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Fuzzy Filter for Nonlinear Sampled-data Systems: Intelligent Digital Re-
design Approach
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Abstract: This paper presents a fuzzy filter design method for nonlinear sampled-data systems using an intelligent
digital redesign (IDR) technique. Based on a Takagi–Sugeno (T–S) fuzzy model, discretized closed-loop systems
with pre-designed analog fuzzy and digital fuzzy filters are presented. An IDR problem is given to guarantee both
state-matching condition and asymptotic stability. Sufficient conditions for solving the IDR problem are proposed
and are derived in terms of linear matrix inequalities (LMIs). Finally, a simulation example is given to show the
effectiveness of the proposed method.
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1. INTRODUCTION

In recent years, since many practical systems have high
nonlinearities, there has been much attention paid to the
analysis of nonlinear systems [1, 2]. Among the many
techniques for the nonlinear system analysis, the Takagi–
Sugeno (T–S) fuzzy method is an interesting approach be-
cause of its capability to represent the nonlinear dynamics.
Using the T–S fuzzy method, the nonlinear dynamics were
represented by a set of linear models interpolated by mem-
bership functions [2, 3]. For this reason, it can effectively
bridge the gap between nonlinear systems and various lin-
ear system theories [4, 5]. Although many studies for the
T–S fuzzy system have been conducted, there still remain
many issues, especially sampled-data system issues, to be
solved.

On the other hand, as most engineering applications
have both analog plant and digital computer-based imple-
mentation, sampled-data systems have gained much atten-
tion in various fields such as transportation systems, com-
munication networks, and mobile robotics [6–8]. Because
the continuous and discrete-time signals coexist simulta-
neously in the sampled-data system, the traditional anal-
ysis methods for a homogeneous signal system can not
be directly used. To conquer the above problem, vari-
ous digital techniques have been researched and can be
classified into three categories: direct digital design tech-
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niques [9], sampled-data techniques [10–13], and digital
redesign (DR) techniques [14,15]. In the first method, the
continuous-time system is discretized, and then discrete-
time controller or filter is designed for the discretized sys-
tem. The second technique represents the direct design
method of the discrete-time controller or filter for the con-
tinuous system. In the third method, the analog controller
or filter is first designed and then approximately converted
to an equivalent digital ones in the sense of state-matching.
Especially compared to other methods, the DR technique
can not only maintain the performance of the continuous-
time controller or filter, but also apply various conven-
tional continuous-time techniques.

For these reasons, many DR methods have been pro-
posed [15–17] and can be successfully extended to the
nonlinear systems using the intelligent digital redesign
(IDR) technique, which is merged with the DR technique
and the T–S fuzzy theory. In [18], the IDR technique was
presented in terms of linear matrix inequalities (LMIs),
ensuring not only stability but also global state matching.
In [19], using the guaranteed cost control method, the per-
formance of the IDR was improved. An observer-based
controller using the IDR technique has been developed
with a non-measurable premise variable [20], paramet-
ric uncertainties [21], and output-feedback tracking con-
troller [22]. Very recently, the IDR technique of the track-
ing controller using delta operator and piecewise linear-
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approximation has been proposed in [23]. However, re-
search for the IDR technique has mainly focused on the
control issue, and the design of the fuzzy filter based on
the IDR technique has not yet been addressed.

Motivated by the aforementioned studies, this paper
presents the T–S fuzzy filter design method for the nonlin-
ear sampled-data system using the IDR method. The non-
linear continuous system is represented by the T–S fuzzy
model. For development of the IDR technique, discretized
closed-loop systems with pre-designed analog fuzzy and
digital fuzzy filters are presented. Based on the discretized
systems, the IDR problem is given to guarantee both the
state-matching condition and the asymptotic stability. To
resolve the IDR problem, sufficient conditions, which are
derived in terms of LMIs, are given based on Lyapunov
theory. Finally, a simulation example is given to evaluate
the feasibility of the proposed method.

2. T-S FUZZY MODEL

Consider a T–S fuzzy system that is represented by the
following ith IF-THEN rule:

Ri : IF z1(t) is Γi
1 and · · · and zq(t) is Γi

q,

THEN


ẋ(t) = Aix(t)+Biw(t)
s(t) =C1ix(t)
y(t) =C2ix(t)+Div(t),

(1)

where zp(t) ∈ {Iq := {1,2, . . . ,q}} is the premise vari-
able, x(t) ∈ Rn is the state, w(t) ∈ Lq1

2 is the disturbance,
v(t) ∈Rq2 is the measurement noise, s(t) ∈Rm1 is the out-
put to be estimated, y(t)∈Rm2 is the measurement output;
Γi

p, (i, p) ∈ {Ir := {1,2, . . . ,r}}×{Iq := {1,2, . . . ,q}} is
the fuzzy set for zp; and Ai,Bi,C1i,C2i, and Di are nomi-
nal system matrices of appropriate dimensions for the ith
IF–THEN rule.

Using the singleton fuzzifier, product inference, and
center-average deffuzifier, the global dynamics of (1) are
inferred as

ẋ(t) =
r

∑
i=1

hi(z(t))
{

Aix(t)+Biw(t)
}
,

s(t) =
r

∑
i=1

hi(z(t))C1ix(t),

y(t) =
r

∑
i=1

hi(z(t))
{

C2ix(t)+Div(t)
}
,

(2)

where

hi(z(t)) :=
ωi(z(t))

∑r
i=1 ωi(z(t))

, ωi(z(t)) :=
q

∏
p=1

Γi
p(zp(t)),

and Γi
p : Uzp ⊂ R → R[0,1] is the membership function of

zp on compact set Uzp .

First, a pre-designed analog fuzzy filter for the fuzzy
system (2) is supposed to have the following form:

˙̂xc(t) =
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t))
{

Âc
i x̂c(t)+ B̂c

i y(t)
}
,

ŝc(t) =
r

∑
i=1

hi(z(t))Ĉc
i x̂c(t), (3)

where x̂c(t) ∈Rn is the state for the filter, ŝ(t) ∈Rm1 is the
filter output, the subscript ‘c’ refers to the analog signal,
and Âc

i , B̂
c
i , and Ĉc

i are filter gain matrices, which are to be
predesigned.

Remark 1: In the T–S fuzzy model, the filter is
divided into two parts: the fuzzy-rule-dependent fil-
ter and the fuzzy-rule-independent filter. In the fuzzy-
rule-dependent filter, the filter and the system share the
same premise variable, and thus, the assumption that the
premise variable of the fuzzy system is known in ad-
vance is needed. On the other hand, in the fuzzy-rule-
independent filter, the premise variable is supposed to be
unavailable in the filter design and more conservativeness
can be induced than for the fuzzy-rule-dependent one.
However, the filter can be designed regardless of the com-
plexity of the premise variable of the system. In this pa-
per, only the fuzzy-rule-dependent filter in the form of (3)
is considered, and these results will be extended to the
fuzzy-rule-independent filter in the future works.

Defining the analog filter error ec(t) := s(t)− ŝc(t) and
substituting (3) into (2), the error system of the analog
filter system is represented by the following form:

ε̇c(t) =
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t))

×
{

Āc
i jεc(t)+ B̄c

1iw(t)+ B̄c
2i jv(t)

}
,

ec(t) =
r

∑
i=1

hi(z(t))C̄c
i εc(t),

(4)

where

εc(t) =
[

x(t)
x(t)− x̂c(t)

]
,

Āc
i j =

[
Ai 0

Ai − Âc
i − B̂c

i C2 j Âc
i

]
,

B̄c
1i =

[
Bi

Bi

]
, B̄c

2i j =

[
0

−B̂c
i D j

]
,

C̄c
i =

[
C1i −Ĉc

i Ĉc
i .

]
. (5)

Before discretization of the continuous error system (4),
the following assumption is needed in order to maintain
the polytopic structure of the discretized T–S fuzzy system
for the construction of the fuzzy model based digital filter.

Assumption 1 [18]: Assume that the firing strength
of the ith rule is approximated as hi(z(t)) ≈ hi(z(kT ))
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where T ∈ R>0 for t ∈ [kT,kT + T ), k ∈ Z≥0. Conse-
quently, the nonlinear matrix functions ∑r

i=1 hi(z(t))Ai and
∑r

i=1 hi(z(t))Bi can be approximated by constant matrices
∑r

i=1 hi(z(kT ))Ai and ∑r
i=1 hi(z(kT ))Bi, respectively, over

any interval [kT, kT+T).

Using Assumption 1, the error system (4) is approxi-
mately discretized in the following form:

εc(kT +T )≈
r

∑
i=1

r

∑
j=1

hi(z(kT ))h j(z(kT ))

×
{

Ḡc
i jεc(kT )+ T̄ c

i jd(kT )
}
,

ec(kT )≈
r

∑
i=1

hi(z(kT ))C̄c
i εc(kT ),

(6)

where

Ḡc
i j =eĀc

i jT =

[
Φ11

i j 0
Φ21

i j Φ22
i j

]
,

T̄ c
i j =[H̄c

1i j H̄c
2i j] =

[
T 11

i j T 12
i j

T 21
i j T 22

i j

]
,

H̄c
1i j =(Ḡc

i j − I)(Āc
i j)

−1B̄c
1i, H̄c

2i j = (Ḡc
i j − I)(Āc

i j)
−1B̄c

2i j,

d(kT ) =[wT (kT ) vT (kT )]T .

Next, the fuzzy system (2) is approximately discretized
as:

x(kT +T )≈
r

∑
i=1

hi(z(kT ))
{

Gix(kT )+Hiw(kT )
}
,

s(kT )≈
r

∑
i=1

hi(z(kT ))C1ix(kT ),

y(kT )≈
r

∑
i=1

hi(z(kT ))
{

C2ix(kT )+Div(kT )
}
,

(7)

where

Gi = eAiT , Hi = (Gi − I)A−1
i B1i.

Remark 2: The discretization process is performed by
using the Taylor series expansion method and the dis-
cretization error is tolerable under the sufficiently small
sampling period T . The detail of this issue is addressed in
[18].

Remark 3: The approximately discretized models
(6)–(7) contain the discretization error with order of
O(T 2).

Then, a digital fuzzy filter for the fuzzy system (7) is
described as:

x̂d(kT +T ) =
r

∑
i=1

hi(z(kT ))
{

Âd
i x̂d(kT )+ B̂d

i y(kT )
}
,

ŝd(kT ) =
r

∑
i=1

hi(z(kT ))Ĉd
i x̂d(kT ),

(8)

where x̂d(kT ) ∈ Rn is the state for the digital filter,
ŝd(kT ) ∈ Rm1 is the digital filter output, the subscript ‘d’
refers to the digital signal, and Âd

i , B̂
d
i , and Ĉd

i are filter
gain matrices that should be determined.

Defining the digital filter error ed(kT ) := s(kT ) −
ŝd(kT ) and substituting (8) into (7), the error system of the
digital filter system is represented by the following form:

εd(kT +T )≈
r

∑
i=1

r

∑
j=1

hi(z(kT ))h j(z(kT ))

×
{

Ḡd
i jεd(kT )+ T̄ d

i j d(kT )
}
,

ed(kT )≈
r

∑
i=1

hi(z(kT ))C̄d
i εd(kT ),

(9)

where

εd(kT ) =
[

x(kT )
x(kT )− x̂d(kT )

]
, T̄ d

i j = [H̄d
1i H̄d

2i j]

Ḡd
i j =

[
Gi 0

Gi − Âd
i − B̂d

i C2 j Âd
i

]
, H̄d

1i =

[
Hi

Hi

]
,

H̄d
2i j =

[
0

−B̂d
i D j

]
, C̄d

i =
[

C1i −Ĉd
i Ĉd

i .
]
,

(10)

The main objective of this paper is to design the digital
fuzzy filter (8) for the T–S fuzzy system (2) to stabilize
the error system (9) and to minimize the state-matching
error trajectory between the analog fuzzy filter (3) and the
digital fuzzy filter (8).

3. DIGITAL FUZZY FILTER BASED ON THE
IDR METHOD

The main problem of this paper is stated as follows.

Problem 1: Given well-constructed analog filter ma-
trices Âc

i , B̂c
i , and Ĉc

i for the stabilizing analog error sys-
tem (4), find the digital filter gain matrices Âd

i , B̂d
i , and Ĉd

i
such that the following objectives are satisfied.

• The state-matching error x̂c(kT ) − x̂d(kT ) and
ec(kT )− ed(kT ) are minimized for any k ∈ Z≥0.

• The discretized error system (9) is globally asymp-
totically stable under the zero disturbance conditions,
d(kT ) = 0.

To minimize the state-matching error, the most intuitive
method is to obtain x̂c(kT + T ) = x̂d(kT + T ) under the
assumption x̂c(0) = x̂d(0). Then, if there exist Âd

i , B̂d
i , and

Ĉi such that the following equalities are satisfied

Ḡc
i j = Ḡd

i j, (11)

T̄ c
i j = T̄ d

i j , (12)

C̄c
i = C̄d

i , (13)
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for all pairs (i, j) ∈ Ir ×Ir, the states x̂d(kT ) and ed(kT )
closely match the states x̂c(kT ) and ec(kT ), respectively.
The equality (13) is satisfied when the analog filter matrix
Ĉc

i and digital filter matrix Ĉd
i have the same value. How-

ever, it is difficult to find Âd
i and B̂d

i because the equations
(11)-(12) for (i, j) ∈ Ir ×Ir are usually inconsistent for
practical engineering. In order to solve these problems,
the norm minimization method is given as follows:

||Ḡc
i j − Ḡd

i j|| ≺ γ̂1, (14)

||T̄ c
i j − T̄ d

i j || ≺ γ̂2, (15)

where γ̂1 and γ̂2 are possibly small positive scalars.
Before proceeding to our main results, the following

proposition is introduced to be used in the proof.

Proposition 1: Under zero disturbance, there exists
some constant η ∈ R>0 such that

||ξ (t)|| ≤ η ||εd(kT )|| (16)

where

ξ (t) =x(t)− x̂d(kT ),

η =esupi∈Ir ∥Ai∥T
√
(sup

i∈Ir

∥TAi∥)2 +(I + sup
i∈Ir

∥TAi∥)2.

Proof: Under Assumption 1, the solution of (2) can
be obtained by integrating from kT to t for t ∈ [kT,kT +
T ), k ∈ R≥0

x(t)≈x(kT )+
∫ t

kT

r

∑
i=1

hi(z(kT ))Aix(τ)dτ

=x(kT )+
∫ t

kt

r

∑
i=1

hi(z(kT ))
{

Aiξ (τ)+Aix̂d(kT )
}

dτ

≤x(kT )+
r

∑
i=1

hi(z(kT ))TAix̂d(kT )

+
∫ kT+T

kT

r

∑
i=1

hi(z(kT ))Aiξ (τ)dτ.

The above inequality can be further derived as:

ξ (t)

≤x(kT )+
( r

∑
i=1

hi(z(kT ))TAi − I
)

x̂d(kT )

+
∫ kT+T

kT

r

∑
i=1

hi(z(kT ))Aiξ (τ)dτ

=
r

∑
i=1

hi(z(kT ))TAix(kT )+
(

I −
r

∑
i=1

hi(z(kT ))TAi

)
ξ (kT )

+
∫ kT+T

kT

r

∑
i=1

hi(z(kT ))Aiξ (τ)dτ. (17)

Taking the norms on both sides (17) yields

∥ξ (t)∥ ≤
r

∑
i=1

hi(z(kT ))∥TAi∥∥x(kT )∥

+

(
∥I −

r

∑
i=1

hi(z(kT ))TAi∥
)
∥ξ (kT )∥

+
∫ kT+T

kT

r

∑
i=1

hi(z(kT ))∥Ai∥∥ξ (τ)∥dτ

≤sup
i∈Ir

∥TAi∥∥x(kT )∥

+

(
I + sup

i∈Ir

∥TAi∥
)
∥ξ (kT )∥

+
∫ kT+T

kT
sup
i∈Ir

∥Ai∥∥ξ (τ)∥dτ

≤
√

(sup
i∈Ir

∥TAi∥)2 +(I + sup
i∈Ir

∥TAi∥)2∥εd(kT )∥

+
∫ kT+T

kT
sup
i∈Ir

∥Ai∥∥ξ (τ)∥dτ.

Finally, an application of the Gronwall-Bellman in-
equality results in

∥ξ (t)∥ ≤esupi∈Ir ∥Ai∥T
√
(sup

i∈Ir

∥TAi∥)2 +(I + sup
i∈Ir

∥TAi∥)2

×∥εd(kT )∥
=η∥εd(kT )∥.

□

Also, following assumption is needed to analyze the er-
ror system (9).

Assumption 2: The equilibrium point of the dis-
cretized T–S fuzzy system (7) is asymptotically stable un-
der the zero disturbance condition, w(kT ) = 0.

Remark 4: From Proposition 1 and Assumption 2, it
is concluded that, under zero disturbance, if state εd(kT )
converges to the origin, then the digital filter state x̂d(kT )
tends to the system state x(t). This allows the stability
analysis of the error system of the digital filter system (9)
to guarantee the stability of the error system between the
T–S fuzzy system (2) and the digital filter (8).

Then, the design method of the digital fuzzy filter based
on the IDR method is summarized as follows:

Theorem 1: If there exist some symmetric positive
matrices Q1, Q2, some matrices Si, Ui, and some scalars
γ1, γ2 such that the following LMIs are satisfied, then
xd(kT ) and ed(kT ) closely match xc(kT ) and ec(kT ), re-
spectively, and the equilibrium point of (9) is asymp-
totically stable under the zero disturbance conditions,
d(kT ) = 0,[

−γ1I ∗
Ξi j −γ1Q

]
≺ 0, (i, j) ∈ Ir ×Ir, (18)

−γ2I ∗ ∗ ∗
0 −γ2I ∗ ∗

Q1T 11
i j −Q1Hi Q1T 12

i j −γ2Q1 ∗
Q2T 21

i j −Q2Hi Q2T 22
i j +UiD j 0 −γ2Q2
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≺ 0, (i, j) ∈ Ir ×Ir, (19)
−Q1 ∗ ∗ ∗

0 −Q2 ∗ ∗
Q1Gi 0 −Q1 ∗

Q2Gi −Si −UiC2 j Si 0 −Q2

≺ 0,

(i, j) ∈ Ir ×Ir, (20)

where

Ξi j =

[
Q1Φ11

i j −Q1Gi 0
Q2Φ21

i j −Q2Gi +Si +UiC2 j Q2Φ22
i j −Si

]
,

Q =

[
Q1 0
0 Q2

]
.

Also, the matrices of the filter gains are given by Âd
i =

(Q2)
−1Si, B̂d

i = (Q2)
−1Ui, and Ĉd

i = Ĉc
i .

Proof: Let us consider the first objective of Problem
1 and the norm minimization inequalities (14) and (15).
Then, we can obtain following inequalities:

(14) ⇔(Ḡc
i j − Ḡd

i j)
T (Ḡc

i j − Ḡd
i j)≺ γ2

1 P,

(15) ⇔(T̄ c
i j − T̄ d

i j )
T (T̄ c

i j − T̄ d
i j )≺ γ2

2 P,

where P = Q−1. Using the Schur complement and apply-
ing the congruence transformation with diag{I, Q}, the
following inequalities are satisfied.[

−γ1I ∗
QḠc

i j −QḠd
i j −γ1Q

]
≺0, (21)[

−γ2I ∗
QT̄ c

i j −QT̄ d
i j −γ2Q

]
≺0. (22)

Finally, (5) and (10) are substituted into the above inequal-
ities, and then (21) and (22) are equivalent to (18) and
(19), respectively. Next, the second objective of Problem
1 can be solved using the following Lyapunov candidate
function

V (εd(kT )) = εT
d (kT )Qεd(kT ). (23)

The first forward difference of (23) becomes

△V (εd(kT ))

≈εT
d (kT +T )Qεd(kT +T )− εT

d (kT )Qεd(kT )

=

{ r

∑
i=1

r

∑
j=1

hi(z(kT ))h j(z(kT ))Ḡd
i jεd(kT )

}T

Q

×
{ r

∑
i=1

r

∑
j=1

hi(z(kT ))h j(z(kT ))Ḡd
i jεd(kT )

}
− εT

d (kT )Qεd(kT )

=
r

∑
i=1

r

∑
j=1

r

∑
k=1

r

∑
l=1

hi(z(kT ))h j(z(kT ))hl(z(kT ))hm(z(kT ))

× εT
d (kT )

{
(Ḡd

i j)
T QḠd

lm −Q
}

εd(kT ). (24)

The inequality (24) can be further formulated as follows:

△V (εd(kT ))

≤
r

∑
i=1

r

∑
j=1

hi(z(kT ))h j(z(kT ))εT
d (kT )

×
{
(Ḡd

i j)
T QḠd

i j −Q
}

εd(kT ). (25)

Thus, it is obvious that, if equation (25) is less than
zero, then △V (εd(kT )) is also less than zero. In addi-
tion, the following inequality is valid using the Schur com-
plement and applying the congruence transformation with
diag{I, Q} :

(Ḡd
i j)

T QḠd
i j −Q ≺ 0 ⇔

[
−Q ∗

QḠd
i j −Q

]
≺ 0. (26)

Finally, (5) and (10) are substituted into above inequal-
ity, and hence, (26) is equivalent to (20). □

Remark 5: The major contributions of this paper can
be summarized as follows:

• This is the first time to our best knowledge that the
IDR technique for the T–S fuzzy filter for the nonlin-
ear sampled-data system is handled. Using this ap-
proach, various analog filter studies can be applied
and the performance of the analog filter is maintained
at the sampled-data system within a certain range.

• Using Proposition 1, it is shown that the stability anal-
ysis for the error system of the digital filter (9) guar-
antees the performance of the digital filter for the con-
tinuous system.

4. SIMULATION EXAMPLE

To verify the proposed technique, we consider a nonlin-
ear mass-spring-damper mechanical system in the follow-
ing form:

mθ̈(t)+d(θ̇(t))θ̇(t)+κθ(t) = 0,

y(t) = gθ̇(t),

where y(t) is the output; θ(t) is the relative position of
the mass, θ(t) = [θ1(t)T θ2(t)T ]T ; and m, κ, and g are
the mass, stiffness of the springs, and input coefficient,
respectively. The damping coefficients of the nonlinear
dampers are assumed to be d(θ̇(t)) = d1 + d2(θ̇(t))2. If
θ̇(t) ∈ [−Ω Ω] with Ω > 0, then the membership func-
tions are:

h1(z(t)) =Γ1(θ̇(t)) = 1− (θ̇(t))2

(Ω)2 ,

h2(z(t)) =Γ2(θ̇(t)) =
(θ̇(t))2

(Ω)2 .
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Then, the T–S fuzzy system composed of two rules can
be constructed as follows:

ẋ(t) =
2

∑
i=1

hi(z(t))
{

Aix(t)+Biw(t)
}
,

s(t) =
2

∑
i=1

hi(z(t))C1ix(t),

y(kT ) =
2

∑
i=1

hi(z(kT ))
{

C2ix(kT )+Div(kT )
}
,

where

A1 =

[
−d1/m1 −κ1/m1

1 0

]
,

A2 =

[
−d1/m1 −d2(Ω)2 −κ1/m1

1 0

]
,

B1 =B2 =

[
0.3
0

]
, C11 =

[
0.3 0.05

]
,

C12 =
[

0.4 0.04
]
, C21 =

[
1 0.1

]
,

C21 =
[

1 0.2
]
, D1 = D2 = 0.02, m1 = m2 = 1,

κ1 =0.2, κ2 = 0.3, d1 = 0.6, d2 = 0.8, Ω = 1,

x(t) = [xT
1 (t) xT

2 (t)]
T = [θ̇ T (t) θ T (t)]T .

We assume the initial state conditions x(0) = [0.2 −
0.1]T , and x̂(0) = [0 0]T . To develop the IDR technique,
well-constructed analog filter gains are obtained using the
simple LMIs for the analog filtering technique:

Âc
1 =

[
−6.6933 −1.0961
0.0601 −0.1504

]
,

Âc
2 =

[
−7.4785 −0.9979
0.0956 −0.1383

]
,

B̂c
1 =

[
6.7368
0.9487

]
, B̂c

2 =

[
5.8809
0.8648

]
,

Ĉc
1 =

[
0.3000 0.0500

]
, Ĉc

2 =
[

0.3998 0.0400
]
.

Based on Theorem 1 with the sampling period T = 0.1
and well-constructed analog filter gains, the digital filter
gains are given as follows:

Âd
1 =

[
0.5121 −0.0810
0.0044 0.9845

]
,

Âd
2 =

[
0.4730 −0.0699
0.0066 0.9858

]
,

B̂d
1 =

[
0.4740
0.0935

]
, B̂d

2 =

[
0.3830
0.0829

]
,

Ĉd
1 =

[
0.3000 0.0500

]
, Ĉd

2 =
[

0.3998 0.0400
]
.

The disturbances are set as w(t) = e−0.2t sin(3t) and
v(kT ) = 0.5e−0.2kT sin(3kT ), and then the output re-
sponses of the system, analog filter, and digital filter are
shown in Fig. 1. From the results of Fig. 1, the output
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Fig. 1. Time responses of the output of mass-spring-
damper with T = 0.1: s(t) (solid), ŝc(t) (dotted),
and ŝd(kT ) (dash-dotted).

errors between the system and digital filter, s(t)− ŝd(kT ),
and the analog filter and digital filter, ŝc(t)− ŝd(kT ), are
bounded in some neighborhood of the origin. Finally, we
take the sampling times T = 0.2 and T = 0.5 to show
the state-matching performances according to the differ-
ent sampling times. As one can see in Fig. 2 and Fig. 3,
the state-matching performances of the proposed method
are somewhat degraded, yet the output trajectories have a
strong resemblance to the original one.

5. CONCLUSION

In this paper, the fuzzy filter design method has been
proposed for the nonlinear sampled-data systems using the
IDR technique. Using the T–S fuzzy model, discretized
closed-loop systems with pre-designed analog fuzzy and
digital fuzzy filters have been presented. The IDR prob-
lem was given to guarantee both the state-matching con-
dition and asymptotic stability. The proposed sufficient
conditions for solving the IDR problem were derived and
formulated in terms of LMIs format. Finally, the simu-
lation example illustrated the efficiency and feasibility of
the proposed method.
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and ŝd(kT ) (dash-dotted).

[4] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy track-
ing control design for nonlinear dynamic systems via T–
S fuzzy model. Fuzzy Systems,” IEEE Trans. Fuzzy Syst.,
vol. 9, no. 3, pp. 381-392, 2001.

[5] L. Xiaodong, and Z. Qingling, “New approaches to H∞
controller designs based on fuzzy observers for T–S fuzzy
systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-
1582, 2003. [click]

[6] L. S. Hu, T. Bai, P. Shi, and Z. Wu, “Sampled-data control
of networked linear control systems,” Automatica, vol. 43,
no. 5, pp. 903-911, 2007. [click]

[7] H. Gao, W. Sun, and P. Shi, “Robust sampled-data control
for vehicle active suspension systems,” IEEE Trans. Con-
trol Syst. Technology, vol. 18, no. 1, pp. 238-245, 2010.

[8] X. L. Zhu, and Y. Wang, “Stabilization for sampled-data
neural-network-based control systems,” IEEE Trans. Syst.,
Man, and Cybern. B, Cybern., vol. 41, no. 1, pp. 210-221,
2011.

[9] B. C. Kuo, Digital Control Systems, Oxford University
Press, New York, NY, 1992.

[10] E. Fridman, “A refined input delay approach to sampled-
data control,” Automatica, vol. 46, no. 2, pp. 421-427 2010.
[click]

[11] D. W. Kim, H. J. Lee, and M. Tomizuka, “Fuzzy stabi-
lization of nonlinear systems under sampled-data feedback:
An exact discrete-time model approach,” IEEE Trans.
Fuzzy Syst., vol. 18, no. 2, pp. 251-260, 2010.

[12] J. Yoneyama, “Robust H∞ filtering for sampled-data fuzzy
systems,” Fuzzy Sets Syst., vol. 217, pp. 110-129, 2013.
[click]

[13] H. J. Kim, G. B. Koo, J. B. Park, and Y. H. Joo, “Decentral-
ized sampled-data H∞ fuzzy filter for nonlinear large-scale
systems,” Fuzzy Sets Syst., vol. 273, pp.68-86, 2015. [click]

[14] N. Rafee, T. Chen, and O. P. Malik, “A technique for op-
timal digital redesign of analog controllers,” IEEE Trans.
Control Syst. Technol., vol. 5, no. 1, pp. 89-99, 1996.

[15] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective
chaotic orbit tracker: a prediction-based digital redesign
approach,” IEEE Trans. Circ. Syst. I, vol. 47, no. 11, pp.
1557-1570, 2000.

[16] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-
based sampled-data control: digital redesign approach,”
IEEE Trans. Circ. Syst. I, vol. 50, no. 12, pp. 1595-1600,
2003.

[17] H. J. Lee, L. S. Shieh, H. A. Malki, and D. W. Kim, “ Pulse-
width-modulated feedback control of nonlinear systems:
optimal linearization-based digital redesign approach,” In-
ternational Journal of General Systems, vol. 40, no. 3, pp.
283-300, 2011.

[18] H. J. Lee, H. Kim, Y. H. Joo, W. Chang, and J. B. Park,
“A new intelligent digital redesign for T–S fuzzy systems:
global approach,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2,
pp. 274-284, 2004.

[19] G. B. Koo, J. B. Park, and Y. H. Joo, “Intelligent digital re-
design for non-linear systems using a guaranteed cost con-
trol method,” Int. J. Control, Autom. Syst., vol. 11, no. 6,
pp. 1075-1083, 2013. [click]

[20] J. H. Moon, and H. J. Lee, “Performance recovery of intel-
ligent digital redesign for observer-based output feedback
under immeasurable premise variables,” IET Control The-
ory Appl., vol. 9, no. 12, pp. 1846-1856, 2015.

[21] H. C. Sung, D. W. Kim, J. B. Park, and Y. H. Joo, “Ro-
bust digital control of fuzzy systems with parametric un-
certainties: LMI-based digital redesign approach,” Fuzzy
Sets Syst., vol. 161 , no. 1, pp. 919-933, 2010. [click]

[22] J. H. Moon, and H. J. Lee, “Digital redesign of observer-
based output-feedback tracking controllers: enhancement,”
International Journal of Control, vol. 87, no. 11, pp. 2420-
2429, 2014. [click]

[23] H. J. Lee, “Performance-recoverable intelligent digital re-
design for fuzzy tracking controllers,” Information Sci-
ences, vol. 326, no. 1, pp. 350-367, 2016. [click]

http://dx.doi.org/10.1016/S0005-1098(03)00172-9
http://dx.doi.org/10.1016/j.automatica.2006.11.015
http://dx.doi.org/10.1016/j.automatica.2009.11.017
http://dx.doi.org/10.1016/j.fss.2012.08.014
http://dx.doi.org/10.1016/j.fss.2014.11.024
http://dx.doi.org/10.1007/s12555-013-0093-x
http://dx.doi.org/10.1016/j.fss.2009.04.016
http://dx.doi.org/10.1080/00207179.2014.924631
http://dx.doi.org/10.1016/j.ins.2015.08.003


610 Ho Jun Kim, Jin Bae Park, and Young Hoon Joo

Ho Jun Kim received the B.S. and M.S.
degrees in electrical engineering from
Yonsei University, Seoul, Korea, in 2011
and 2013, respectively. Since 2013, he has
been pursuing the Ph.D. degree with Yon-
sei University. His current research inter-
ests include large-scale systems, sampled-
data systems, decentralized filters, digital
redesign, and fuzzy systems.

JinBaePark received the B.E. degree in
Electrical Engineering from Yonsei Uni-
versity, Seoul, Korea, and the M.S. and
Ph.D. degrees in Electrical Engineering
from Kansas State University, Manhattan,
in 1977, 1985, and 1990, respectively.
Since 1992, he has been with the Depart-
ment of Electrical and Electronic Engi-
neering, Yonsei University, Seoul, Korea,

where he is currently a professor. His research interests include
robust control and filtering, nonlinear control, drone, mobile
robot, fuzzy logic control, neural networks, and genetic algo-
rithms. He served as the Editor-in-Chief for the Intelligent Jour-
nal of Control, Automation, and Systems (IJCAS) (2006-2010),
the President for the Institute of Control, Robot, and Systems
Engineers (ICROS) (2013), and the Senior Vice-President for
Yonsei University(2015-2016).

Young Hoon Joo received his B.S., M.S.,
and Ph.D. degrees in electrical engineer-
ing from Yonsei University, Seoul, Korea,
in 1982, 1984, and 1995, respectively.

He worked with Samsung Electronics
Company, Seoul, Korea, from 1986 to
1995, as a project manager. He was with
the University of Houston, Houston, TX,
from 1998 to 1999, as a visiting professor

in the Department of Electrical and Computer Engineering. He is
currently a professor in the Department of Control and Robotics
Engineering, Gunsan National University, Gunsan, Korea. His
major interest is mainly in the field of intelligent robot, intel-
ligent control, human-robot interaction, robot vision, and wind
farm control. He served as President for Korea Institute of Intel-
ligent Systems (KIIS) (2008-2009) and is serving as Editor-in-
Chief for the International Journal of Control, Automation, and
Systems (IJCAS) (2014-present) and the Vice-President for the
Korean Institute of Electrical Engineers (KIEE) (2016-present)
and the Vice-President for the Institute of Control, Robotics, and
Systems (ICROS) (2016-present).




