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Stability Analysis for Switched Positive Linear Systems under State-
dependent Switching
Xiuyong Ding* and Xiu Liu

Abstract: This paper addresses the state-dependent stability problem of switched positive linear systems. Some
exponential stability criteria are established on the given partitions of the nonnegative state space. First, a exponen-
tial stability of systems without delays is established with the help of a single linear co-positive Lyapunov function.
When this does not seem possible, we also prove the stability by using multiple linear co-positive Lyapunov func-
tions. Moreover, we extend this result to the delayed systems in terms of the single and multiple linear co-positive
Lyapunov functionals respectively. The proposed results can be applied to the general systems without any special
restriction. Some numerical examples are given to illustrate the effectiveness of our results.
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1. INTRODUCTION

Switched systems have numerous applications in the
control of mechanical systems, the automotive industry,
aircraft and air traffic control, switching power converters
and many other fields. For a discussion of various issues
related to switched systems, see the survey article [1]. A
switched system is a dynamical system which consists of
a finite of subsystems and a rule orchestrating the switch
among them. A switched system is called positive if the
states of the subsystems are restricted to be non-negative
[2]. Recently, the importance of switched positive systems
has been highlighted by many researchers because of find-
ing broad application in communication systems [3], for-
mation flying [4], and other areas.

The stability issues of switched positive systems, es-
pecially switched positive linear systems (SPLSs), have
drawn a lot of attentions in recent decade. The first ques-
tion is whether the SPLS is stable under arbitrary switch-
ing signals (see, e.g., [5–9]); The other is stability anal-
ysis of SPLSs under restricted switching which may be
either time domain restrictions (time-dependent) or state
space restrictions (state-dependent). Recently, the stabil-
ity of SPLSs under time-dependent switching captured
wide attention from researchers (see [10–12] and some
references therein). However, stability of SPLSs under
state-dependent is a topic only partially explored [13–16].
In [13], the authors pointed that if there is a Hurwitz con-
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vex combination of the system matrices, then the SPLS
is state-dependently stable. Notice that the existence of
a Hurwitz convex combination, for stability, is only suf-
ficient, but not necessary in general [13] except for some
special cases, such as second order [13], two subsystems
with rank one difference [14]). Similarly, for discrete-time
SPLSs, the existence of a Schur convex combination of
the system matrices implies state-dependent stability [15].
The necessity is only for some special cases (for example,
second order [15], cyclic monomial matrix, and circulant
matrix [16]). It should be emphasized that all these results
are essentially based on some special restrictions, such as
low dimension, Hurwitz convex combination, etc., hence
leading to deeper insights into the state-dependent stabil-
ity must be endowed with.

This note is devoted to exploit some new treatments
for the stability of the given state-dependent SPLSs. It
is worth noting that the proposed results are applicable
for the general SPLSs which are without any special re-
striction, in contrast to others in the literature. The lay-
out of this note is as follows: Section 2. recall some nec-
essary background of switched systems and positive sys-
tems. Section 3. is concerned with the SPLSs which are
composed of linear time-invariat (LTI) subsystems. We
first present a sufficient condition for state-dependent sta-
bility by using a single linear co-positive Lyapunov func-
tion. When this seems impossible, we also prove the sta-
bility by using multiple linear co-positive Lyapunov func-
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tion. This result, based on the single and multiple linear
co-positive Lyapunov functional methods, is then gener-
alized to SPLSs with time-delay in Section 4.. Finally, in
Section 5., we present some brief concluding remarks.

Notation: Throughout, Rn (Rn
+) stands for the n-

dimensional (non-negative) real vector space and Rn×n is
the space of n×n matrices. For matrix A,B or vector x,y,
A ⪰ B(A ≻ B) or x ⪰ y(x ≻ y) means that all elements of
matrix A−B or vector x− y are non-negative (positive).
Also, A ⪯ B(A ≺ B) or x ⪯ y(x ≺ y) means that all el-
ements of matrix A−B or vector x− y are non-positive
(negative). x ̸= 0 means that there exists at least one non-
zero entry in vector x. AT represents the transpose of ma-
trix A. The notation ∥ · ∥ refers to the Euclidean vector
norm. For a continuous function f (x) for x in a closed
region Ω, minx∈Ω f (x) and maxx∈Ω f (x) denote the mini-
mum and maximum value in Ω, respectively.

2. BACKGROUND AND PRELIMINARIES

First of all, we recall some facts which are relevant for
this paper. A matrix is a Metzler matrix if its off-diagonal
entries are non-negative. A matrix is a Hurwitz matrix if
all its eigenvalues lie in the open left half of the complex
plane. The LTI system ẋ(t) = Ax(t) is positive if and only
if its system matrix A is Metzler [2]. The linear delayed
system ẋ(t) = Ax(t)+Bx(t−h) is positive if and only if its
matrix A is Metzler and B ⪰ 0 [17]. There are a number of
elegant characters for the Metzler Hurwitz matrix, we now
recall a classical result which are relevant for the work of
this paper as follows:

Theorem 1 [5, 18]: Let A ∈ Rn×n is a Metzler matrix.
Then A is a Hurwitz matrix (or equivalently, the system
ẋ(t) = Ax(t) is exponentially stable) if and only if there
exists a vector v ≻ 0 in Rn such that AT v ≺ 0.

Related to this result, we recall a definition which is a
powerful research tool for positive systems. The function
V (x) = xT v is called a linear co-positive Lyapunov (LCL)
function of the positive LTI system ẋ(t) = Ax(t) if V (x)>
0 and V̇ (x) = xT AT v < 0 for all non-zero x ⪰ 0.

The S-procedure for linear version as follows:

Theorem 2 (See [19], Section 2.6.3) (“S-procedure
for linear forms"): Let vectors x,w0, and w1 be in Rn.
Consider the two conditions: (i) xT w0 ≥ 0 whenever
xT w1 ≥ 0. (ii) There exists a constant τ ≥ 0 such that
xT (w0 − τw1) ≥ 0. Condition (ii) always implies condi-
tion (i). The converse holds, provided that there is one x0

such that xT
0 w1 > 0.

The following lemma which is straightforward from
Theorem 2 will play a key role in deriving the results of
this paper.

Lemma 1: Let vectors x,w0, and w1 be in Rn. If there
is a constant τ > 0 such that w0 −τw1 ≻ 0, then xT w0 > 0

whenever xT w1 ≥ 0, where x ⪰ 0 and x ̸= 0.

In what follows, we discuss the problem of verifying
stability of a given state-dependent SPLS. As we all know,
when referring to the state-dependent problem, a reason-
able partition of state space is first required. Specifically,
assume that the state space Rn

+ has a partition given by dis-
joint regions {Ω1, · · · ,Ωm}, i.e., Rn

+ = ∪m
i=1Ωi, and these

regions Ωi are defined a priori as restriction of the possi-
ble switching signals. Especially, in this paper we assume
that, from the characteristics of positive systems, the re-
gions Ωi are given by the linear forms

Ωi = {x ∈ Rn
+|xT wi ≥ 0}, i ∈ m. (1)

In addition, use Ωi, j to denote the boundary Ω̄i∩Ω̄ j, where
Ω̄i and Ω̄ j denote the closure of Ωi and Ω j, respectively.
Formally,

Ωi, j = {x ∈ Rn
+|xT wi, j = 0}, i, j ∈ m, (2)

where wi,wi, j ∈ Rn.
Now a proposed switching rule is described as: the i-

th subsystem can only be active for states within Ωi and a
switching event can occur only when the trajectory crosses
a boundary region Ωi, j which stands for the switching sur-
face where the trajectory passes from region Ωi to Ω j.

It should be emphasized that such a switching rule im-
plies that each individual subsystem are of concern only
in the regions where this system is active, and the behav-
ior of this system in other parts of the state space has no
influence on the switched system. Notice that if at least
one of the individual is asymptotically stable, this prob-
lem is trivial (just keep to activate the stable subsystems).
We hence, in the sequel, steadily make a assumption that
none of the individual subsystems of SPLS is stable.

3. SWITCHED LINEAR POSITIVE SYSTEMS
COMPOSED OF LTI SUBSYSTEMS

In this section we consider the SPLS which is composed
of LTI subsystems as the form:

ẋ(t) = Aσ(x)x(t), (3)

where x(t) ∈ Rn is the state vector. σ(x) : Rn
+ → m :=

{1,2, · · · ,m} is the so-called switching signal which is
state-dependent. Ai ∈ Rn×n are Metzler matrices for all
i ∈ m such that the system (3) is positive.

3.1. Single LCL function method
First, we try to derive stability of SPLS (3) by using a

single LCL function V (x) = xT v. For this aim, this LCL
function needs to satisfy the following conditions:

(H1): For all x ∈ Rn
+ and x ̸= 0, V (x) = xT v > 0, or,

equivalently, v ≻ 0.
This condition requires LCL function V (x) = xT v must
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be positive definite on the whole positive orthant Rn
+.

(H2): For all x ∈ Ωi and x ̸= 0, V̇ (x)< 0.
This requirement implies that the LCL function associ-

ated the i-th subsystem should be decreasing along the tra-
jectories inside Ωi. This decreasing property can be rep-
resented as: there is a vector v in Rn such that

xT AT
i v < 0, ∀x ∈ Ωi. (4)

Based on the above conditions, we present the follow-
ing lemma.

Lemma 2: If there is a LCL function V (x) = xT v to
satisfy (H1) and (H2). Then the SPLS (3) is exponentially
stable.

Proof: Suppose that the i-th mode is active on [tk, tk+1)
for some integer k > 0, i.e., x(t) ∈ Ωik for t ∈ [tk, tk+1), the
derivative of V along the solution of (3) is

V̇ (x(t)) = xT (t)AT
ik v ≤−δik x

T (t)v =−δikV (x(t)),

where δik = minx∈Ωik

xT (t)AT
ik

v
V (x) . This implies that V (x(t))≤

exp(−δik(t − tk))V (x(tk)). Furthermore, observe that the
values of the Lyapunov function certainly matches on the
switching instants, setting δ = minik∈m δik we can deduce
that

V (x(t))≤ exp(−δ (t − tk))V (x(tk))

= exp(−δ (t − t−k ))V (x(t−k ))

≤ ·· ·
≤ exp(−δ (t − t0))V (x(t0)).

Note that the LCL function V (x(t)) is positive definite
from (H1), we can sufficiently conclude that the solution
x(t) converges exponentially to zero as t → ∞. This com-
pletes the proof. □

Note that the above inequality (4) is constrained by the
switching regions (or equivalently, by the states). By ap-
plying Lemma 1, condition (4) can be replaced by the fol-
lowing stronger condition without constraints

AT
i v+ ciwi ≺ 0, i ∈ m,

where ci > 0 are constant scalars for all i, and then we get
the following stability result.

Theorem 3: The SPLS (3) is exponentially stable if
there exist a vector v,wi ∈ Rn and positive scalars ci such
that the following conditions are satisfied

v ≻ 0,

AT
i v+ ciwi ≺ 0, i ∈ m.

(5)

Proof: First of all, the positive definite condition (H1)
results from v ≻ 0. Moreover, for non-zero x ∈ Rn

+,
AT

i v+ ciwi ≺ 0 implies xT (AT
i v+ ciwi) < 0. By Lemma

1, it follows that xT AT
i v < 0 whenever xT wi ≥ 0, namely,

the decreasing property (H2) is satisfied, and then the ex-
ponential stability can be obtained by Lemma 2. □

Specially, we consider a classic assumption when there
exists a Hurwitz convex combination ∑m

i=1 αiAi of the sys-
tem matrices Ai(i ∈ m) [20]. Under this assumption, the
state-dependent stability of (3) can be achieved by the
LCL function method.

Theorem 4: If there exist constants αi ∈ [0,1] such
that matrix ∑m

i=1 αiAi is Hurwitz with ∑m
i=1 αi = 1, then the

SPLS (3) is exponentially stable by selecting a switching
strategy σ(x) = argmini∈m xT AT

i v.

Proof: Since ∑m
i=1 αiAi is Hurwitz, we can find accord-

ing to Theorem 1 a vector v ≻ 0 with ∑m
i=1 αiAT

i v ≺ 0,
which leads to, for any non-zero x ⪰ 0, ∑m

i=1 αixT AT
i v < 0.

This implies that there exists at least one i such that
xT AT

i v < 0 for non-zero x ⪰ 0. Now define the associated
switching regions Ωi = {x ∈Rn

+|−xT AT
i v > 0, i ∈ m}, it is

easy to check that the conditions (H1) and (H2) are satis-
fied by choosing a LCL function V (x(t)) = xT v, and hence
the exponential stability of (3) follows from Lemma 2. □

3.2. Multiple LCL function method
In the above subsection, the stability analysis was car-

ried out with the help of a single LCL function. When this
does not seem possible, one can try to find a prove stability
by using the multiple LCL functions Vi(x) = xT vi, i ∈ m.
For stability, the following conditions are required:

(H3): The Lyapunov functions Vi(x) > 0 for all non-
zero x ∈ Ωi, or, equivalently,

xT vi > 0, ∀x ∈ Ωi, i ∈ m. (6)

Notice that this condition, different from (H1), implies
that each function Vi(x) is positive definite only in the as-
sociated switching region Ωi (there is no requirement on
positive definiteness outside Ωi).

(H4): For all x ∈ Ωi and x ̸= 0, V̇i(x)< 0 for i ∈ m.
This restriction can be rewritten as: for each i, there is

a vector vi in Rn such that

xT AT
i vi < 0, ∀x ∈ Ωi. (7)

In addition, on the switching surfaces Ωi, j, it is required
that the LCL functions’ values are non-increasing.

(H5): For all x ∈ Ωi, j, the adjacent LCL functions sat-
isfy Vj(x)≤Vi(x) for i, j ∈ m, i.e.,

xT v j ≤ xT vi, ∀x ∈ Ωi, j. (8)

Lemma 3: If there exist some multiple LCL functions
Vi(x) = xT vi, i ∈ m to satisfy (H3), (H4), and (H5). Then
the SPLS (3) is exponentially stable.

Proof: The proof is very similar to that in Lemma 2
and thus omitted. □

Also, by Lemma 1 we can remove the region restriction
in conditions (6), (7), and (8) by the following stronger
conditions:
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vi −aiwi ≻ 0, i ∈ m,

AT
i vi + ciwi ≺ 0, i ∈ m,

and

v j +di, jwi, j ⪯ vi, i, j ∈ m,

respectively, where ai > 0,ci > 0, and di, j are constants.

Theorem 5: For i, j ∈ m, the SPLS (3) is exponen-
tially stable if there exist vectors vi,wi ∈ Rn and scalars
ai > 0,ci > 0, and di, j such that the following conditions
hold:

vi −aiwi ≻ 0,

AT
i vi + ciwi ≺ 0,

v j +di, jwi, j ⪯ vi.

(9)

Proof: For non-zero x ∈ Rn
+, conditions vi − aiwi ≻ 0

and AT
i vi+ciwi ≺ 0 imply xT (vi−aiwi)> 0 and xT (AT

i vi+
ciwi) < 0, respectively. By Lemma 1 one can obtain
xT vi > 0 and xT AT

i vi < 0 whenever xT wi ≥ 0. That is,
the conditions (H3) and (H4) are satisfied. In addition,
xT (v j + di, jwi, j) ≤ xT vi follows from the last inequality,
or, equivalently, xT v j ≤ xT vi whenever xT wi, j = 0, this is
the condition (H5). Hence all conditions in Lemma 3 are
satisfied, proving this theorem. □

Remark 1: If vi = v for all i ∈ m, then Theorem 5 is
reduced to Theorem 3.

3.3. Examples: non-delay case
Example 1: Define a state-dependent switched linear

system as follows:

ẋ =
{

A1x, i f x ∈ Ω1 = {x ∈ Rn
+|xT w1 ≥ 0}

A2x, i f x ∈ Ω2 = {x ∈ Rn
+|xT w2 ≥ 0}, (10)

where ω1 = [1 − 1]T ,ω2 = [−1 1]T . This switching rule
is shown in Figure 1. Let the coefficient matrices be given
by

A1 =

[
−8.5 1
0.2 3

]
, A2 =

[
4 0.8

0.5 −7.8

]
. (11)

It is clear that system (10) with coefficient matrices (11)
is positive since A1,A2 are Metzler, and both subsystems
are unstable.

According to Theorem 3, one feasible solution
of Linear Programming Problem (5) provides v =
[1.5529 2.2441]T and c1 = 8.2863,c2 = 7.7481, and
the state evolution can be seen in Figure 2 which con-
firms that the exponential stability of the system (10)
can be achieved by means of the single LCL function
V (x) = xT [1.5529 2.2441]T .
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Fig. 2. State responses and switching signals of the SPLS
in Example 1, where the initial conditions are
x(0) = [8 2]T .
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Fig. 3. State responses and switching signals of SPLS in
Example 2, where the initial conditions are x(0) =
[15 30]T .

Example 2: Let us define the same state-dependent
switched linear system (10), where the system matrices
(11) are replaced with

A1 =

[
−4.75 1

0.2 3

]
, A2 =

[
4 0.8

0.5 −4.58

]
(12)

Obviously, the associated switched system is positive and
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unstable.
First of all, we solve the Linear Programming Problem

(5), the resulting index output exit f lag = −2. Namely,
there is no feasible solution of Linear Programming Prob-
lem (5). In this case, we can not, according to Theorem
3, check the stability of the system (10) with the matrices
(12) via the single LCL function method. However, one
can try to prove the stability by using multiple LCL func-
tion method. By solving Linear Programming Problem
(9), one feasible solution provides

v1 = [64.1750 26.1038]T ,v2 = [22.1234 68.1554]T ,

c1 = 199.0451,c2 = 187.6236,

and

d1,2 =−d2,1 =−42.0516.

Therefore, by Theorem 5 the SPLS (10) with matrices (12)
is exponentially stable, and the simulation is shown in Fig-
ure 3.

4. SWITCHED LINEAR POSITIVE SYSTEMS
WITH TIME-DELAY

Consider the SPLS with time-delay as the form:

ẋ(t) = Aσ(x)x(t)+Bσ(x)x(t −h), (13)

where h > 0 is the constant delay, switching signal σ(x) :
Rn

+ → m := {1,2, · · · ,m} is state-dependent. Matrices Ai

are Metzler and Bi ⪰ 0 for all i ∈ m such that the system is
positive.

4.1. Single LCL functional method
Consider the following LCL functional candidate

V (t) =V (t,xt) = eδ0txT (t)v+ eδ0t
∫ t

t−h
xT (s)γds, (14)

where xt denotes the continuous function on [−h,0] given
by xt(θ) = x(t + θ) for θ ∈ [−h,0], δ0 is a constant, and
v,γ ∈ Rn. For stability, V (t) needs to satisfy the following
conditions:

(H6): For all x ∈ Rn
+ and x ̸= 0, V (t) > 0, or, equiva-

lently, v ≻ 0 and γ ≻ 0.
(H7): For x ∈ Ωi and x ̸= 0,

V̇ (t)−δ0V (t)

= eδ0txT (t)(AT
i v+ γ)+ eδ0txT (t −h)(BT

i v− γ)
< 0, i ∈ m.

This requirement can be rewritten as: there are vectors
v,γ ∈ Rn such that[

x(t)
x(t −h)

]T [ AT
i v+ γ

BT
i v− γ

]
< 0, ∀x ∈ Ωi. (15)

Lemma 4: If there is a LCL functional as the form
(14) to satisfy the conditions (H6) and (H7). Then the
SPLS (13) is exponentially stable.

Proof: First, for the LCL functional (14) it follows
from (H6) that

κ1eδ0t∥x(t)∥ ≤V (t)

≤ κ2eδ0t∥x(t)∥+κ3eδ0t
∫ t

t−h
∥x(s)∥ds,

(16)

with κ1 = min1≤l≤n{vl},κ2 = max1≤l≤n{vl},κ3 =
max1≤l≤n{γl}, where vl and γl denote the l-th entry of
vectors v and γ , respectively,

Now suppose that the i-th mode is active on [tk, tk+1) for
some integer k > 0, i.e., x(t) ∈ Ωik for t ∈ [tk, tk+1), along
the solution of (13) we have from (H7) that

V̇ (t)−δ0V (t)

= eδ0txT (t)(AT
ik v+ γ)+ eδ0txT (t −h)(BT

ik v− γ)
< 0.

Now set

λ1ik =− max
1≤l≤n

{[AT
ik v+ γ]l},λ2ik =− max

1≤l≤n
{[BT

ik v− γ]l},

where [AT
ik v+ γ]l and [BT

ik v− γ]l denote the l-th entry of
AT

ik v+ γ and BT
ik v− γ , respectively, we further have

V̇ (t)−δ0V (t)≤−eδ0t(λ1ik∥x(t)∥+λ2ik∥x(t−h)∥)< 0.

By (16) we can derive

V̇ (t)≤ δ0V (t)− eδ0t(λ1ik∥x(t)∥+λ2ik∥x(t −h)∥)
=eδ0t [(κ2δ0 −λ1ik)∥x(t)∥−λ2ik∥x(t −h)∥

+κ3δ0

∫ t

t−h
∥x(s)∥ds

]
≤eδ0t

[
(κ2δ0 −λ1ik)∥x(t)∥+κ3δ0

∫ t

t−h
∥x(s)∥ds

]
.

Now integrating both sides of above inequality from tk to
t gives

V (t)≤V (tk)+∫ t

tk
eδ0s

[
(κ2δ0 −λ1ik)∥x(s)∥+κ3δ0

∫ s

s−h
∥x(θ)∥dθ

]
ds.

Notice that the Lyapunov values certainly matches on the
switching instants and set λ1 = minik∈m λ1ik , then we can
easily deduce that

V (t)≤V (0)+(κ2δ0 −λ1)
∫ t

0
eδ0s∥x(s)∥ds

+κ3δ0

∫ t

0
eδ0s

∫ s

s−h
∥x(θ)∥dθds
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Observe that∫ t

0
eδ0s

∫ s

s−h
∥x(θ)∥dθds ≤ hτeδ0h

×
∫ t

0
eδ0θ∥x(θ)∥dθ +

1
δ0

∫ 0

−h
(eδ0(θ+h)−1)∥x(θ)∥dθ ,

where τ ≥ 1 is a constant. This gives

V (t)≤V (0)+(κ2δ0 +κ3δ0hτeδ0h −λ1)

×
∫ t

0
eδ0s∥x(s)∥ds+κ3

∫ 0

−h
(eδ0(s+h)−1)∥x(s)∥ds.

Now choose sufficiently small δ0 such that λ1 ≥ κ2δ0 +
κ3δ0hτeδ0h, we have

V (t)≤V (0)+κ3

∫ 0

−h
(eδ0(s+h)−1)∥x(s)∥ds.

By (16) it follows that

∥x(t)∥ ≤ 1
κ1

e−δ0t [V (0)

+κ3

∫ 0

−h
(eδ0(s+h)−1)∥x(s)∥ds

]
,

therefore x(t) exponentially converges to zero as t → ∞.
This completes the proof. □

Since x(t),x(t−h) are non-negative, the constrained in-
equality (15), by applying Lemma 1, can be replaced by a
stronger condition without constraints as follows:{

AT
i v+ γ + ciwi ≺ 0,

BT
i v− γ ⪯ 0.

(17)

Theorem 6: The delayed SPLS (13) is exponen-
tially stable if there exist vectors v,γ,wi ∈ Rn and posi-
tive scalars ci, i ∈ m such that the following conditions are
satisfied

v ≻ 0,

γ ≻ 0,

AT
i v+ γ + ciwi ≺ 0, i ∈ m.

BT
i v− γ ≺ 0,

(18)

Proof: First of all, the positive definite condition (H6)
results from the conditions v ≻ 0 and γ ≻ 0. On the other
hand, for non-zero x(t)⪰ 0, condition AT

i v+ γ + ciwi ≺ 0
implies xT (t)(AT

i v+ γ + ciwi) < 0. By Lemma 1 we fur-
ther get that xT (t)(AT

i v + γ) < 0 whenever xT (t)wi ≥ 0.
Note that, from the last inequality, xT (t −h)(BT

i v− γ)< 0
for non-zero x(t − h) ⪰ 0. Therefore, we can obtain
that xT (t)(AT

i v + γ) + xT (t − h)(BT
i v − γ) < 0 whenever

xT (t)wi ≥ 0, i.e., condition (H7) follows. All conditions
in Lemma 4 are satisfied, and thus the system (13) is ex-
ponentially stable. □

Now we consider a special case when the system matri-
ces Ai(i ∈ m) share a Hurwitz convex combination, and
we shall show that the state-dependent stability of de-
layed SPLS (13) can be derived by single LCL func-
tional method. In fact, from Theorem 1, there is a vector
v ≻ 0 such that ∑m

i=1 αiAT
i v ≺ 0. This implies that there

exists at least one i such that xT AT
i v < 0 for some non-

zero x ⪰ 0. We can further find a vector γ ≻ 0 satisfy-
ing xT (t)AT

i v ≤−xT γ < 0 some non-zero x ⪰ 0. Now we
define Ωi = {x ∈ Rn

+| − xT AT
i v > 0} and require system

matrices Bi to satisfy xT (t)BT
i v ⪯ xT γ , which ensures that

condition (H7) holds, and then the stability of (13) fol-
lows.

Theorem 7: If there exist constants αi ∈ [0,1], i ∈ m
such that matrix ∑m

i=1 αiAi is Hurwitz with ∑m
i=1 αi = 1,

and BT
i v−γ ⪯ 0, where vectors v,γ ≻ 0 are defined above.

Then the SPLS (13) is exponentially stable by selecting
the switching rule σ(x) = argmini∈m xT AT

i v.

4.2. Multiple LCL functional method
When a stability analysis based on a single LCL func-

tional breaks down, one can use multiple LCL functionals
as the form

Vi(t) =Vi(xt) = eδ0txT (t)vi +eδ0t
∫ t

t−h
xT (s)γds, i ∈ m.

(19)

We need to make the following restriction on the Lya-
punov functionals (19):

(H8): For all x ∈ Ωi and x ̸= 0, Vi(t) > 0, or, equiva-
lently, xT vi > 0,∀x ∈ Ωi and γ ≻ 0,∀x ∈ Rn

+.
(H9): V̇i(t)−δ0Vi(t)< 0 for all non-zero x ∈ Ωi, i ∈ m.
An equivalent description is: there are vectors vi,γ ∈Rn

such that ∀x ∈ Ωi, i ∈ m[
x(t)

x(t −h)

]T [ AT
i vi + γ

BT
i vi − γ

]
< 0. (20)

(H10): Vj(t)≤Vi(t) for x ∈ Ωi, j, i, j ∈ m.
This non-increasing property on switching surfaces can

be represented as:

xT (t)v j ≤ xT (t)vi, ∀x ∈ Ωi, j, i, j ∈ m. (21)

Based on the above conditions we give the following
technical lemma.

Lemma 5: If there is a LCL functional as the form
(19) satisfying (H8), (H9), and (H10). Then SPLS (13) is
stable.

Proof: The proof is essentially same as that in Lemma
4, and thus omitted. □

Now by applying Lemma 1 we can replace the inequal-
ities (18) (20), and (21) with the following stronger con-
ditions without constraints, respectively:

vi −aiwi ≻ 0,γ ≻ 0, i ∈ m,
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AT

i vi + γ + ciwi ≺ 0,
BT

i vi − γ ⪯ 0,
i ∈ m,

and

v j +di, jwi, j ⪯ vi, i, j ∈ m,

where ai > 0,ci > 0, and di, j are constants.
In summary, the above discussion can be encapsulated

the following result.

Theorem 8: For i, j ∈ m, the SPLS (13) is exponen-
tially stable if there exist vectors vi,wi,γ ∈ Rn and scalars
ai > 0,ci > 0, and di, j such that the following conditions
hold:

vi −aiwi ≻ 0,

γ ≻ 0,

AT
i vi + γ + ciwi ≺ 0,

BT
i vi − γ ⪯ 0,

v j +di, jwi, j ⪯ vi.

(22)

Proof: The proof is very similar to that of Theorem 5
and Theorem 6, and thus is omitted. □

Remark 2: If vi = v for all i ∈ m, then Theorem 8 is
reduced to Theorem 6.

Remark 3: Notice that both condition (17) and (22)
are delay-independent, irrespective the sizes of delays.
Hence Theorem 6 and 8 are easily extended to the SPLS
with any bounded time-varying delay

ẋ(t) = Aσ(x)x(t)+Bσ(x)x(t −h(t)),

where the time-varying delay h(t) satisfying 0 < h(t)< h
is bounded.

4.3. Examples: delay case
Example 3: Define a state-dependent switched linear

system

ẋ(t) =
{

A1x(t)+B1x(t −h), i f x(t) ∈ Ω1,
A2x(t)+B2x(t −h), i f x(t) ∈ Ω2,

(23)

where Ω1,Ω2 are same as Example 1. The coefficient ma-
trices are as follows:

A1 =

[
−8.8 2

1 3

]
, B1 =

[
0.2 0.3
0.1 0.2

]
,

A2 =

[
2 1
1 −7.6

]
, B2 =

[
0.4 0.1
0.2 0.3

]
.

(24)

It is clear that the system (23) with (24) is positive and
unstable since Ai are non-Hurwitz Metzler and Bi ≻ 0 for
i = 1,2.

According to Theorem 6, one feasible solution of Lin-
ear Programming Problem (18) provides v = [1.6300
1.4483]T , γ = [2.0113 1.3628]T , and c1 = 9.1280,c2 =
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Fig. 4. State responses and switching signals of the SPLS
in Example 3, where the initial condition is x(0) =
[3 12]T and the delay is h = 0.05.
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Fig. 5. State responses and switching signals of the SPLS
in Example 4, where the initial conditions is x(0)=
[18 4]T and the delay is h = 0.05.

7.0650, which implies that the SPLS (23) with (24) is ex-
ponentially stable. The simulation result can be seen in
Figure 4, where the switching rule is same as that in Fig-
ure 1.

Example 4: Let us define the same state-dependent
switched linear system (23), where we replace the system
matrices A1,A2 with

A1 =

[
−6.2 2

1 3

]
, A2 =

[
2 1
1 −5.8

]
. (25)

First of all, we solve the Linear Programming Problem
(18), the resulting index output exit f lag = −2. Namely,
there is no feasible solution of Linear Programming Prob-
lem (18), this implies that the single LCL functional
method is not applicable on checking the system stabil-
ity. However, the stability analysis can be carried out
with the help of the multiple LCL functional method.
By Theorem 8, one feasible solution of Linear Program-
ming Problem (22) provides v1 = [89.8385 11.8505]T ,
v2 = [19.1808 82.5082]T , γ = [96.3139 98.8531]T , c1 =
356.5931,c2 = 270.3358, and d1,2 = −d2,1 = −70.6578.



488 Xiuyong Ding and Xiu Liu

The simulation is shown in Figure 5, from which one can
see that SPLS is exponentially stable.

5. CONCLUDING REMARKS

In this note, we discuss the stability problem of SPLSs
with a given state-dependent switching. Based on the
given partitions of the nonnegative orhant, some exponen-
tial stability criteria are derived and formulated as Linear
Programming Problems. Such criteria can be applied to
the general non-delayed and delayed SPLSs without any
special restriction. Future work will consider the case
when the state-dependent switching laws are not known
in advance. We suspect that the results presented here will
be of great value in this future study.
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