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Positive Observer Design for Positive Markovian Jump Systems with
Mode-dependent Time-varying Delays and Incomplete Transition Rates
Jiyang Wang, Wenhai Qi*, Xianwen Gao, and Yonggui Kao

Abstract: The paper is concerned with positive observer design for positive Markovian jump systems with incom-
plete transition rates and time delays that are mode-dependent and time-varying. Firstly, by applying an appropriate
co-positive type Lyapunov-Krasovskii function and free-connection weighting vectors, sufficient conditions are
proposed to ensure stochastic stability of the error positive system and existence of the positive observer. All the
proposed conditions are derived in linear programming. Finally, an example is given to demonstrate the validity of
the main results.
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1. INTRODUCTION

Positive systems, whose states and outputs are positive
whenever the initial conditions and inputs are nonnega-
tive, spread almost all over the fields such as communi-
cation networks [1], industrial engineering [2], and so on.
During the past decades, a lot of attention has been paid to
the study of this kind of systems [3–15]. To mention a few,
sufficient and necessary conditions for l1-induced norm
of discrete-time positive systems [5] were proposed and
the state feedback controller was designed to ensure the
closed-loop system positive and asymptotically stable. By
implying average dwell time switching method, sufficient
conditions for stability of switched positive linear systems
[6] were given in the form of linear programming. Posi-
tive l1 filtering for positive Takagi-Sugeno fuzzy systems
[7] were designed such that the closed-loop error system
was positive and asymptotically stable. The finite-time L1

state feedback controller of positive switched systems [15]
was designed. At the same time, as a class of stochastic
hybrid systems, Markovian jump systems have advantages
of modeling dynamic systems subject to random abrupt
changes such as fault detection systems [16], manufac-
turing systems [17], networked control systems [18], and
control theory [19, 20]. Recently, the study of positive
Markovian jump system has attracted considerable atten-
tion, such as stability [21, 22], stabilization [23, 24] and
filter deign [25].

On the other hand, it is widely recognized that time
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delay is inherent feature of many practice systems, such
as hydraulic pressure systems, networked control sys-
tems, chemical engineering process, and so on. The ex-
istence of time delay usually causes instability and leads
to undesirable performance. The study of positive sys-
tems with time delay is categorized into two systems:
delay-dependent and delay-independent systems. Delay-
dependent systems mean that the information on the size
of delay is known while the delay-independent systems
are assumed to be time-delayed unknown or possibly un-
bounded. Since the delay-dependent systems are less con-
servative that the delay-independent ones, more effort has
been paid to positive systems with delay-dependent condi-
tions; for details, see [26–37]. For example, sufficient con-
ditions for stability analysis of positive system or positive
switched system with constant time delay were built in
[26, 35]. While considering the time-varying delay, finite-
time L1 state feedback controller for positive switched sys-
tem was designed in [36].

Sometimes, the states of systems are not all measurable
in practice. Therefore, it is necessary to consider observer
design while designing controller for dynamic systems.
Due to the special property of positive system, construct-
ing a positive observer for positive system [38–41] is nec-
essary.

Furthermore, for positive Markovian jump systems,
most of the existing results [21–25] are based on nominal
system without taking time delay into account. As time
delay is frequently encountered in practice, it is necessary
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and significant to further consider positive Markovian
jump system with this kind of phenomenon. When tak-
ing time delay into account, the problem of choosing an
appropriate mode-dependent co-positive Lyapunov func-
tion candidate and how to reduce some conservative-
ness of Lyapunov function will be more complicated and
challenging. By the above observations, it should be
pointed out that there has not been any result about posi-
tive observer design for positive Markovian jump systems
with mode-dependent time-varying delays and incomplete
transition rates, which is motivation of this paper.

In this paper, positive observer design for positive
Markovian jump systems with mode-dependent time-
varying delays and incomplete transition rates will be in-
vestigated. The main contributions of this paper are listed
as follows. First, by employing an appropriate co-positive
type Lyapunov function, sufficient conditions for stochas-
tic stability and the existence of positive observer of the
considered system are proposed in the form of linear pro-
gramming. Secondly, the observer gain matrices can be
computed by an efficient algorithm.

Notations: A ⪰ (⪯ 0,≻,≺) represents that all entries
of matrix A are nonnegative (non-positive, positive, nega-
tive). A ≻ B (A ⪰ B) means that A−B ≻ 0 (A−B ⪰ 0). R
(R+) is the set of all real (positive real) numbers. Rn (Rn

+)
represents n-dimensional real (positive) vector space. The
vector 1-norm is denoted by ||x||1 = ∑n

k=1 |xk|, where xk is
the kth element of x ∈Rn. Matrix A is said to be a Metzler
matrix if its off-diagonal elements are all nonnegative real
numbers. E{·} represents the mathematical expectation.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following positive Markovian jump sys-
tem with mode-dependent time-varying delays on the
probability space (Ξ,ϒ,Θ):

ẋ(t) =A(gt)x(t)+Ad(gt)x(t − τ(gt , t)),

y(t) =C(gt)x(t),

x(θ) =φ1(θ),∀θ ∈ [−τu,0], (1)

where x(t) ∈ Rn is the state vector; y(t) ∈ Rq is the con-
trolled out; τ(gt , t) denotes mode-dependent time-varying
function and satisfies 0< τd ≤ τd(gt)≤ τ(gt , t)≤ τu(gt)≤
τu, τ̇(gt , t)≤ h(gt)≤ h, where τd(gt), τu(gt), h(gt), τd , τu,
and h are known real constant scalars; φ1(θ) is a vector-
valued initial continuous function which is defined on in-
terval [−τu,0]; {gt , t ≥ 0} is a time-homogeneous stochas-
tic Markovian process with right continuous trajectories
and takes values in a finite set S = {1,2, . . . ,N} with tran-
sition rate matrix Π = {πi j}, i, j ∈ S. The transition rate
from mode i at time t to mode j at time t +∆t is given by:

P{gt+∆t = j|gt = i}=
{

πi j∆t +o(∆t), i ̸= j,
1+πi j∆t +o(∆t), i = j,

where ∆t ≥ 0, lim
∆t→0

(o(∆t)/∆t) = 0 and πi j ≥ 0, for i ̸= j

and
N

∑
j=1,i̸= j

πi j =−πii.

Throughout the paper, the transition rates are built to be
incomplete, that means there are only some elements to
be obtained in matrix Π = {πi j}. For ∀i ∈ S, the set Si

represents Si = Si
k
∪

Si
uk, with

Si
k ≜ { j : πi j is known, for j ∈ S},

Si
uk ≜ { j : πi j is unknown, for j ∈ S}.

And if Si ̸=∅, it is further given by

Si
k ≜ {ki

1,k
i
2, . . . ,k

i
m},1 ≤ m ≤ N,

where ki
m ∈ S means the mth known transition rate of Si

k
in the ith row of the matrix Π. For simplicity, for gt = i,
A(gt), Ad(gt), C(gt), τ(gt , t), τd(gt), τu(gt) and h(gt) are
respectively, denoted as Ai, Adi, Ci, τi(t), τdi, τui and hi.

Definition 1 [4]: System (1) is said to be positive if,
for any initial condition φ1(θ) ⪰ 0, θ ∈ [−τu,0], the cor-
responding trajectory x(t)⪰ 0 and y(t)⪰ 0.

Lemma 1 [32]: System (1) is said to be positive if and
only if Ai, for all i ∈ S, are Metzler matrices and Adi ⪰ 0,
Ci ⪰ 0.

Now, we consider the following observer

ẋc(t) = (Ai −LiCi)xc(t)+Adixc(t − τi(t))+LiCix(t),

yc(t) =Cixc(t),

xc(θ) = φ2(θ),∀θ ∈ [−τu,0], (2)

where xc(t) ∈ Rn is the estimated state vector of x(t),
yc(t) ∈ Rq is the observer output, and Li ∈ Rn×q are the
observer gain matrices to be determined.

Remark 1: For positive Markovian jump system (1),
the positivity of the estimated state xc(t) should be guar-
anteed according to the literatures [38–41]. Therefore, ac-
cording to Lemma 1, it is naturally required that Ai −LiCi

are Metzler matrices and LiCi ⪰ 0, Adi ⪰ 0, ∀i ∈ S.
Define x̃(t) = x(t)−xc(t) the estimated error of the sys-

tem. The following error Markovian jump system is given
as follows:

˙̃x(t) = (Ai −LiCi)x̃(t)+Adix̃(t − τi(t)),

x̃(θ) = φ(θ),∀θ ∈ [−τu,0]. (3)

Remark 2: From lemma 1, the error dynamic system
(3) is positive if and only if Ai−LiCi are Metzler matrices,
Adi ⪰ 0, ∀i ∈ S.

Definition 2 [23]: The positive Markovian jump sys-
tem (3) is said to be stochastically stable if for any initial
condition φ(θ) and g0 ∈ S, the following inequality holds

E
{∫ ∞

0
||x̃(t)||1dt|φ(θ),g0

}
< ∞. (4)
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Definition 3 ( [24]): Considering V (x̃(t), i, t) as the
Lyapunov function for the system (3), we define the weak
infinitesimal operator as follows:

ΓV (x̃(t), i, t) = lim
∆t→0

1
∆t

[E{V (x̃(t +∆t),g(t +∆t),

t +∆t)}−V (x̃(t), i, t)].

In this paper, the positive observer (2) is designed such
that the error Markovian jump system (3) with mode-
dependent time-varying delays and incomplete transition
rates is positive and stochastically stable.

3. MAIN RESULTS

This section will focus on the problem of stochastic sta-
bility analysis and observer design.

Theorem 1: The error system (3) with incomplete
transition rates is positive, stochastically stable and the
observer (2) is positive, if there exist vectors νi, σ1i, σ2i,
σ3i, σ1, σ2, σ3 ∈ Rn

+, ρ1i, ρ2i, ρ3i, ρ4i, ρ5i, ρ6i, ρ7i ∈ Rn,
oi ∈ Rq, for ∀i ∈ S, such that
(i) Ai −LiCi are Metzler matrices, LiCi ⪰ 0;
(ii) for a given constant λ ,

AT
i νi −CT

i oi +σ1i +σ2i +σ3i + τuσ1 + τuσ2 + τuσ3

+ ∑
j∈Si

k

πi j(ν j −ρ1i)+λνi ≺ 0, (5)

AT
diνi − (1−hi)σ1i + ∑

i̸= j, j∈Si
k

πi jτu jσ1i − ∑
j∈Si

k

πi jρ2i ≺ 0,

(6)

∑
j∈Si

k

πi j(τu jσ2i −ρ3i)−σ2i ≺ 0,

∑
j∈Si

k

πi j(τd jσ3i −ρ4i)−σ3i ≺ 0, (7)

∑
j∈Si

k

πi j(σ1 j −ρ5i)−σ1 ≺ 0, ∑
j∈Si

k

πi j(σ2 j −ρ6i)

−σ2 ≺ 0, ∑
j∈Si

k

πi j(σ3 j −ρ7i)−σ3 ≺ 0, (8)

ν j −ρ1i ⪯ 0,τu jσ1i −ρ2i ⪯ 0,τu jσ2i −ρ3i ⪯ 0,

j ∈ Si
uk, j ̸= i, (9)

τd jσ3i −ρ4i ⪯ 0,σ1 j −ρ5i ⪯ 0,σ2 j −ρ6i ⪯ 0,

σ3 j −ρ7i ⪯ 0, j ∈ Si
uk, j ̸= i, (10)

ν j −ρ1i ⪰ 0,τu jσ2i −ρ3i ⪰ 0,τd jσ3i −ρ4i ⪰ 0,

j ∈ Si
uk, j = i, (11)

σ1 j −ρ5i ⪰ 0,σ2 j −ρ6i ⪰ 0,σ3 j −ρ7i ⪰ 0,

j ∈ Si
uk, j = i, (12)

with oi = LT
i νi.

Proof: Firstly, we prove the positivity of system (3)
and observer (2). From condition (i), the system (3) and
observer (2) are positive.

Secondly, for positive Markovian jump system (3),
choose the co-positive type Lyapunov function candidate
as

V (x̃(t), i, t) =V1(x̃(t), i, t)+V2(x̃(t), i, t)

+V3(x̃(t), i, t), (13)

where

V1(x̃(t), i, t) =x̃T (t)νi,

V2(x̃(t), i, t) =
∫ t

t−τi(t)
x̃T (s)σ1ids+

∫ t

t−τui

x̃T (s)σ2ids

+
∫ t

t−τdi

x̃T (s)σ3ids,

V3(x̃(t), i, t) =
∫ 0

−τu

∫ t

t+θ
x̃T (s)(σ1 +σ2 +σ3)dsdθ ,

where νi, σ1i, σ2i, σ3i, σ1, σ2, σ3 ∈ Rn
+ and

N

∑
j=1

πi jσ1 j ⪯ σ1,
N

∑
j=1

πi jσ2 j ⪯ σ2,
N

∑
j=1

πi jσ3 j ⪯ σ3. (14)

Hence, according to Definition 3, it can be shown that

Γ{
∫ t

t−τi(t)
x̃T (s)σ1ids}

= x̃T (t)σ1i − (1− τ̇i(t))x̃T (t − τi(t))σ1i

+
N

∑
j=1

πi jτ j(t)x̃T (t − τi(t))σ1i +
∫ t

t−τi(t)
x̃T (s)

N

∑
j=1

πi jσ1 jds

≤ x̃T (t)σ1i − (1−hi)x̃T (t − τi(t))σ1i

+
N

∑
i̸= j, j=1

πi jτu j x̃T (t − τi(t))σ1i +
∫ t

t−τi(t)
x̃T (s)σ1ds.

(15)

Similar to the process above, we have

ΓV1(x̃(t), i, t)

= x̃T (t)(AT
i νi −CT

i oi +
N

∑
j=1

πi jν j)+ x̃T (t − τi(t))AT
diνi,

ΓV2(x̃(t), i, t)

≤ x̃T (t)σ1i − (1−hi)x̃T (t − τi(t))σ1i

+
N

∑
i̸= j, j=1

πi jτu j x̃T (t − τi(t))σ1i +
∫ t

t−τi(t)
x̃T (s)σ1ds

+ x̃T (t)σ2i − x̃T (t − τui)σ2i

+
N

∑
j=1

πi jτu j x̃T (t − τui)σ2i +
∫ t

t−τui

x̃T (s)σ2ds+ x̃T (t)σ3i

− x̃T (t − τdi)σ3i +
N

∑
j=1

πi jτd j x̃T (t − τdi)σ3i

+
∫ t

t−τdi

x̃T (s)σ3ds,
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ΓV3(x̃(t), i, t)

=τux̃T (t)(σ1 +σ2 +σ3)−
∫ t

t−τu

x̃T (s)(σ1 +σ2 +σ3)ds

≤τux̃T (t)(σ1 +σ2 +σ3)−
∫ t

t−τi(t)
x̃T (s)σ1ds

−
∫ t

t−τui

x̃T (s)σ2ds−
∫ t

t−τdi

x̃T (s)σ3ds, (16)

where oi = LT
i νi.

Based on
N

∑
j=1

πi jρ1i =
N

∑
j=1

πi jρ2i =
N

∑
j=1

πi jρ3i =

N

∑
j=1

πi jρ4i =
N

∑
j=1

πi jρ5i =
N

∑
j=1

πi jρ6i =
N

∑
j=1

πi jρ7i = 0 for a

set of vectors ρ1i, ρ2i, ρ3i, ρ4i, ρ5i, ρ6i, ρ7i, we have

ΓV (x̃(t), i, t)

≤x̃T (t)(AT
i νi −CT

i oi +σ1i +σ2i +σ3i + τuσ1 + τuσ2

+ τuσ3 +
N

∑
j=1

πi jν j −
N

∑
j=1

πi jρ1i)

+ x̃T (t − τi(t))(AT
diνi − (1−hi)σ1i +

N

∑
i̸= j, j=1

πi jτu jσ1i

−
N

∑
j=1

πi jρ2i)+ x̃T (t − τui)(
N

∑
j=1

πi jτu jσ2i −
N

∑
j=1

πi jρ3i

−σ2i)+ x̃T (t − τdi)(
N

∑
j=1

πi jτd jσ3i −
N

∑
j=1

πi jρ4i −σ3i),

N

∑
j=1

πi jσ1 j −
N

∑
j=1

πi jρ5i −σ1 ⪯ 0,

N

∑
j=1

πi jσ2 j −
N

∑
j=1

πi jρ6i −σ2 ⪯ 0,

N

∑
j=1

πi jσ3 j −
N

∑
j=1

πi jρ7i −σ3 ⪯ 0. (17)

Note that πii < 0(∀i, j ∈ S, i = j) and πi j ≥ 0(∀i, j ∈
S, i ̸= j), therefore, if i ∈ Si

k, inequalities (5)-(10) imply
that ΓV (x̃(t), i, t) < −λV1(x̃(t), i, t) < 0. On the other
hand, if i ∈ Si

uk, inequalities (5)-(12) also imply that
ΓV (x̃(t), i, t) < −λV1(x̃(t), i, t) < 0. Following the same
line of the proof of [23], we can get

E
{∫ ∞

0
||x̃(t)||1dt|φ(θ),g0

}
< ∞.

The proof is completed. □

Remark 3: Generally speaking, for Markovian jump
system with mode-dependent time-varying delays, Lya-
punov function is frequently chosen as follows:

V (x̃(t), i, t) =x̃T (t)νi +
∫ t

t−τi(t)
x̃T (s)σ1ds

+
∫ 0

−τi

∫ t

t+θ
x̃T (s)σ2dsdθ . (18)

The parameter in integral term of equality (18) is mode-
independent, which may lead to some conservativeness.
Here, an appropriate mode-dependent co-positive type
Lyapunov function (13) is constructed, and parameter in
integral term V2(x̃(t), i, t) is mode-dependent, which may
reduce some conservativeness.

Remark 4: We cite the selection of the parameter λ
from [40, 41]. From Theorem 1, it is easy to see that a
smaller λ will be favorable to the solvability of inequali-
ties (5)-(12). First, we can assign a value to λ ; if (5)-(12)
has no feasible solution for the assigned λ , we can change
the parameter λ to be smaller. Following this guideline, a
solution to the matrix inequalities (5)-(12) can be found.

Based on Theorem 1, we present an effective algorithm
for designing the positive observer which ensures the error
Markovian jump system (3) with mode-dependent time-
varying delays and incomplete transition rates is positive
and stochastically stable.

Algorithm 1: Step 1. Choose a parameter λ > 0; one
can obtain νi, σ1i, σ2i, σ3i, σ1, σ2, σ3, ρ1i, ρ2i, ρ3i, ρ4i, ρ5i,
ρ6i, ρ7i, oi by solving the Theorem 1;

Step 2. Compute observer gain matrices Li and check
the condition (i) in Theorem 1. If the condition (i) holds,
enter the next Step 3; else return to Step 1;

Step 3. The observer gain matrices Li are obtained.

4. NUMERICAL EXAMPLES

Considering the mathematical model of virus mutation
treatment presented in [12] and mode-independent time-
varying delay in dynamic systems, we describe the dy-
namic system as follows:

ẋ(t) =(Ri −δ I +ζ M)x(t)+Adix(t − τi(t)),

y(t) =Cix(t), (19)

where x(t) ∈ R2 indicates two different viral genotypes,
i indicates a Markovian process with two different states,
ζ is a small parameter representing the mutation rate, δ
is the death or decay rate; M = [Mmn] denotes the system
matrices, Mmn ∈ {0,1} represents the genetic connections
between genotypes, that is, Mmn=1 if and only if it is pos-
sible for genotype n to mutate into genotype m, and y(t)
denotes the controlled output. The two-mode Markovian
jump systems with parameters are given as follows:

R1 =

[
0.05 0

0 0.25

]
, R2 =

[
0.06 0

0 0.26

]
, M =

[
0 1
1 0

]
,

Ad1 =

[
0.2 0
0 0.2

]
, Ad2 =

[
0.1 0
0 0.1

]
, C1 =

[
1.5 1.5

]
,

C2 =
[
0.6 0.9

]
.

Let λ = 1. Let τ1(t) = 0.5(1.2− sin(t)) and τ2(t) =
0.4(1.5 − sin(t)), then τd1 = 0.1, τu1 = 1.1, τd2 = 0.2,
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Fig. 1. System modes g(t).

Fig. 2. Actual states x(t) and their estimation xc(t).

Fig. 3. Estimated error states x̃(t).

τu2 = 1.0, τd = 0.1, τu = 1.1, τ̇1(t) =−0.5cos(t), h1 = 0.5,
τ̇2(t) =−0.4cos(t), h2 = 0.4 and h = 0.5. The incomplete
transition rate matrix is given as follows:[

? ?
0.1 −0.1

]
.

Solving Algorithm 1 results in

L1 =

[
3.6454 −1.2248
3.6454 −1.2248

]
,L2 =

[
0.2330 2.5358
0.2330 2.5358

]
.

Obviously, the condition (i) in Theorem 1 holds.
The initial mode and state of the system is g(0) = 1,

x(0) =
[
0.6 0.9

]T , and the initial state of the observer is

xc(0) =
[
0.2 0.3

]T . Fig. 1 shows the system mode g(t).

Fig. 2 stands for the actual states x(t) and their estimation
xc(t). Fig. 3 shows the estimated error states x̃(t). From
Fig. 2 and Fig. 3, we can see the states of the designed
observer not only possess the positivity, but also approxi-
mate those of the original system.

Remark 5: If Lyapunov function is chosen in the form
of (18), we can not get the observer gain matrices. This
means that the chosen Lyapunov function (13) reduces
some conservativeness.

Remark 6: The complete known transition rate matrix
is given as follows:[

−0.3 0.3
0.1 −0.1

]
.

Solving Algorithm 1 results in

L1 =

[
2.1234 1.6243
2.1234 1.6243

]
, L2 =

[
0.2421 2.4321
0.2421 2.4321

]
.

Obviously, the condition (i) in Theorem 1 holds. It means
that the error system with complete known transition rates
is stochastically stable.

5. CONCLUSIONS

In this paper, we have given an approach design of pos-
itive observer for Markovian jump systems with mode-
dependent time-varying delays and incomplete transition
rates. By employing co-positive type Lyapunov function,
sufficient conditions are built to ensure the error system
positive and stochastically stable. In the future work, we
will study positive observer design for positive Marko-
vian jump systems with mode-dependent distributed time-
varying delays and incomplete transition rates.
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