated that
the accurate degree of computational position has a great
influence on the rate of finished product and the safety of
air-knife.

Based on the recent surveys, more than 3.2% steel-
strips are squandered on avoiding the welding line in every
year, because of the restricted condition which can afford
no space to install any equipment to detect the operation
position of welding line. And, the whole cost resulting
from all the annealing furnace units is also significant eco-
nomic losses. Therefore, in order to keep high efficiency
and ensure security of equipment during the operation, an
accurate elongation of steel-strips predicting and monitor-
ing is quite desired.

In this section, all of the experimental results for the
elongation of strips prediction are presented. In the pro-
cessing of steel-strips annealing, there are many variables
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Table 5. Results of D-ELMs-AE/MLCSA and other algorithms on different datasets.

Datasets Algorithms Training Accuracy (%)
1-day data 5-days data 10-days data 30-days data 50-days data

5-months DNN 84.6153 83.4428 80.3884 78.0972 78.1212
ML-ELM 85.9782 85.9347 82.4276 80.1652 79.1304
DSVDD 85.5604 85.1796 83.3368 81.9831 79.8136

AE-S-ELMs 87.7848 87.7788 86.7805 85.8688 85.2764
PWDNN 87.6377 86.7561 86.5472 84.3189 84.1935

D-ELMs-AE/MLCSA 90.8869 90.7612 89.5693 88.1478 87.6385

10-months DNN 92.9401 92.4049 90.2953 89.8073 89.3317
ML-ELM 93.9519 93.8371 93.4739 92.5638 91.1230
DSVDD 92.5011 92.1914 91.9283 91.0261 88.2732

AE-S-ELMs 94.2066 94.0551 93.3980 92.6732 92.1247
PWDNN 94.2950 94.2464 93.8203 93.3506 93.1745

D-ELMs-AE/MLCSA 96.1126 96.0171 95.9739 95.3195 94.8167

20-months DNN 93.6779 93.2975 93.1823 92.5348 92.3274
ML-ELM 94.3827 94.3039 94.2673 93.7995 93.2501
DSVDD 94.5590 94.4180 94.2365 94.1173 94.0035

AE-S-ELMs 99.0397 98.9829 98.5190 98.4339 97.4772
PWDNN 97.2004 97.1311 96.8446 96.7177 95.9238

D-ELMs-AE/MLCSA 99.5161 99.3272 99.1560 98.4240 98.3975

that can be used in D-ELMs-AE/MLCSA as the inputs. As
shown in Table 4, the dominant factors include four kinds
of actual measured values (22 input variables containing
the speed of unit and roller, the dimensions of steel-strips,
the temperature values of every section and the tension
values of every section) which are recorded once by one
second, the specific descriptions are listed in Table 4. To
verify the availability of algorithm we presented, we adopt
other six algorithm based on deep architecture to compare
the performance with D-ELMs-AE/MLCSA. The histori-
cal data which are used in simulations contain the last 22
months data, which can affect the position of the welding
seam. Moreover, because of the continuity of the anneal-
ing process, we must establish the model which can meet
the computation requirement for different categories of
steel-strips specifications. The specific results are shown
in Table 5, and the simulations are obtained by the aver-
age of 30 trails. The entire following simulations are con-
ducted by MATLAB 2013a environment running on the
Windows 7 standard desktop with at 128 GB of memory
and Intel Xeon E5 2620V2 (2.1GHZ) processor.

The specific analyses on the results of testing accuracy
are shown in Table 5. It can be seen that D-ELMs-AE/ML
CSA perform better than ML-EM and AE-S-ELMs, which
build the deep architecture with ELM algorithm, while
the performances of deep models (i.e., DNN, DSVDD,
PWDNN) are comparable. Using the 2 months data as
training dataset, the D-ELMs-AE/MLCSA can obtain the
testing accuracy with 81.5385%(1-day), 79.4898% (5-
day), 74.8813% (10-day), 71.5536%(30-day), 65.0590%

(50-day). Actually, there are some difficulties to generate
the prediction functions when on a training dataset with
limitations. Although features representations are diffi-
cult to be yielded with the insufficient input, the experi-
mental results still show that D-ELMs-AE/MLCSA out-
performs other deep learning algorithms, which appear to
demonstrate that D-ELMs-AE/MLCSA suitable for pre-
diction tasks of steel-strips elongation. Compared with
DNN, ML-ELM, DSVDD, AE-S-ELMs and PWDNN on
5-months data, 10-months data and 20-months data de-
scribed in Table 5, the deep learning architecture we pro-
posed can consistently show the better performances than
others.

4.2. Simulations in faulty conditions

Generally speaking, the efficacy of simulations depends
on the fruitfulness of the datasets and, by using more
comprehensive datasets. However, in practical engineer-
ing, the lack of production data or fault data which are
generated in process operating faults, can cause big er-
ror of prediction results which highly lead to serious con-
sequences. Hence, to evade possible biased comparisons
with consistently sufficient production data, in this experi-
ment, we use the datasets which lack some dominant input
variables in various degrees to training data, and different
sized datasets (5/10/20-months datasets) are employed for
the different experiments to verify the feasibility and per-
formance of the algorithms to insufficient input variables.
Details of the three training datasets and the descriptions
are listed in Table 6, where the 20-days training data and
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Table 6. Specification of PG-1, PG-2 and PG-3 datasets.

Datasets Training Sample Testing Sample Attributes Description
PG-1

94420/ 188230/ 389722
(5 / 10 / 20 months)

8722 21 training dataset without 2BR2 roller speed and
20-days testing dataset

PG-2 8406 21 training dataset without RCS section temperature
and 20-days testing dataset

PG-3 18406 20 training dataset without 3BR1 roller speed and SS
section tension, 40-days testing dataset

Table 7. Results of D-ELMs-AE/MLCSA and other algorithms on PG-1, PG-2 and PG-3 datasets.

Datasets Algorithms PG-1 PG-2 PG-3
Accuracy

(%)
Deviation(%) Accuracy

(%)
Deviation(%) Accuracy

(%)
Deviation(%)

5-months DNN 77.1291 0.1798 72.4977 0.8825 69.2022 1.2744
ML-ELM 80.4208 1.0151 72.7867 0.2337 69.5689 0.5075
DSVDD 81.6426 0.7485 80.3125 0.3745 78.6223 1.0375

AE-S-ELMs 83.6967 0.0566 81.6897 0.2089 81.3137 0.4232
PWDNN 84.8939 0.2209 83.5701 0.5785 82.4312 0.8479
D-ELMs-

AE/MLCSA
87.0107 0.0382 86.9569 0.2398 86.5346 0.2269

10-months DNN 82.9069 0.2442 81.9169 1.0553 81.5971 0.7106
ML-ELM 84.5934 0.4544 83.7914 1.1194 83.7739 0.3426
DSVDD 85.3329 0.2985 84.1361 1.0824 83.4454 0.4838

AE-S-ELMs 88.6904 0.2454 87.7503 0.8056 86.7931 0.9642
PWDNN 87.0120 0.3197 85.7699 0.7496 84.5309 1.2367
D-ELMs-

AE/MLCSA
93.9306 0.0112 92.8877 0.4109 90.9484 0.4303

20-months DNN 92.1317 0.2346 91.1278 0.3910 90.6629 0.6789
ML-ELM 92.5362 0.4909 92.0638 1.1446 91.2070 1.1887
DSVDD 93.8825 0.2907 92.9413 0.4932 92.7363 0.7495

AE-S-ELMs 97.7902 0.1016 95.5267 0.2837 95.0160 0.3623
PWDNN 96.1107 0.6215 94.7743 0.7045 94.2840 1.2460
D-ELMs-

AE/MLCSA
97.9759 0.0734 97.9032 0.2330 96.87686 0.3107

testing data in PG-1 and PG-2 respectively are different.

All experiments are performed on the DNN, ML-ELM,
DSVDD, AE-S-ELMs, PWDNN and D-ELMs-AE/MLC
SA shown in Table 7. The best results are shown in bold-
face. The results obtained with 5-months Training Data,
10-months Training Data and 20-months Training Data,
respectively, show that the simulation results demonstrate
the D-ELMs-AE/MLCSA is superior to DNN, ML-ELM,
DSVDD, AE-S-ELMs and PWDNN on testing accuracy
and standard deviation with 50 repetitions. From the over-
all results, the testing accuracy of D-ELMs-AE/MLCSA
are 87.0107%, 93.9306%, 97.9759% (PG-1), 86.9569%,
92.8877%, 97.9032% (PG-2), 86.5346%, 90.9484% and
96.87686%(PG-3), better than those of DNN, ML-ELM,
DSVDD, AE-S-ELMs and PWDNN, respectively. Its de-
viation with 50 runs is also smaller than those of DNN,
ML-ELM, DSVDD, AE-S-ELMs and PWDNN in almost
all cases, showing that the performance of D-ELMs-AE

/MLCSA is quite stable.

For further investigation on the prediction capabilities
of the potential D-ELMs-AE/MLCSA, in Fig. 4, the per-
formances of algorithms are evaluated in terms of four cri-
teria, i.e., mean absolute error (MAE), mean square error
(MSE), root mean square error (RMSE) and mean abso-
lute percentage error (MAPE). MAE in Fig. 4(a) evaluates
the disparity between the real elongation of steel-strips
and the predicted values. This function is more robust
to the large errors than the other functions, meanwhile,
MAPE and MSE in Fig. 4(b) and in Fig. 4(c), respectively,
also reflect the dispersion of models. However, they are
sensitive to the large errors compared with MAE because
the errors are squared and the large errors are amplified
further. RMSE in Fig. 4(d) is the ratio between errors and
real elongation of steel-strips. It can be considered as a
relative error function. These four functions can be used
to measure the performances of the prediction algorithms
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Fig. 4. Different prediction errors of six models on 10-months data.

from different viewpoints. By analyzing the results, it can
be seen apparently that the comparisons for four criteria
based on 12 months training data which are selected ran-
domly from 20-months dataset (PG-3), indicate that the
prediction performances of D-ELMs-AE/MLCSA outper-
form other algorithms, therefore, the algorithm we pro-
posed can be applied effectively in practical engineering.

Fig. 5 depicts the prediction values and correlation of
the deep architecture methods with 6 modules, respec-
tively. The three figures in Fig. 5 describe simulations
with different training and testing datasets which are ran-
domly selected from PG-1, PG-2 and PG-3, furthermore,
the sizes of testing dataset are 917, 883 and 937, respec-
tively. Those figures help us to clearly evaluate the per-
formance of each module as well as the overall output of
the entire network. As it can be observed from figures, the
D-ELMs-AE/MLCSA can show more excellent prediction
results than algorithms.

5. CONCLUSIONS

In this paper, we proposed a deep architecture based on
I-ELM-AE/MLCSA algorithm, called D-ELMs-AE/MLC
SA, and demonstrated the efficacy of D-ELMs-AE/MLC
SA with the elongation predictions of steel-strips in an-
nealing furnace with different actual production condi-
tions. The simulations were conducted to discern the pre-
diction accuracy of the proposed algorithm. The identi-

fication capability of the resulting method together with
its regression performance were compared with different
state-of-the-art methods. In the case of insufficient in-
puts, the D-ELMs-AE/MLCSA proposed also can show
the more outstanding performance than DNN, ML-ELM,
DSVDD, AE-S-ELMs and PWDNN. In this work, the
proposed algorithm was employed in several months in
practical engineering with different production conditions
to make sure that it can guarantee the safety of air-
knife. The numerical experiments indicated that D-ELMs-
AE/MLCSA can reliably focus on both the security of
equipment and economy objectives, and also, make a de-
liberate trade-off between accuracy of prediction and op-
eration time. In summary, the results indicate the per-
formance advantages of D-ELMs-AE/MLCSA prone it to
be reliably used for real-time implementations in anneal-
ing process. In the future, we will expand further re-
search on the stability and arithmetic speed of D-ELMs-
AE/MLCSA to ensure the better performance in other en-
gineering.
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