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Finite-time H∞ Adaptive Fault-Tolerant Control for Wing Flutter of
Reentry Vehicle Subject to Input Saturation
Ming-Zhou Gao and Guo-Ping Cai*

Abstract: In current study for wing flutter of reentry vehicle, the effect of input saturation to wing flutter is rarely
considered and few of the fault-tolerant control problem is taken into account. In this paper, we use the radial basis
function neural network and the finite-time adaptive fault-tolerant control technique to deal with the wing flutter
problem, which is subject to input saturation, parameter uncertainties and external disturbances. Sensor and actuator
faults are both considered in the control design. Firstly, an optimal flight trajectory of reentry vehicle is designed
using the conjugate gradient method, so as to decrease the aerodynamic heating rate and temperature on the surface
of the reentry vehicle. Then based on the trajectory optimization, we ignore the effect of temperature, and build
up the motion equation of wing flutter. Finally, a finite-time H∞ adaptive fault-tolerant controller is introduced.
Simulation results indicate that, the optimized trajectory designed may decrease the aerodynamic heating rate of
the reentry vehicle; the designed fault-tolerant controller can effectively deal with the faults in the system and can
promptly suppress the wing flutter as well.
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1. INTRODUCTION

During the reentry process of the reentry vehicle, ex-
tremely high flight speed leads to serious aerodynamic
heating on the surface of the vehicle [1]. To avoid seri-
ous surface ablation during the reentry process, tempera-
ture protection is a must. One of the possible solutions
of reducing the heating rate on the body surface is to use
ablative materials [2]. However, due to the complicated
behavior of ablative materials and the coupling to the fluid
dynamic environment, the study on ablative materials to-
day remains at the level of empirical and the theoretical
system for this material is not perfect. Therefore, optimiz-
ing the reentry trajectory of reentry vehicle to reduce the
heating rate is of greater importance.

Although the optimized reentry trajectory can decrease
the heating rate and temperature on the surface of reentry
vehicle, aerodynamic load on the surface of reentry vehi-
cle is still very high. It will give rise to more serious wing
flutter. Flutter instability may decrease aircraft perfor-
mance or even lead to the catastrophic failure of the struc-
ture [3]. The technique of active flutter suppression has
drawn much attention over the past decade [4–7]. For ex-
ample, Wang et al. [4, 5] considered a class of aeroelastic
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systems with an unmodeled nonlinearity and external dis-
turbance and proposed a full-state feedforward/feedback
controller with a high-gain observer; they also designed
a continuous robust controller to suppress the aeroelastic
vibrations of a nonlinear wing-section model. Zhang et al.
[6] designed a partial state feedback continuous adaptive
controller in order to suppress the aeroelastic vibrations
of the wing section model. Cassaro and Battipede [7]
considered a class of aeroelastic systems with parameter
uncertainties and designed an adaptive control architec-
tures for flutter suppression; they also designed an adap-
tive controller involves signal filtering in order to improve
system performance. Although a number of flutter con-
troller design approaches [3–7], most of the research as-
sume that there exists no actuator fault or failure during
the entire flutter suppression. However, the reentry vehi-
cle will face the serious aerodynamic environment in the
reentry, the reentry vehicle control systems will inevitably
be subjected to the system faults, which are caused by
all kinds of actuators, sensors or system components [8].
Thus, the fault tolerant control [9–11] should be token into
consideration for the wing flutter.

Fault-tolerant control (FTC) is a control design strat-
egy that guarantees system stability and acceptable per-
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formance [12]. In general, FTC methods are classified into
two types: passive fault tolerant control (PFTC) and active
fault tolerant control (AFTC) schemes [12–16]. Xu et al.
[13] designed an adaptive laws for updating the controller
parameters when both the plant parameters and actuator-
failure parameters are unknown. Liu et al. [14] proposed
a novel fault diagnosis architecture for a class of unknown
nonlinear systems with unmeasured states; a general ra-
dial basis function neural network is used to approximate
the unknown system model. Allerhand and Shaked [15]
considered as switching in the system dynamics and pro-
posed a fault tolerant control approach to model multi-
plicative faults. Jia et al. [16] constructed a novel fuzzy
descriptor learning observer to achieve simultaneous re-
construction of system states and actuator faults; Utilizing
the reconstructed fault information, a reconfigurable fuzzy
fault-tolerant controller is designed to compensate for the
impact of actuator faults. It is worth mentioning that the
above researches [12–16] are derived from the assump-
tion that the controllers are able to provide any requested
outputs. However, in the reentry process, hypersonic vehi-
cles demand large control forces and signal magnitude, the
control actions are usually limited, which means the con-
troller is under actuator saturation. Note that, when phys-
ical constraints are in effect, the flutter controller perfor-
mance will decline because the necessary control signal to
achieve the suppression cannot be implemented within the
physical constraints imposed on the system [17]. There
are several interesting works attempting different adaptive
control methods for systems in the presence of actuator
saturation [17–19]. Xu et al. [18] used fuzzy logic and
the disturbance observer to deal with the uncertain nonlin-
ear systems with actuator saturation and external distur-
bances. Zhong [19] presented a novel method of design-
ing model reference adaptive control for a class of SISO
plants which is assumed to be stable and minimum phase
with input saturation. However, these references [3–19]
are mainly focusing on the problems of linear and non-
linear systems over an infinite-time interval. In the ac-
tual reentry process of vehicle, the speed is so large that
a small external perturbation can cause sharp increase of
flutter amplitude, resulting in catastrophic damage of the
vehicle in a very short time. Therefore, it is required that
the flutter amplitude do not exceed a certain bound during
a fixed finite-time interval. To the best of our knowledge,
the studies on finite-time adaptive fault-tolerant control of
wing flutter are very limited in the published literature.

In order to reveal the negative effect of the conventional
control on the stability of aeroelastic system and consider-
ing the influence of faults, actuator saturation, parameter
uncertainties and external disturbances, this paper focuses
on the design of adaptive fault-tolerant controller for flut-
ter of wing. A two-dimensional cubic structure nonlinear-
ity wing is adopted as structure model in the flutter analy-
sis. This paper is organized as follows. Section 2 presents

the flight trajectory optimization of reentry vehicle. Flut-
ter of wing model is given in Section 3. Section 4 presents
a finite-time H∞ adaptive failure compensation controller.
Numerical simulations are given in Section 5. Section 6
briefs the conclusions of the research.

2. REENTRY MODEL AND TRAJECTORY
OPTIMIZATION OF SPACE VEHICLE

2.1. Reentry trajectory optimization
The dynamic equation of reentry vehicle can be ex-

pressed as [20–22]. The space vehicle would experience
severe aerodynamic heat and large overload during the
reentry flight. So reentry trajectory optimization should
be studied so as to improve thermodynamic environment
of the reentry vehicle.

2.1.1 Multiple constraints
Equation (1) can be described as

Ẋ = f(X, ū, t), (1)

where X(t) = [V (t), γ f (t), ψ(t), x(t), h(t), z(t)]T and
Ū(t) = [α(t), ε(t)]T, the subscript T represents the trans-
pose of matrix or vector in this paper.

The multiple constraints for reentry vehicle can be de-
scribe as

1) The flying distances x and z should satisfy the fol-
lowing constraints [23]

x ≤ 3500 km and z ≤−25 km. (2)

2) The heating rate, dynamic pressure and aerodynamic
load must be in the limit as

Q̇n ≤ Q̇nmax = 420 kW/m2, q ≤ 50 kPa

and

n ≤ nmax = 2.5 g. (3)

3) The control of reentry vehicle should satisfy the fol-
lowing constraints{

αmin = 0◦ ≤ α ≤ αmax = 60◦,
εmin =−60◦ ≤ ε ≤ εmax = 60◦.

(4)

4) The initial and terminal conditions are given as

V (t0) =V0, ψ(t0) = ψ0, x(t0) = x0,

h(t0) = h0, z(t0) = z0, V (t f ) =Vf , (5)

ψ(t f ) = ψ f , x(t f ) = x f , z(t f ) = z f .

2.1.2 Optimal control of the reentry trajectory
Due to dynamic constraints, boundary constraints and

path constraints, the aim of the reentry trajectory opti-
mization problem is to determine the control Ū that mini-
mizes the objective function. Therefore, the performance
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index of the reentry trajectory can be defined

J = Θ[X(t f )]+
∫ t f

t0
[knQ̇n(t)+ k1q(t)+ k2n(t)]dt,

Θ[X(t f )] = k3(Vf −V )2 + k4(x f − x)2 (6)

+k5(z f − z)2,

where Q̇n is the heating rate of each part on the surface of
reentry vehicle; q is the dynamic pressure; n is the aero-
dynamic load; t0 and t f are the initial time and final time,
respectively; kn, k1, k2, k3, k4 and k5 are the weight coef-
ficients; Vf , x f and z f are the terminal velocity, transverse
and lateral distance.

The initial conditions can be written

X(t0) = X0, U ∈ Ω, t ∈ [t0, t f ], (7)

where Ω is the bounded closed set.
The terminal constraints can be written

M̄[X(t f ), t f ] = 0. (8)

The Hamilton function is introduced as

H = kn
˙̃Qn(t)+ k1q(t)+ k2n(t)+λTf(X, Ū, t), (9)

where λ(t) is the Lagrange multiplier vector.
The necessary conditions of optimal control can be

written

Ẋ =
∂H
∂λ

, Ū = argsup
Ū∈Ω

H,

λ̇=−∂H
∂X

, λ(t f ) =
∂Θ[X(t f ), t f ]

∂X
, (10)

where arg is the inverse function.
By using the conjugate gradient method in the optimal

control theory, the optimal trajectory and flight control
variables can be obtained.

2.2. Optimization results
The optimal trajectory of reentry vehicle is simulated

numerically herein. The initial conditions of reentry tra-
jectory optimization are taken as: the altitude of the reen-
try point is 120 km, the reentry velocity is 7.8 km/s, and
the reentry angle is −3.74◦. Under the same reentry alti-
tude and velocity, reentry angle obviously influences the
aerodynamic heating rate and aerodynamic overload un-
dertaken by the reentry vehicle, as well as its flight dis-
tance in the atmosphere. Fig. 1 shows the relationship
among reentry angle, heating rate and transverse distance.
As shown in Fig. 1, the smaller the reentry angle is, the
smaller the aerodynamic heating rate is, and the longer
the flight distance is. However, if the reentry angle is too
small, reentry flight of the vehicle may fail because the
reentry vehicle is bounced out of the atmosphere. If the

Fig. 1. Changes of heating rate and transverse distance of
the reentry vehicle varying with reentry angle: (a)
heating rate, (b) transverse distance.

reentry angle is too large, the flight times minimum, re-
sulting in the shortening of flying distance and the lessen-
ing of total aerodynamic heating of the vehicle, while tran-
sient aerodynamic heating rate may be suddenly increased
causing the damage of the vehicle. Therefore, the reentry
angle shall be controlled within a proper range. As shown
in Fig. 1, if the absolute value of reentry angle is larger
than 3.8◦, the heating rate will be beyond the constraint
condition ˙̃Qn ≤ ˙̃Qnmax = 420 kW/m2; and if the absolute
value of reentry angle is smaller than 3.6◦, the transverse
distance may not satisfy the constraint condition x ≤ 3500
km. Under the constraint conditions of heating rate and
transverse distance, the reentry angle may be optimized to
be −3.74◦.

The reentry trajectory of the reentry vehicle is shown in
Fig. 2. Figure 3 shows the time histories of temperature,
heating rate and overload of the vehicle. It can be ob-
served from Figs. 2-3 that, under the reentry angle −3.74◦,
the constraint conditions given in Section 2.1.1 are satis-
fied, and the aerodynamic heating rate on the surface of
the reentry vehicle is significantly decreased.

3. FLUTTER MODEL OF TWO-DIMENSIONAL
WING

In the flight of reentry vehicle, aerodynamic load on
some parts of the vehicle is still very large at some mo-
ment of reentry flight, this may cause the wing to flutter.
In this section, flutter problem for a two-dimensional wing
including cubic hard spring nonlinearity is analyzed. We
can observe from Fig. 3 that the aerodynamic heating rate
and temperature of the reentry vehicle may be reduced sig-
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Fig. 2. Reentry trajectory of the reentry vehicle: (a)
Height, (b) longitude, (c) latitude.

nificantly after the appropriate trajectory optimization. As
a result, the influence of temperature on wing flutter may
be ignored.

As shown in Fig. 4, a two degree-of-freedom (2-dof)
wing system model is considered herein. The plunge de-
flection is denoted by h, positive in the downward direc-
tion; θ is the pitch angle about the elastic axis, positive
nose up; the chord length is c; Q, p and C are the aerody-
namic center, elastic axis and center of mass, respectively;
δ LEout and δ LEin (or δ REout and δ REin) are the control sur-
face angles.

From Fig. 4, the velocity of mass center of wing can be
expressed as

ż = ḣ+(xC − xp)θ̇ . (11)

The kinetic energy, potential energy and dissipation of
the system can be given by

T =
1
2

mW ż2 +
1
2

meḣ2 +
1
2

ICθ̇ 2,

U =
1
2

Khh2 +
1
2

Kθ θ 2, ζ =
1
2

Chḣ2 +
1
2

Cθ θ̇ 2, (12)

where IC, mW , me, Kh, Kθ , Ch and Cθ are the moment of
inertia about center of mass, wing mass, wing extra-mass,
stiffness coefficient in plunge, torsion stiffness coefficient,

Fig. 3. Time histories of temperature, overload and heat-
ing rate of the reentry vehicle: (a) temperature, (b)
overload, (c) heating rate.

Fig. 4. Two-dimensional airfoil model with control sur-
face.

damping coefficient in plunge and torsion damping coef-
ficient, respectively.

For supersonic and hypersonic flow, the piston theory
is widely used to calculate the aerodynamics acting on a
lifting surface [24]. Applying the piston theory, the aero-
dynamic force and moment acting on the wing can be ob-
tained as

L =
2ρ1V γ̄c

M∞
[0.5c(1− x0)θ̇ + ḣ+V θ

+
1
12

V γ̄2(κ +1)M2
∞θ 3],
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T =
ρ1V γ̄c2

M∞
[
1
6

c(4−6x0 +3x2
0)θ̇ +(1− x0)ḣ (13)

+V (1− x0)θ +
1

12
γ̄2(κ +1)M2

∞(1− x0)V θ 3],

where M∞ is the Mach number; γ̄ is the aerodynamic cor-
rection factor, γ̄ = M∞/

√
M2

∞ −1; κ is the the ratio of
specific heat; x0 is the non-dimensional distance from the
leading edge to the elastic axis.

The aerodynamic lift and moment caused by control
surface can be expressed as

LδLEout = LδLEin =
1
2

ρ1V 2caCsβ δLEout ,

MδLEout = MLδLEin
=

1
2

ρ1V 2c2bCsβ δLEout , (14)

where aC is the coefficients of lift force, bC is the ratio of
the pitching moment M to the deflection angle, and sβ is
the span of control surface.

The moment caused by the cubic hard spring nonlinear-
ity of the wing can be written as [25].

M(θ) = Kθ θ + en1θ 3, (15)

where en1 is the nonlinear stiffness coefficient.
Without considering structural damping, the aeroelas-

tic equation of the two-dimensional wing system can be
deduced using the Lagrangian method, given by

Ãq̈(t)+ρV B̃q̇(t)+(ρV 2C̃+ D̃)q(t)+ f̃(t) = b̃u(t)
(16)

where q(t) = [ h(t) θ(t) ]T is the generalized displace-
ment vector; and Ã, B̃, C̃ and D̃ are the inertia, aerody-
namic damping, aerodynamic stiffness and structural stiff-
ness matrices, respectively; and u(t) = [δLEout , δLEin]

T is
the control input. The expressions of parameters in (16)
are

Ã =

[
mS 3c

3
mS 2

2 ( c2

2 − cx f )
mS2

2 ( c2

2 − cx f ) mS( c3

3 − c2x f + cx2
f )

]
,

C̃ =

[
0 2γ̄c

M∞

0 − γ̄c2

M∞
(1− x0)

]
, D̃ =

[
Kh 0
0 Kθ

]
,

B̃ =

[
− 2γ̄c

M∞
− γ̄c2

M∞
(1− x0)

γ̄c2

M∞
(1− x0)

γ̄c3

6M∞
(4−6x0 +3x2

0)

]
,

f̃ =
[

− 1
6 ρ1V 2γ̄3c(κ +1)M∞θ 3

1
12 ρ1V 2γ̄3c2(κ +1)M∞(1− x0)θ 3 + en1θ 3

]
.

Equation (16) can be further changed to be

ẋ(t) = Ax(t)+Bu(t)+ f(t) (17)

where x = [h(t), θ(t), ḣ(t), θ̇(t)]T is the state space

vector; A =

[
0 I

−Ã−1(ρ1V 2C̃+ D̃1) −Ã−1ρ1V B̃

]
, B =

[
0

Ã−1b̃

]
and f =

[
0

−Ã−1 f̃(t)

]
. The parameters in the

matrices A and B are determined based on the computing
results for the most serious moment of reentry flight of the
vehicle given in Section 2.3. In this serious moment, the
flight velocity of the vehicle is maximum and the aero-
dynamic load on the wing surface is maximum too. From
the computing results in Section 2.2, the reentry will reach
its maximum velocity of 1406 m/s at the moment 699.19
s; the altitude, longitude, latitude and atmospheric density
of the reentry vehicle at this serious moment can be de-
termined to be 21.87 km, 3907.11 km, −66.05 km, and
0.0644 kg/m3, respectively.

4. FINITE-TIME H∞ ADAPTIVE
FAULT-TOLERANT CONTROL DESIGN

Note that the dynamic equation of flutter in (17), as-
sumes that all of the actuators are fault-free, and it is called
the nominal flutter system. For an active flutter control
system, it is difficult to ensure the actuator in the ideal
working condition. They are likely to have some prob-
lems, such as loss of effectiveness and float. Therefore,
fault tolerance capability should be considered in flutter
controller design.

Now, we consider two types of actuator fault simultane-
ously, namely the float fault and the loss of effectiveness
of the actuators as well as actuator saturation, parameter
uncertainties and external disturbances. Hence, the flutter
dynamic model given by (17) can be rewritten as

ẋ(t) = [A+∆A(t)]x(t)+(B+∆B)ρv
+(B+∆B)us(t)+ f(t,x)+B1w(t)

y(t) = c1x(t),
(18)

where ∆A represents the time-varying parameter uncer-
tainties; ∆B stands for the input uncertainties; ρ =
diag(ρ1, ρ2) denotes the effectiveness factor matrix for
actuators with 0 < ρi ≤ 1 (i = 1, 2); The case when
ρi = 1 means that the i-th actuator works normally, and
0 < ρi < 1 denote the case in which the i-th actuator par-
tially loses its effectiveness; us(t) = (us1, us2)∈ ℜ2×1 cor-
responds to the case in which the i-th actuator float fault
of flutter system; u(t) is the control signal to be designed,
and v denotes the saturation function; f(t,x) denotes the
nonlinear term arouse by the cubic structure nonlinear-
ity and the nonlinearity of the generalized aerodynamic
force and moment in the flutter system; w(t) represents
the bounded external disturbances; and y(t) is the mea-
sured output. The parameters B1 and c1 are known matri-
ces with appropriate dimensions. ∆A and ∆B are assumed
to satisfy the following matching condition

B1 = BF, ∆A = BN(t), ∆B = MB, (19)∥∥xT(t)P̃ j∆B
∥∥≤ θ1

∥∥xT(t)P̃ jB
∥∥ , (20)
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where F and M are both known matrices; ∥·∥ represents
Euclidean norm of vectors or matrices; N(t) is an un-
known matrix with ∥N∥ ≤ l∗, l∗ is an unknown constant;
and θ1 is any positive constant.

v is a saturation function defined as

v =


vmax, u(t)> vmax

u(t)+δu(x), |u(t)| ≤ vmax

−vmax, u(t)<−vmax,
(21)

where vmax and δu(x) are the actuator saturation level and
auxiliary variable.

In nonlinear control problem, the radial basis function
(RBF) network is usually used as a tool for modeling non-
linear system because of its good capabilities in function
approximation. In this paper, the unknown δu(x) is ap-
proximated by the RBF network [26]

hN(x̄) = exp(−∥x̄− cN∥2

2b2
N

),

δu(x) = W∗Th(x)+εu(x), x ∈ Dx, (22)

where x̄ is the input of neural networks; hN(x) is the Gaus-
sian function vector; cN and bN are the centre vector and
width; W∗ is the ideal weight matrix; δu(x) is the output
of neural networks; δ̂u(x) = ŴTh(x) denotes the estimate
of δu(x), δ̄u(x) = δu(x)− δ̂u(x); Ŵ denotes the estimate
of W∗; εu(x) is the approximation error; and Dx is a suffi-
ciently large compact set Dx ∈ ℜ4×1.

Using (18) to design controller, we have

u(t) = [K̂1(t)+K2(t)+K3(t)]x(t)− δ̂u(x), (23)

where K̂1(t) is given by an adaptive function for guaran-
tee the stability of the system; K2(t) and K3(t) are by an
adaptive function for eliminating the effects of bounded
unparametrizable stuck, external disturbances and param-
eter uncertainties. The expressions of K̂1(t), K2(t) and
K3(t) are given below. We can prove that these expres-
sions may guarantee the stability of the control system.
The proof procedure is given in the sequel.

In the flight of reentry vehicle, sensor fault is one of the
most important problems which usually appears in many
wing flutter control systems. Considering sensor fault, the
controller is designed as

u(t) = [K̂1(t)+K2(t)+K3(t)]Gx(t)− δ̂u(x), (24)

where G = diag(G1, G2, G3, G4). Gi = 0 represents the
total loss of effectiveness of sensor of the i-th state, 0 <
Gi < 1 the partial loss of effectiveness and Gi = 1 the nor-
mal.

Below we give the expressions of K̂1(t), K2(t) and
K3(t) and then utilize the Lyapunov method to prove that
the controller given by (23) can guarantee the stability of

the system. The adaptive gain K̂1i(t) is chosen as

dK̂1i(t)
dt

=−ΓiGx(t)xT(t) ¯̃P j(I+M)bi, i = 1, 2,

(25)

where Γi is any positive constant; I denotes the identity
matrix with an appropriate dimension and bi is the i-th
column of B; P̃ j denotes the each faulty mode has its cor-
responding positive-definite matrix P, where j denotes the
j-th faulty mode; ¯̃P j denotes the maximum norm of the P̃ j,
namely ¯̃P j := {P̃ j : max j(

∥∥P̃ j
∥∥)}.

K2(t) and K3(t) are given as

K2(t) =
BT ¯̃P jβ1

∥∥∥xT(t) ¯̃P jB
∥∥∥ k̂4(t)

α1

∥∥∥xT(t) ¯̃P jB
∥∥∥2 , (26)

K3(t) =
1
2

ηBT ¯̃P j k̂5(t), (27)

where k̂4 and k̂5 are updated by the following adaptive
equations

dk̂4(t)
dt

=−r1(1+θ1)
∥∥∥xT(t) ¯̃P jB

∥∥∥ , (28)

dk̂5(t)
dt

=−r2η(1+θ1)
∥∥∥xT(t) ¯̃P jB

∥∥∥2
. (29)

The weight matrix Ŵ is updated by the following adap-
tive equations

dŴ
dt

= r3h(x)xT(t) ¯̃P j(I+M)bi, i = 1, 2. (30)

Denote

K̃1(t) = K1 − K̂1(t), (31)

k̃4(t) = k4 − k̂4(t), (32)

k̃5(t) = k5 − k̂5(t), (33)

W̃T = W∗T −ŴT. (34)

Substituting (21), (24) into (18), we have
ẋ(t) = [A+∆A(t)]x(t)+(B+∆B)ρ[(K̂1(t)

+K2(t)+K3(t))Gx(t)− δ̂u(x)+δu(x)]

+(B+∆B)us(t)+ f (t, x)+B1w(t)

y(t) = c1x(t).
(35)

Assumption 1: For any given positive number ds, d f ,
dw, dδ and the actual working time Tf , the stuck us(t),
nonlinear vector field f(t,x), external disturbances w(t),
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and δ̄u(x) are time-varying and satisfies

∫ Tf

0
uT

s (t)us(t)dt ≤ ds, ds ≥ 0∫ Tf

0
fT(t,x)f(t,x)dt ≤ d f , d f ≥ 0∫ Tf

0
wT(t)w(t)dt ≤ dw, dw ≥ 0∫ Tf

0
δ̄T

u (x)δ̄u(x)dt ≤ dδ, dδ ≥ 0.

(36)

Assumption 2: For any x(t), there exists positive con-
stants µ , α1, β1 and k4, such that∥∥∥xT(t)P̃ jBρBT ¯̃P jGx(t)

∥∥∥≤ µ
∥∥∥xT(t) ¯̃P jB

∥∥∥2
, (37)

α1

∥∥∥xT(t) ¯̃P jB
∥∥∥2

≥ β1

∥∥∥xT(t)
√

G ¯̃P jB
√
ρ
∥∥∥2

, (38)∥∥∥xT(t) ¯̃P jB
∥∥∥k4 +

∥∥xT(t)P̃ jB
∥∥us(t)| (39)

+
∥∥xT(t)P̃ jB

∥∥∥ρ∥εumax +
∥∥xT(t)P̃ jB

∥∥∥F∥dw ≤ 0.

Moreover, k5 is a constant satisfying

k5 =
l∗2

−(1+θ1)µ
. (40)

Definition 1 [27] (Finite-Time Bounded, FTB): For
given positive constants c1, ds, d f , dw, dδ , Tf , and a sym-
metric matrix R> 0, the resulting closed-loop system (35)
is said to be robustly FTB with respect to (c1, c2, Tf , R, ds,
d f , dw, dδ ), if there exists a constant c2(> c1), such that

xT
0 Rx0 ≤ c1 ⇒ xT(t)Rx(t)< c2, ∀t ∈ [0 Tf ] (41)

Definition 2 [28]: If there exists state feedback con-
troller in form (24), such that the resulting closed-loop
system (35) is FTB with respect to (c1, c2, Tf , R, ds, d f ,
dw, dδ ) and under the assumed zero initial condition, the
system output satisfies the following inequality for Tf > 0
and for all admissible w(t) which satisfy Assumption 1:∫ Tf

0
yT(t)y(t)dt ≤ γ2

∫ Tf

0
wT(t)w(t)dt. (42)

Then the state feedback controller (24) is called as the
robust finite-time H∞ controller of the nonlinear systems
(35).

Lemma 1 [29] (The Schur complement lemma): For

given symmetric matrix S =

[
S11 S12

S21 S22

]
, the following

three conditions are equivalent
(1) S < 0,
(2) S11 < 0, S22 −ST

12S−1
11 S12 < 0,

(3) S22 < 0, S11 −S12S−1
22 ST

12 < 0.
(43)

Theorem 1: For given positive constants α0, c1, Tf , ds,
d f , dw, dδ and a symmetric matrix R > 0, the closed-loop

controlled system (35) is FTB with respect to (c1, c2, Tf ,
R, ds, d f , dw, dδ ), if there exist positive constant c2 and
symmetric positive-definite matrix P̃, such that

Ω P̃ j(B+∆B)ρ P̃ j(B+∆B) P̃ j P̃ jB1

∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0,

(44)

c1

λmin(P j)
+(ds +d f +dw +dδ )<

c2e−α0t

λmax(P j)
, (45)

where Ω = P̃ jĀ+ ĀTP̃ j −α0P̃ j, P̃ j = R 1
2 P jR 1

2 and Ā =
A+∆A(t)+(B+∆B)ρ[K̂1(t)+K2(t)+K3(t)]G.

Proof: For the closed-loop system (35), we first
define a Lyapunov functional candidate as V (x(t)) =
xT(t)P̃ jx(t). Then

V̇ (x(t)) =ẋT(t)P̃ jx(t)+xT(t)P̃ jẋ(t)

=xT(t)[P̃ jĀ+ ĀTP̃ j]x(t)

+2xT(t)P̃ j(B+∆B)ρδ̄u(x) (46)

+2xT(t)P̃ j(B+∆B)us(t)

+2xT(t)P̃ jf(t,x)+2xT(t)P̃ jB1w(t).

Define the following function

J1 =V̇ (x(t))−α0xT(t)P̃ jx(t)− δ̄T
u (x)δ̄u(x)

−uT
s (t)us(t)− fT(t,x)f(t,x)−wT(t)w(t). (47)

The condition inequality (44) implies J1 < 0. Multiply-
ing the above inequality by e−α0t , we derive

d
dt
(e−α0tV (x(t)))<e−α0t(δ̄T

u (x)δ̄u(x)

+uT
s (t)us(t)+ fT(t,x)f(t,x)

+wT(t)w(t)). (48)

Note that P̃ j = R 1
2 P jR 1

2 . By integrating the aforemen-
tioned inequality between 0 and t, we get

V (x(t))<eα0tV (x0)+ eα0t
∫ t

0
e−α0t0(δ̄T

u (x)δ̄u(x))dt0

+ eα0t
∫ t

0
e−α0t0(uT

s (t)us(t)+ fT(t,x)f(t,x)

+wT(t)w(t))dt0
≤λmax(P j)c1eα0t +(ds +d f +dw)eα0t . (49)

On the other hand, the following condition holds:

V (x(t)) = xT(t)R
1
2 P jR

1
2 x(t)≥ λmin(P j)xT(t)Rx(t).

(50)
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From (49) and (50), we can get

xT(t)Rx(t)<
λmax(P j)c1eα0t +(ds +d f +dw +dδ)eα0t

λmin(P j)
.

(51)

Condition (45) implies that for ∀t ∈ [0 Tf ],
xT(t)Rx(t) < c2. According to Definition 1, this com-
pletes the proof. □

Theorem 2: For given positive constants α0, c1, Tf ,
ds, d f , dw, dδ and a symmetric matrix R > 0, the closed-
loop controlled system (35) is FTB with respect to (c1, c2,
Tf , R, ds, d f , dw, dδ ) and satisfies (42) for all admissible
w(t), if there exist positive constants c2, γ f > γn, η , τ ,
symmetric positive-definite matrix P̃− j for any ρ and any
appropriately dimensioned matrices L, which satisfy

Ω3 ZT 0 χ−1ZTcT
1 0 0 0

∗ Ω4 B1 0 (I+M)BρL 0 P̃− j

∗ ∗ −γ2
0 0 0 0 0

∗ ∗ ∗ Ω̂ 0 0 0
∗ ∗ ∗ ∗ −Z−ZT GP̃− j −Z 0
∗ ∗ ∗ ∗ ∗ −J j 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̄

< 0,

(52)
c1

λmin(P j)
+(ds +d f +dw +dδ)<

c2e−α0t

λmax(P j)
, (53)

where Ω3 = χ−1(P̃− j −Z−ZT), Ω4 = AP̃− j + P̃− jAT −
(χ +α0)P̃− j +τ−1 +J j +(I+M)BρL+[(I+M)BρL]T,
Ω̂ = −I− χ−1c1P̃− jcT

1 , Ω̄ = −( 1
η + τL2

g)
−1; γ0 = γn and

γ0 = γ f denote the adaptive H∞ performance bounds for
the normal case and fault cases of the closed-loop FTC
system (35), respectively; then the adaptive closed-loop
system (35) will exists an FTC H∞ controller.

Proof: Select the same Lyapunov function candidate as
Theorem 1 and define the following function:

J2 =V (x(t))+
2

∑
i=1

ρiK̃T
1i(t)Γ

−1
i K̃1i(t)+ r−1

1 k̃2
4(t)

+
1
2

µr−1
2 k̃2

5(t)+ r−1
3 W̃TW̃, (54)

J3 = J̇2 −α0xT(t)P̃ jx(t)+yT(t)y(t)− γ2
0 wT(t)w(t).

(55)

Then, according to (22), (35), (31)-(34), J3 can be writ-
ten as

J3 =xT(t)P̃ j[A+∆A+Bρ(K̂1(t)+K2(t)+K3(t))G

+∆Bρ(K̂1(t)+K2(t)+K3(t))G]x(t)+ [A+∆A

+Bρ(K̂1(t)+K2(t)+K3(t))G+∆Bρ(K̂1(t)

+K2(t)+K3(t))G]TP̃ jx(t)

+2xT(t)P̃ j(B+∆B)ρδ̄u(x)

+2xT(t)P̃ j(B+∆B)us(t)+2xT(t)P̃ j f (t,x)

+2xT(t)P̃ jBFw(t)−α0xT(t)P̃ jx(t)

+ xT(t)cT
1 c1x(t)− γ2

0 wT(t)w(t)

−2
2

∑
i=1

ρiK̃T
1i(t)Γ

−1
i

˙̂K1i(t)−2r−1
1 k̃4(t)

˙̂k4(t)

−µr−1
2 k̃5(t)

˙̂k5(t)−2r−1
3 W̃T ˙̂W. (56)

For arbitrary positive constant τ ≥ 0, γ0, ετ , ε f and
Lg, employing the well-known Young’s inequality 2xTy ≤
εixTx+ ε−1

i yTy and Lipschitz condition, we have

∥∥xT(t)P̃ jB
∥∥∥x(t)∥ ≤ l∗(η l∗

∥∥∥xT(t) ¯̃P jB
∥∥∥2

+
1

η l∗
∥x(t)∥2)

2
∥∥xT(t)P̃ j f (t,x)

∥∥≤ τ−1
∥∥xT(t)P̃ j

∥∥2

+ τL2
g

∥∥xT(t)
∥∥2

2xT(t)P̃ jB1w(t)≤ γ−2
0 xT(t)P̃ jB1BT

1 P̃ jx(t)

+ γ2
0 wT(t)w(t).

(57)

Using (19), (22), (26), (27), (34), (35), (40), (41), and
(57), equation (56) can be written as

J3 ≤xT(t)[P̃ j[A+(I+M)BρK1G]

+ [A+(I+M)BρK1G]TP̃ j −α0P̃ j + τ−1P̃ jP̃ j

+ τL2
g +

1
η

I+ γ−2
0 P̃ jB1BT

1 P̃ j + cT
1 c1]x(t)

−2xT(t)P̃ j(I+M)BρK̃1(t)Gx(t)

−2(1+θ1)
∥∥∥xT(t) ¯̃P jB

∥∥∥ k̃4(t) (58)

− (1+θ1)µη
∥∥∥xT(t) ¯̃P jB

∥∥∥2
k̃5(t)I

+2xT(t)P̃ j(+M)BρW̃Th(x)

−2
2

∑
i=1

ρiK̃T
1i(t)Γ

−1
i

˙̂K1i(t)−2r−1
1 k̃4(t)

˙̂k4(t)

−µr−1
2 k̃5(t)

˙̂k5(t)−2r−1
3 W̃T ˙̂W.

Set

P̃ j[A+(I+M)BρK1G]+ [A+(I+M)BρK1G]TP̃ j

−α0P̃ j + τ−1P̃ jP̃ j + τL2
g +

1
η

I (59)

+ γ−2
0 P̃ jB1BT

1 P̃ j + cT
1 c1 < 0.

Then, applying (43), equation (59) can be further
changed to be

Ω1 P̃ jB1 cT
1 I

∗ −γ2 0 0
∗ ∗ −I 0
∗ ∗ ∗ Ω̄

< 0, (60)

where Ω1 = P̃ jA + ATP̃ j − α0P̃ j + τ−1P̃ jP̃ j + P̃ j(I +
M)BρK1G+[(I+M)BρK1G]TP̃ j, Ω̄ =−( 1

η + τL2
g)

−1.
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Pre- and post-multiplying the inequality (60) by block-
diagonal matrix diag(P̃− j, I, . . . , I) and for any positive
constant χ > 0, equation (60) can be further changed to be

Ω2 −χP̃− j B1 0 P̃− j

∗ −γ2
0 0 0

∗ ∗ Ω̂ 0
∗ ∗ ∗ Ω̄

+ΛTχP̃− jΛ< 0,

(61)

where Ω2 = AP̃− j + P̃− jAT − α0P̃− j + τ−1 + (I +
M)BρK1GP̃− j+[(I+M)BρK1GP̃− j]T, Λ= [I 0 χ−1cT

1
0], Ω̂ = −I− χ−1c1P̃− jcT

1 . Then, applying (43) and pre-
and post-multiplying both sides by diag(ZT, I, . . . , I),
equation (61) can be written as

−χ−1ZTP̃ jZ ZT 0 χ−1ZTcT
1 0

∗ Ω2 −χP̃− j B1 0 P̃− j

∗ ∗ −γ2
0 0 0

∗ ∗ ∗ Ω̂ 0
∗ ∗ ∗ ∗ Ω̄


< 0. (62)

Due to ZTP̃ jZ ≥ Z+ZT − P̃− j, equation (62) can be
written as

Ω3 ZT 0 χ−1ZTcT
1 0

∗ Ω2 −χP̃− j B1 0 P̃− j

∗ ∗ −γ2
0 0 0

∗ ∗ ∗ Ω̂ 0
∗ ∗ ∗ ∗ Ω̄

< 0,

(63)

where Ω3 = χ−1(P̃− j −Z−ZT). From (63) we have

Ω2 −χP̃− j =[A+(I+M)BρK1G]P̃− j

+ P̃− j[A+(I+M)BρK1G]T

−χP̃− j −α0P̃− j + τ−1

=AP̃− j + P̃− jAT − (χ +α0)P̃− j + τ−1

+J j +(I+M)BρL+[(I+M)BρL]T

+(I+M)BρLZ−1(GP̃− j −Z)

+ [(I+M)BρLZ−1(GP̃− j −Z)]T −J j.
(64)

Due to

(I+M)BρLZ−1(GP̃− j −Z)

+ [(I+M)BρLZ−1(GP̃− j −Z)]T −J j

≤ (I+M)BρLZ−1(GP̃− j −Z)J− j

× [(I+M)BρLZ−1(GP̃− j −Z)]T. (65)

Then, applying (43), equation (64) can be written as Ω4 (I+M)BρL 0
∗ −Z−ZT GP̃− j −Z
∗ ∗ −J j

< 0, (66)

Fig. 5. The closed-loop flutter system with the compensa-
tion control scheme.

where Ω4 = AP̃− j + P̃− jAT − (χ +α0)P̃− j + τ−1 + J j +
(I+M)BρL+[(I+M)BρL]T.

From (66), equation (63) can be written as

Ω3 ZT 0 χ−1ZTcT
1 0 0 0

∗ Ω4 B1 0 (I+M)BρL 0 P̃− j

∗ ∗ −γ2
0 0 0 0 0

∗ ∗ ∗ Ω̂ 0 0 0
∗ ∗ ∗ ∗ −Z−ZT GP̃− j −Z 0
∗ ∗ ∗ ∗ ∗ −J j 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̄


< 0. (67)

From (25), (28), (29), (30) and (67), equation (58) can
be written as J3 ≤ 0, which implies that the flutter system
is ultimately uniformly bounded, and the flutter state x(t)
converges to zero.

Algorithm: Assume that LMIs (52) and Eq. (53) are
satisfied, control gain K2(t), K3(t), adaptive update laws
K̂1i(t), k̂4(t) k̂5(t) and Ŵ are given by (26), (27), (25),
(28), (29) and (30), then the closed-loop flutter system
(35) is stable, then γn and γ f are minimized if the follow-
ing optimization problem is solvable

min αnγ2
n +α f γ2

f , s.t. (52) and (53), (68)

where αn and α f are weighting coefficients. Since the
systems are operating under the normal condition most of
time, we can choose αn > α f in (68). A graphical rep-
resentation of the flutter control with the proposed AFTC
scheme is presented in Fig. 5

5. NUMERICAL SIMULATIONS

In this section, a numerical example is provided to illus-
trate the validity of our proposed approaches. The flutter
of two-dimensional nonlinear wing is used as numerical
example given in (17). The wing structural parameters are
chosen as sβ = 1.6 m, V = 1406 m/s, c = 0.7 m, ρ1 =
0.0644 Kg/m3, mW = 1320 Kg, me = 490 Kg, en1 = 10,
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Kh = 2 × 106 N/m, Kθ = 2000 Nm/rad, xC = 0.525 m,
xP = 0.28 m, IC = 13205 Kg.m2, κ = 1.4 and Mθ̇ =−1.2.

To demonstrate the superior performance of the pro-
posed control scheme, the reentry vehicle is assumed to
experience the following faulty case: before 4th second,
the system operates in normal case, that is, all of the two
actuators are normal. Between the 4th and the 10th sec-
ond, the first actuator is float at us(t) = 30+30sin(0.1t)+
20cos(0.5t) and other actuator is loss of effectiveness, that
is, ρ2 = 1− 0.05t until loss effectiveness of 50%. After
the 10th second, the second actuator has float and other
actuator is loss of effectiveness, that is, ρ1 = 1−0.01t un-
til loss effectiveness of 70%. The perturbations w(t) =
[−10sin(0.1× t), 15]T enter into the systems at the begin-
ning (t ≥ 0).

To implement the controller, control and adaptation
gains were selected by trial-and-error until a good perfor-
mance was obtained. The controller parameters θ1, bN , η ,
Γi, r1, r2and r3 in (20), (22), (27), (25), (28), (29) and (30)
are chosen as

θ1 = 0.45, η = 100, r1 = 0.25, r2 = 0.25,

r3 = 4.5, bN = 5, Γi = 0.45.

The parameters N(t), M, F , cN and the ini-
tial values of the state x(t) in (19), (22) and

(17) are N(t) =

[
0.5× sin(t) 0 0 0

0 0 0 0

]
, F =

[
1.5 −2
1 −1

]T

, M =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

, cN =

[
−1 −0.5 0 0.5 1
−1 −0.5 0 0.5 1

]
, x(0) = [0, 0.5, 0, 0.5]T.

Considering the above-mentioned faulty cases and us-
ing the finite-time H∞ adaptive state feedback controller
designed in this paper for flutter of the wing. By using Al-
gorithm with αn = 5, α f = 1, we obtain H∞ performances
of the closed-loop system as 0.3923 (normal) and 1.3553
(fault). Considering the above-mentioned faulty cases and
using the finite-time H∞ adaptive state feedback controller
designed in this paper for flutter of the wing, Fig. 6 shows
that the state variable x(t) and control input u(t) of wing
flutter. As shown in Fig. 6, the proposed controller can
make the system stable when the actuator and sensor faults
occur. Figs. 7-8 show the results of robustness about the
mass variation of the reentry vehicle wing and the vari-
ation of torsion stiffness coefficient. Fig. 7(a) shows the
simulation results of the reentry vehicle wing according to
its real mass by the controller. Plunge displacement and
torsion angle will be given in Fig. 7(a), which are two
changing states of system. We know that the controller
designed by real mass will ensure the stabilization of the
system state. Fig. 7(b) shows the simulation results of -
15% mass variation of the reentry vehicle wing. In other

Fig. 6. Time response of the airfoil states x and control
input u in case of fault.

Fig. 7. Robustness of controller with respect to mass vari-
ance of reentry vehicle: (a) m = 1320 Kg, (b)
−15%×m, (c) +15%×m.
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Fig. 8. Robustness of controller with respect to torsion
stiffness coefficient variance of reentry vehicle: (a)
Kθ = 2×104, (b) −15%×Kθ , (c) +15%×Kθ .

words, the controller will be designed by −15%×m (m is
the real mass of the reentry vehicle wing) for the system
which the real mass is m. From the results of Fig. 7(b),
the controller designed in this paper will effectively sup-
press the response of the system when the mass variation
of the reentry vehicle wing is -15%. Fig. 7(c) shows that
the control law will also be effective when the mass varia-
tion is +15%. From Fig. 7 we know that the controller de-
signed in this paper shows great robustness about the sys-
tem mass. Fig. 8 shows the robustness about variation of
the torsion stiffness coefficient Kθ of the controller, which
considers the ±15% variation of the Kθ . To sum up, the
controller designed in this paper shows great robustness of
variation of the structural parameters.

Fig. 9 shows the results of robustness of the controller
about the variation of system disturbance. Fig. 9(a) shows
the simulation results when the controller is set with the
disturbance value (that is w(t) in (18), which is w(t) =
[−10sin(0.1× t), 15]T ) we designed. Two system states
(plunge displacement and torsion angle) can be kept sta-
ble under this controller. Fig. 9(b) is the simulation re-

Fig. 9. Robustness of controller with respect to distur-
bance variance of reentry vehicle: (a) w(t) =
[−10sin(0.1 × t), 15]T, (b) −50% × w(t), (c)
+50%×w(t).

sult of −50% external disturbance variation. In other
word, the controller is designed under −50% × w(t) (
w(t) is the true value of the disturbance we set, w(t) =
[−10sin(0.1× t), 15]T ), then we apply this controller in
the system whose external disturbance is w(t). From
Fig. 9(b) we can see that the controller we designed can
suppress the response of the system effectively when the
variation of external disturbance is −50%. Fig. 9(c) is the
simulation result of +50% external disturbance variation,
which can show that our controller is still effective. From
the simulation results in Fig. 9, we can see clearly that
the controller we designed has good robustness to exter-
nal disturbance of the system.

The finite-time closed-loop FTC system with external
disturbances and parameter uncertainties can be ensured
to be asymptotically stable in the presence of actuator and
sensor faults. The sensor and actuator faults are both con-
sidered including loss of effectiveness, stuck and outage of
actuator, and loss of effectiveness of sensor. All the simu-
lation results verify that the proposed control approach is
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effective.

6. CONCLUSIONS

Based on the trajectory optimization, a novel finite-time
H∞ adaptive fault-tolerant control design scheme is pro-
posed for wing flutter of reentry vehicle subject to input
saturation, external disturbances and parameter uncertain-
ties. The input saturation is approximated by a radial ba-
sis function. Sensor and actuator faults are both consid-
ered, including loss of effectiveness, stuck and outage of
actuator, and loss of effectiveness of sensor. The pro-
posed finite-time H∞ adaptive fault-tolerant controller is
proved to adaptively adjust controller parameters to com-
pensate the faults, disturbances and parameter uncertain-
ties within the system, and all the signals in the closed-
loop system are bounded in probability. Numerical simu-
lation results further illustrate the effectiveness of the pre-
sented approach.
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