International Journal of Control, Automation and Systems 15(4) (2017) 1790-1798

http://dx.doi.org/10.1007/s12555-015-0392-5

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Cyclic Error Correction based Q-learning for Mobile Robots Navigation

Rongkuan Tang and Hongliang Yuan*

Abstract: Similar to control systems, reinforcement learning can capture notions of optimal behavior using natural
interaction experience. In the context of reinforcement learning, the temporal difference error of the generated
experience measures how well the learner responds to the system. Specially sequential difference of accumulated
temporal difference error can indicate the learning performance. In this paper, we fully utilize the error correction in
closed-loop peculiarity by mapping a representation error to the step-size component. The proposed cyclic step-size
could better control how new estimates are iteratively blended together over time, and the new estimates guide the
action selection process which in turn influence the value distribution. To guide more promising action decision, an
ensemble action selector is proposed which incorporates the idea of ensemble wisdom of the weak. Experimental
results conducted under gridworld mobile robot navigation task demonstrate the validity, capacity of fast learning
and easy-plugged implementation of the derived algorithm, leading to increasing applicability to real-life problems.

Keywords: Cyclic step-size, ensemble wisdom, mobile robots navigation, reinforcement learning.

1. INTRODUCTION

Reinforcement learning (RL) provides a sound frame-
work for autonomous agents to acquire adaptive behav-
iors based on delayed reward feedback. And it has been
explored extensively in area of machine learning research
[1], the temporal difference algorithm proposed by Sutton
[2] and the Q-learning of Watkins [3] are the two popu-
lar learning methodologies. Partly driven by the increas-
ing availability of rich data, recent years have seen excit-
ing advances in the theory and practice of reinforcement
learning, including developments in fundamental techni-
cal areas such as control [4], robotics [5-7], exploration
and empirical methodology, leading to increasing applica-
bility to real-life problems.

In the soil of reinforcement learning, meta critical com-
ponents such as step-size that controls how new estimates
are iteratively blended together over time, and action se-
lection which evaluates the tradeoff quality between ex-
ploration and exploitation [8] should always be carefully
dealt with by the designer to tackle diverse tasks, e.g.,
mobile robot navigation. Nevertheless that’s a consid-
erable work tagged time consuming and efficiency cost.
Concerned with step-size [9—12], which undergone three
stages of evolution. Classically the constant step-size
o € [0,1] is concise but lack of flexibility. It couldn’t
grasp the data trend with inefficient coordinate between

variance and bias. Empirically larger value at early learn-
ing stage and smaller at the latter could in some sense
slack the flexibility of parameter tuning while assuring
convergence. Without loss of generality, such mecha-
nism resembles formula: o, = C(B,t)/D(y,t). Gener-
ally D(y,t) is linear function combination of the learn-
ing episode index. Noticeably this is error-independent
leading to open loop between entire learning cycle partic-
ularly the pipeline among Q-value and td-error. Therefore
resorting to sampling method could be a straightforward
way to bridge the gap. And sampling directly from neither
Q-value nor td-error could deteriorate the learning perfor-
mance due to correlated influence among them.
Additionally when getting down to implement the Q-
learning algorithm given specific task, those simple but
rather not so much efficient action selection [13] strate-
gies favored extensively emerge in mind. Pure exploita-
tion causes the agent to reach the locally optimal policies
quickly, whereas excessive exploration degrades the per-
formance of the Q-learning algorithm even if it may ac-
celerate the learning process and allow avoiding the lo-
cally optimal policies. Specifically under popularity, &-
greedy [14] selector injects a probability € € (0,1) that
generates random behavior so as to encourage more ex-
ploration. However, the tricky parameter € is empirically
fixed leading to complex tuning, what’s more, as learning
evolves to mature level, the random behavior should be

Manuscript received October 28, 2015; revised August 27, 2016; accepted October 1, 2016. Recommended by Associate Editor Huaping
Liu under the direction of Editor Fuchun Sun. This work is supported by the National Natural Science Foundation of China under Grant
No. 61273327.

Rongkuan Tang is with the College of Electronics and Information, Tongji University, Shanghai 201804, China (e-mail:
stone8oy @gmail.com). Hongliang Yuan is with the College of Electronics and Information, Tongji University, Shanghai 201804, China
(e-mail: hyuan@tongji.edu.cn).

* Corresponding author.

A Springer ©ICROS, KIEE and Springer 2017

http://www.springer.com/12555

Cyclic Error Correction based Q-learning for Mobile Robots Navigation 1791

be pruned accordingly to exploit gained experience. To
slack such ‘greedy’ effect, randomized methods like boltz-
mann distribution were adopted in more recent works.
Boltzmann method samples from Q(s,a) with softmax
criteria: a* = argmaxycaexpQ(s,a’)/ Y ucaexpQ(s,a’).
Compared with €-greedy, the softmax [14] method made
a second sampling over Q-value space. Nevertheless,
there’s a common leak here: with always optimal ac-
tion a* that satisfy the max criteria, this procedure would
degenerate to the straightforward max-Q version : a* =
argmaxycaQ(s,a’). As a result, there’s no substantial dis-
crepancy here. A well integrated selector was introduced
in [15] called simulated-annealing based on Metropolis
criterion. The Metropolis criterion derives from the im-
portance sampling which originated from MCMC sam-
pling method and has an effective approximation. This se-
lector simulates an action transition probability : P,_,, =
exp ((Q(s,ar) —Q(s,a,))/T) and a random number p €
[0, 1] sampled from uniform distribution where action a,
was accepted if ¢ < P,_,,. Unexpectedly, low value term
P,_,, would result in amounts of invalid action transitions
in turn.

In this work, a distinct derived learning method termed
as natural Q-learning aka NaQL that seamlessly blends
together learning speed and generalized action decision
module made by various ‘weak experts’ is proposed to
boost the comprehensive learning performance. The re-
mainder of the paper is organized as follows. Section
2 covers the preliminaries of the elements of reinforce-
ment learning. In Section 3, the original flesh and blood
of the NaQL algorithm is presented including the cyclic
step-size and ensemble action selector. Subsequently the
learning performance is manifested through considerable
and comparable experiments and ensuing results are sta-
tistically visualized. Conclusions and insights of future
research step will follow in Section 5 finally.

2. PRELIMINARIES

Every living organism interacts with its environment
and uses those interactions to improve its own actions
in order to survive and increase. Reinforcement learning
refers to an actor or agent that interacts with its environ-
ment and modifies its actions or control policies, based on
stimuli received in response to its actions. This is based
on evaluative information from the environment and could
be called action-based learning. RL implies a cause and
effect relationship between actions and reward or punish-
ment [16]. It implies goal directed behavior at least insofar
as the agent has an understanding of reward versus lack of
reward or punishment.

2.1. Markov decision process
Reinforcement learning is characterized as an interac-
tion between a learner and an environment that provides

State Slate State State
N P v
aN SN / ///

L& S N /
\\ﬁAction“{‘s 4 Action }Action 4
IS »
Reward Reward Reward

7 7 7
Q" (s,a)=R(s,a)+ 72 P(s| s,a)ymax,, ' (5, a")

Fig. 1. Bellman equation illustration.

evaluative feedback. The environment is often conceptu-
alized as a Markov decision process [17] - a formal math-
ematical model that dates back to the 1950s. A Markov
decision process is defined by a set of states S(situations
in which a decision can be made), and actions A(the de-
cisions or interventions the decision maker can select).
These quantities can be taken to be finite, but continu-
ous state and action spaces are often valuable for captur-
ing interactions in important reinforcement learning ap-
plications such as robotic control. A transition function
P(s'|s,a) defines the probability of the state changing from
s to s’ under the influence of action a. It specifies the
‘physics’ or ‘dynamics’ of the environment.

The decision maker’s task is defined by a reward func-
tion R(s,a) and discount factor y € [0,1]. Rewards are
delivered to the decision maker with each transition and
maximizing the cumulative discounted expected reward
is its objective. Specifically, the decision maker seeks a
behaviour m* mapping states to actions generating a se-
quence of rewards rg,ry,r,...such that E, ,,...[ro + yr1 +
Y2ry+¥’r;+...] as large as possible. The relation between
the environmental interaction (state, action, reward, state,
action, reward,...) and the cumulative discounted expected
reward is captured by the Bellman equation (Fig. 1) for
the optimal state-action value function Q*. The solution
to the Bellman equation can be used to define optimal be-
haviour by 7*(s) = argmax,Q*(s,a). The cumulative dis-
counted expected reward for the policy that takes action a
from state s and then behaving optimally thereafter is the
immediate reward received plus the discounted expected
value of the cumulative discounted expected reward from
the resulting state s” given that the best action is chosen
[18].

Planning methods use knowledge of P and R to com-
pute a good policy w. Reinforcement learning methods
have access to P and R only through their ongoing in-
teractions with the environment and must learn good be-
haviour. Note that the Markov decision process model
captures both sequential feedback and the more specific
one-shot feedback (when P(s'|s,a) is independent of s and
a). It also captures both exhaustive feedback and the more
general sampled feedback (when states are represented by
features that allow R(s,a) to be represented compactly).

1792 Rongkuan Tang and Hongliang Yuan

2.2. Q-learning

Tabular reinforcement learning problems are those in
which the state-action space can be explored exhaustively.
Although challenging, there are a number of relatively
simple algorithms [19] that can be used effectively in this
setting. Q-learning is a model-free algorithm that uses
transition experience of the form < s,a,r,s' > (from state
s, action a resulted in reward rand next state s) to improve
an estimate O of the optimal state-action value function
Q* . In particular, since r+ ymax, Q(s',a’) is an unbiased
estimator of Q*(s,a) as defined by the Bellman equation
and Q is an estimate of Q*, the estimate can be updated as:

Q(s,a) <—QA(S,a)—|—Ot*5”)

where « is a step-size parameter that controls how new
estimates are iteratively blended together over time,0 is
the td-error which equals to 7+ ymax, O(s',a’) — O(s,a).
Indeed, if the step-size is decayed at an appropriate rate,

O(s,a) — Q*(s,a) 2)

for all state-action pairs. A simple model-based approach
to tabular reinforcement learning uses the observed tran-
sition experience to estimateR(s,a) (by averaging all re-
wards received from state sand action a) and P(s'|s,a) (by
the fraction of transitions from state sand action a that
transition to state s').

3. NATURAL Q-LEARNING

Motivated by closed-loop peculiarity and the ensemble
wisdom [20, 21] of the weak, cyclic step-size as well as
ensemble action selector are proposed respectively to nat-
urally boost the algorithm performance as well as meta
learning design.

3.1. Cyclic step-size

Error is measured and injected in common closed-loop
dynamic systems for signal feedback and decision sup-
port. This could enhance the stability and learning per-
formance of the system to be modeled. Systems such
as RL that incorporate td-error are always isolated from
the whole system which exists as an independent compo-
nent. Whereas there exists some interaction behavior be-
tween two variables: td-error and step-size as illustrated
in Fig. 2.

Common RL implementations establish a direct link
from td-error to system update, while in NaQL td-error
is streamed down to the error correction block and cycles
through system update. The whole interaction is depicted
as a cycle and the general description is given as follow:

eM: o =Y(d,), o €(0,1], 3)

where d; is a modified version of td error and ¥ is an error-
mining function that exploits information from error. Be-
sides the eM is continuous overall the axis horizon.

knowledge fy_ [T —————— |
\ -

| | step—size |

decision I 2 |

| !

update | |

| error |

— |) correction |

td-error S

Fig. 2. Cyclic block.

To elaborate the tricks behind (3), mathematical inter-
pretation would be considered. Define é; as the average
td-error value summed over an episode indicating how
much error the system make in one learning cycle or how
well the learner behaves in that episode. Subsequently, the
instant td-error generates out the learner would evaluates
how much distance it drifts from the ¢; compared with last
scenario, in which the drift variable is defined as d; could
be expressed by the following equations:

e = %{6) + 6;2 + --'51N_m+51N_m+l +..t StN} (4)

N—m m
1 N-m N)
=yiyr o+) &} ®)
=1 t=N—m+1
1
= N{EN—m +En}, (6)
di=®(8 —é1). @)

The summed error is split as two parts: the history N —
m experiences — Ey_,, and the recently m experiences —
E,,. The separation is inspired by the fact that the recently
learning experience weights much more importance than
the history one. Therefore if the history part is discarded,
(5) could be intuitively reformulated as %Zﬁ\; Nemai1 O by
maintaining a m-length queue.

Additionally (7) builds an error feedback bridge among
consequential learning episode in which ® is a cleaning
or feedback function. Here by subtracting least k£ mean
td-error from current td-error for confidence metric, the
derived d’ populates down to the cyclic block. By chaining
(4) through (7), the derived cyclic step-size could capture
the inner regulation trick in the long term while guarantee
learning speed.

3.2. Ensemble action selector

A tiresome tradeoff in g-learning is the exploration and
exploitation. Pure exploitation causes the agent to reach
the locally optimal policies quickly, whereas excessive
exploration degrades the performance of the Q-learning
algorithm even if it may accelerate the learning process
and allow avoiding the locally optimal policies. This sec-
tion gives a straightforward solution that can relax such
dilemma by ensemble method. Ensemble is a bootstrap

Cyclic Error Correction based Q-learning for Mobile Robots Navigation 1793

OJOXON T®

Decision Output
A 4 T
Ensemble Center

Learning

y

Fig. 3. Ensemble decision block.

method that can improve decision accuracy and reduce the
decision bias. A general ensemble decision block could be
captured by Fig. 3, where D1 ~ DK are the K same base
weak decision makers. The final decision is achieved by
fusing all the K base decision outputs characterized by the
ensemble center.

The principle of selecting the K basis is randomness and
simplicity. Randomness means the random parameter ini-
tialization if necessary and simplicity signifies the nutshell
goods. In g-learning, the € — greedy action selector is pre-
ferred by the designers due to its simplicity and relative ef-
ficiency. While implementing the action selector in NaQL
by the ensemble method, the base K components are cho-
sen as greedy selectors. Through K basis, the parameter €
could be removed so that the meta design is enhanced to a
high level. And the key component in ensemble center is
the fusion function that could be generalized by follow:

k— basis = base{gs1,852,...,85k }»)
k — out puts = decision{k — basis}, 9
f —decision = voted{k — out puts}. (10)

3.3. NaQL algorithm

In previous subsection, we discuss how each NaQL
component is elicited. Furthermore, materials presented
above lay a foundation for our NaQL algorithm to be in-
terpreted. It’s worth pointing out that the essence of NaQL
lies in that the agent could adjust its step-size evaluated by
td-error cycle throughout its learning life. The full block
of NaQL algorithm is diagramed as Fig. 4.

The learner is equipped with two critical ‘weapons‘:
cyclic step-size and ensemble selector, the cyclic step-size
block receives the system error and feeds the processed
step-size to the learner while the ensemble selector makes
current decision which action would interact with the sys-
tem. Noticeably inner the cyclic step-size block, there is
an error-mining function ¥ needs being fixed before learn-
ing. To satisfy the range and continuity constraints, here
in later experiments the sigmoid function [22] is chosen
to connect error and step-size. It is ubiquitously used in
neural networks for layer output activation function by

Lnsemble action selector [¢—state—

Learner —action— Environment/System

reward

Cyclic step—size |-

Fig. 4. NaQL algorithm block.

Algorithm 1: NaQL
1. Initialize Q - table to zero
2. Repeat (for each episode)

3. tdgym = 0,5 = Sgqp,steps=0

4, while not terminal

5. a < ensemble action selection
6. observe next state s’

7. 0 + error compute

8. tds,m < error collection

9. a < cyclic step-size update
10. Q-knowledge update

11. s+ s

12. steps <— steps+ 1

13. prepare for next training

researchers in machine learning field. Hence o; can be
gained using follow equations:

g(x) = 1+ex1p(—x)’ an
o, =B x*[g(d/l)—b], (12)

where [is a positive scaling parameter,it controls the quan-
tity of error by either squashing or amplifying; 8 € [0,2]
is the gain parameter controlling the upper bound of ;.
b. = g(0) is a constant offset parameter which assures the
validation of @, together with f3; Meanwhile, the innova-
tive ensemble block is embedded for action selection. The
only parameter or the one you need to think for a while is
the base decision makers and its total numbers k, however
the larger, the better. Therefore it’s really a pretty selector
for common tasks.

After analyzing above two blocks, the derived algo-
rithm termed as NaQL block is presented in Algorithm 1.
In the NaQL algorithm (Algorithm 1), line 5 takes an
ensemble action selection procedure illustrated in Func-
tion 2.

In ensemble selector, fist initialize k& base selec-
tors(greedy selectors here), and the straightforward way
to do such initialization is to generate k random floats

1794 Rongkuan Tang and Hongliang Yuan

Function 2: Ensemble action selector.

1. Init k-base greedy selectors:{gs1,gs2, ..., g5k }
2. Fori< [1,k]:

3. bout; = gs;(s,a)

4. a < max;(voted(a;)),a; € A

Function 3: Cyclic step-size update.
l.d=0-¢
2.0 =Y(d,) =B =[g(d/])— b

without repetition as the greedy parameter. Then get the
vote statistics of each action @; € A which formatted like a
map structure: vstat : {(a,cl),(az,c2),...,(a,,cn)}, and
¢; is the number of selectors that vote for action i. Finally
the first action by sorting vstat in descending order is fed
to the learner.

After interacting with the environment with action se-
lected by the ensemble block, the cyclic step-size is pe-
riodic updated by Function 3. Afterwards feeding the
tuned value into the Q-value iteration step. Trained with
an amount of training episodes, the step-size tends to ap-
proximate a stationary value in that the Q-value would ap-
proximate the optimal one.

In practical experiments, we incline to initialize the Q-
values a larger value, e.g., 5, to make the agent more ex-
plorative. Furthermore, we tend to smooth ¢ in each train-
ing episode via queuing up the historical & values as well
as averaging them. As a result, this can gain a mild learn-
ing process.

4. EXPERIMENTAL RESULTS

To validate the tractability and evaluate the performance
of the proposed NaQL algorithm for mobile robot, we take
the classic experimental scenario: indoor navigation con-
trol of an autonomous mobile robot with settings figured
in (Fig. 5).

4.1. Scenario description

In Fig. 5, each cell of the gridworld represents an in-
dividual state of the environment. In any free states, the
robot can perform one of four primary actions: up, down,
left, right. As their effect the agent moves one cell forward
in the corresponding direction. When encountering the
wall, the agent has no possibility of moving in the given
direction - the resulting state after such action is the orig-
inal one. Each atom operation has cost 1 and the received
immediate reward can be assumed to be the negative cost
value, i.e., -1. When the agent reaches the goal state, it
receives reward 100 while receiving reward -100 once hit-
ting the wall. The goal of the algorithm is to learn to seek
an optimal policy which would make the robot move from
S to G with minimized cost (or maximized rewards), and

Fig. 5. The gridworld environment.

Table 1. Learning parameter table.

Parameter Type Value Domain
gamma 0.98 ALL
k-basis 50 NaQL

o list {0.15,0.35,0.55,0.75} CQL
gain 3 2 NaQL
factor o list {0.2,0.4,0.6,0.8} DQL
episode N 8000 ALL

we defined two tasks for the simulation: taskl : S1 — G1,
task2 : S2 — G2. The simulation program is implemented
with MATLAB R2012b under the operating system of
Windows 7.

4.2. Parameter table

The algorithms to be evaluated and parameter settings
are given in Table 1. NaQL: the proposed natural q-
learning algorithm, the specified parameter is the number
of base decision makers - k in the ensemble block and the
gain factor in the cyclic block. CQL: the g-learning
with multiple constant step-size o settings. DQL: the g-
learning with a decreased step-size with principle such as
oy = m where n is the episode index. Here ALL
represents the parameters all the three algorithm share.
Additionally the discount factor for all the three algo-
rithms implemented is ¥ = 0.98 and the overall epoches
used to train is N = 8000. And the navigation tasks.

4.3. Results

An important evaluation metric in reinforcement learn-
ing is the average reward per episode (ARPE) which rep-
resent the learning speed and the ratio of maximizing re-
ward. The higher the better. And high value character-
izes that the learner could acquire the optimal policy faster
with a better approximation Q-value knowledge. Under
this metric, as illustrated in Fig. 6(c) and Fig. 7(c), NaQL
algorithm surpasses both CQL and DQL to an consider-
able extent.

Cyclic Error Correction based Q-learning for Mobile Robots Navigation 1795

Average reward per epslode

0,
[)
g 2|
w
g
g -4t NaQL
= cQL-0.15
$ CQL-0.35
e s} 1
€QL-0.55
cQL-0.75
_gULL . J
10° 10° 10
eplsodes

(a) Rewards of NaQL, CQL with parameter list: o =
{0.15,0.35,0.55,0.75}.

Average reward per epslode

0
o -2
h=
[=]
0
Q.
° 4 NaQL
o DQL-0.2
T -6]
© DQL-0.4
5 DQL-0.6
-8 DQL-038|]
107 10° 10*
eplsodes
(b) Rewards of NaQL, DQL with parameter list: @ =
{0.2,0.4,0.6,0.8}.
Average reward per epslode
0
$ 5
[
R
&
< -10
[
Q.
z
g 15 — NaQL ||
3 caL
2 paL
107 10° 10*
eplsodes
(c) Averaged rewards for NaQL, CQL and DQL, re-
spectively.

Fig. 6. Reward performance of task 1.

To remove the parameter factor in learning as much as
possible,a set of learning parameters specifically for CQL
with « list and DQL with @ list are taken for further eval-
uation. The resulting curves are pictured in Fig. 6 and
Fig. 7. It’s safe to say that the NaQL algorithm outper-
forms the other two and shows much space to improve.
For how could it behave so well, we can treat the learn-
ing system as a dynamic system, using error-feedback in
each iteration, the error gradient is decreasing. With high
error offset, the cyclic function could check it for next up-

Average reward per epslode

0

o 2

©

3 4

Q.

[}

g NaQL

5 g cQL-0.15||

g cQL-0.35

g -10 cQL-0.55|1
12 cQL-0.75 ||

10° 10° 10

eplsodes

(a) Rewards of NaQL, CQL with parameter list: o =
{0.15,0.35,0.55,0.75}.

Average reward per epslode

[
el
&
Q.
[
5]
Q.
2
©
=
<4
107 10’ 10*
eplsodes
(b) Rewards of NaQL, DQL with parameter list: @ =
{0.2,0.4,0.6,0.8}.
Average reward per epslode
O L
(]
8 -2t
@
Q.
(]
o -4r
o
o
©
-8t
107 10° 10°
eplsodes
(c) Averaged rewards for NaQL, CQL and DQL, re-
spectively.

Fig. 7. Reward performance of task 2.

date vice versa. [12] provides a better specified description
which is not covered for detail discussion in this work.

Additionally, to make the statistical performance of
NaQL more convincing, a separate specified experiment
is conducted. In detail, the ensemble action selector mod-
ule is removed from NaQL under the assumption that each
module of NaQL contributes to the learning performance.
And the assumption is validated via results captured in
Fig. 9. The mechanism behind such phenomenon is that
the two modules of NaQL shares no data dependence.

1796 Rongkuan Tang and Hongliang Yuan

NaQL constant step-size

drcreased step-size
8000

6000

4000

2000

Fig. 8. The density map of visited states for task 1.

Average reward per epsiode

07 T T
—DQL
o 2f caL
3 NaQL
]
&
—
[0]
o
o 61
—_
(1]
H
& 4l
0t , ‘
107 10° 10°

episodes

Fig. 9. Averaged rewards (under taskl) with CQL, DQL,
NaQL (which do not use the ensemble action se-
lector).

Another key metric for evaluation is the counts of each
states visited or the density map of the states visited. This
is a metric statistically measuring the frequency visits of
each corresponding state. Dispersive density distribution
reflects the learner could not behave its real learning pro-
cess with respect the system, to the contrary, the central-
ized one means a better tradeoff between exploration and
exploitation. The density maps (dmap) of taskl for eval-
uated algorithms is diagramed in Fig. 8. The vertical and
horizontal coordinates are the location index illustrated in
the gridworld environment, and the value at location (x,y)
is the frequency of the state(location). It’s obvious to see
the dmap of DQL is dispersive due to its fixed numeric
change. Further to say, each time the gained knowledge
in later process is not always better than the history one
while rigidly decreasing the step-size.

Compared with DQL, the dmap of CQL is relatively
centralized due to its zero mean of step-size. However,
this would result in high error variance latently. Turn to
the dmap of NaQL, the distribution is well-blocked high-
lighting the better tradeoff and learning speed to some bi-
ological mechanism. To conclude, the proposed NaQL

C T3 7= 7 T b

(b) CQL policy.

T T T T T T T T I T T +v

0 e B il
ke (DL R

ELjHﬂ uﬁq L’*LJZI 4]

(c) DQL policy.

Fig. 10. Policies learned for task 1.

approach is tractable, comparable, efficient and promising
for further mining.

Last but not the least, when learning process completed,
the policy learned in the navigation task1 also the optimal
path is visualized in Fig. 10. The notion of the figure is :
blue arrows — the optimal policy, red arrows — the policy
acquired in corresponding state s. Consistent with density

Cyclic Error Correction based Q-learning for Mobile Robots Navigation 1797

map metric, NaQL acquired the best policy. The reason
for elaborating this neat result is twofold:

Error direction In NaQL, the cyclic step-size could
more grasp the error direction through interaction
with td-error. Hence in each iteration, the Q-value
would go follow the approximated path.

Ensemble wisdom Base decision maker is weak and un-
stable with big bias and variance. While ensemble
wisdom of the weak can beat the base one to an con-
siderable extent. Additionally it could reduce bias and
variance for better numeric calculation or update.

As learning evolves, the twofold inducements could
compensate each other, namely have some variable inter-
actions during learning while boosting the algorithm per-
formance.

5. CONCLUSIONS

We herein investigated the notion that how step-size
could adapt the learning process and what selector can
grasp the trend of state transition. In this work a fresh
algorithm called NaQL is proposed in the context of re-
inforcement learning for mobile robot navigation. Con-
siderable experiments and pertinent metrics are employed.
Furthermore, extensive statistical and mechanism analysis
are elaborated in terms of simulation results.

To conclude, two specific blocks features the NaQL al-
gorithm, cyclic step-size and ensemble selector respec-
tively. Cyclic step-size could well adapt the td-error and
the ensemble wisdom could mitigate the tradeoff. They
altogether push the performance of NaQL to a high level.
Nevertheless, to the best of our knowledge, adaptors or se-
lectors in this work and almost all literatures are still priori
specified by the designer. That’s still intervened. To fur-
ther squeeze the performance of these features, our future
investigations will step into networked multi-robot navi-
gation [23-26] as well as turn to dynamic environment.

REFERENCES

[1] M. Hutter and S. Scanner, Recent Advances in Reinforce-
ment Learning, Springer, New York, 2012.

[2] R. Sutton and A. Barto, Reinforcement Learning: An in-
troduction, MIT Press, Cambridge, MA, 1998.

[3] C. Watkins and P. Dayan, “Q-learning,” Machine Learn-
ing, vol. 8, no. 3, pp. 279-292, 1992. [click]

[4] R. Coulom, Reinforcement Learning Using Neural Net-
works, with Applications to Motor Control, Institut Na-
tional Polytechnique de Grenoble-INPG, 2002.

[5] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning
in robotics: a survey,” International Journal of Robotics
Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[6] B.Zuo, J. Chen, L. Wang, and Y. Wang, “A reinforcement
learning based robotic navigation system,” Proc. 2014
IEEE International Conference on. Systems, Man and Cy-
bernetics (SMC), pp. 3452-3457, 2014.

[7] J. Millan and C. Torras, “Learning to avoid obstacles
through reinforcement,” Proc. the 8th International Work-
shop on Machine Learning, pp. 298-302, 2014.

[8] A. Gosavi, Simulation-based Optimization: Parametric
Optimization Techniques and Reinforcement Learning,
Springer, US, 2014.

[9] A. Gosavi, “On step sizes, stochastic shortest paths, and
survival probabilities in reinforcement learning,” Proc. the
40th Conference on Winter Simulation, pp. 525-531, 2008.

[10] K. Moriyama, “Learning-rate adjusting Q-learning for
prisoner’s dilemma games,” IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Tech-
nology, WI-IAT’08, pp. 322-325, 2008.

[11] A. Mahmood, R. Sutton, T. Degris, and P. Pilarski,
“Tuning-free step-size adaptation,” Proc. 2012 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 2121-2124, 2012.

[12] E. Even-Dar and Y. Mansour, “Learning rates for Q-
learning,” The Journal of Machine Learning Research, vol.
5, pp. 1-25, 2004.

[13] S. Lee, I. Suh, and W. Kwon, “A motivation-based action-
selection-mechanism involving reinforcement learning,”
Int. J. of Control, Automation, and Systems, vol. 6, no. 6,
pp- 904-914, 2008.

[14] M. Tokic and G. Palm, ‘“Value-difference based explo-
ration: adaptive control between epsilon-greedy and soft-
max,” Advances in Artificial Intelligence, Springer Berlin
Heidelberg, pp. 335-346, 2011.

[15] M. Guo, Y. Liu, and J. Malec, “A new Q-learning algorithm
based on the metropolis criterion,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol.
34, no. 5, pp. 2140-2143, 2004. [click]

[16] F. Lewis, D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Cir-
cuits and Systems Magazine, vol. 9, no. 3, pp. 32-50, 2009.
[click]

[17] M. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, John Wiley & Sons,
2014.

[18] M. Littman, “Reinforcement learning improves behaviour
from evaluative feedback,” Nature, vol. 521, no. 7553, pp.
445-451, 2015. [click]

[19] C. Szepesvari, “Algorithms for reinforcement learning,”
Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 4, no. 1, pp. 1-103, 2010.

[20] C. Zhang and Y. Ma, Ensemble Machine Learning,
Springer, New York, 2012.

[21] M. Mendoza and A. Bazzan, “The wisdom of crowds in
bioinformatics: what can we learn (and gain) from ensem-
ble predictions?” Proc. the 27th AAAI Conference on Arti-
ficial Intelligence, pp. 1678-1679, 2013.

http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/TSMCB.2004.832154
http://dx.doi.org/10.1109/MCAS.2009.933854
http://dx.doi.org/10.1038/nature14540

1798

(22]

(23]

[24]

[25]

[26]

Rongkuan Tang and Hongliang Yuan

C. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, 2006.

D. Borrajo and L. Parker, “A reinforcement learning algo-
rithm in cooperative multi-robot domains,” Journal of In-
telligent and Robotic Systems, vol. 43, no. 2-4, pp. 161-
174, 2005.

L. Panait and S. Luke, “Cooperative multi-agent learning:
The state of the art,” Autonomous Agents and Multi-Agent
Systems, vol. 11, no. 3, pp. 387-434, 2005. [click]

W. Burgard, M. Moors, C. Stachniss, and F. Schneider,
“Coordinated multi-robot exploration,” IEEE Transactions
on Robotics, vol. 21, no. 3, pp. 376-386, 2005. [click]

Y. Li, L. Chen L, K. Tee, and Q. Li, “Reinforcement learn-
ing control for coordinated manipulation of multi-robots,”
Neurocomputing, vol. 170, pp. 168-175, 2015. [click]

Rongkuan Tang received his B.S. degree
in Automation from Changshu Institute of
Technology in 2013. He received his M.S.
degree in Control Science and Engineer-
ing from Tongji University in 2016. His
research interests include reinforcement

’\ ‘ learning and its application to robots.

Hongliang Yuan received his B.S. degree
in Automatic Control from University of
Science and Technology of China in 2002.
He received his M.S. and Ph.D degrees in
Electrical Engineering from University of
Central Florida, USA, in 2006 and 2009,
respectively. He is currently an associate
professor at the School of Electronics and
Information Engineering, Tongji Univer-

sity, PR. China. His research interests include robotics, intel-
ligent control, optimizations, vehicle dynamics and control, etc.

http://dx.doi.org/10.1007/s10458-005-2631-2
http://dx.doi.org/10.1109/TRO.2004.839232
http://dx.doi.org/10.1016/j.neucom.2015.02.091

