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From Single to Many-objective PID Controller Design using Particle
Swarm Optimization
Hélio Freire*, P. B. Moura Oliveira, and E. J. Solteiro Pires

Abstract: Proportional, integrative and derivative (PID) controllers are among the most used in industrial con-
trol applications. Classical PID controller design methodologies can be significantly improved by incorporating
recent computational intelligence techniques. Two techniques based on particle swarm optimization (PSO) algo-
rithms are proposed to design PI-PID controllers. Both control design methodologies are directed to optimize
PI-PID controller gains using two degrees-of-freedom control configurations, subjected to frequency domain ro-
bustness constraints. The first technique proposes a single-objective PSO algorithm, to sequentially design a two
degrees-of-freedom control structure, considering the optimization of load disturbance rejection followed by set-
point tracking optimization. The second technique proposes a many-objective PSO algorithm, to design a two
degrees-of-freedom control structure, considering simultaneously, the optimization of four different design criteria.
In the many-objective case, the control engineer may select the most adequate solution among the resulting optimal
Pareto set. Simulation results are presented showing the effectiveness of the proposed PI-PID design techniques, in
comparison with both classic and optimization based methods.

Keywords: Evolutionary algorithms, many-objective optimization, particle swarm optimization, PID control.

1. INTRODUCTION

The relevance of PID control within industrial feedback
loops has been a major motivational aspect to the devel-
opment of a wide range of appropriate design techniques.
A well established technique of classical design method-
ologies, once the controller type is selected (P, PI, PD or
PID), rely on the use of tuning rules to evaluate the re-
spective controller gains. Many of these tuning methods
were developed considering a specific control design ob-
jective and control configuration [1]. Two of the most sig-
nificant classical control objectives are set-point tracking
(SPT) and disturbance rejection (DR). Thus, many tun-
ing rules were developed by optimizing time domain tran-
sient response criteria regarding these two design objec-
tives. However, tuning rules for SPT can result in poor
DR, and vice-versa. Moreover, many design techniques
were developed for specific process dynamics [1–6]. Be-
sides SPT and DR criteria, PID controller should be de-
signed considering other criteria such as robustness, con-
troller effort, noise rejection, etc. Some of the former de-
sign criteria are difficult to be adequately accommodated
by classical design techniques such as to achieve a good
compromise between robustness and performance. To cir-
cumvent this limitation, optimization techniques can be
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integrated in the controller design methodology, such as
the convex-concave formulation proposed in [7].

Nature and biologically inspired techniques have been
successfully applied to design PID controllers. Examples
of some established techniques which have been applied
to this purpose considering single and multiple objec-
tives are: genetic algorithm [8–11], particle swarm opti-
mization [12–15], differential evolution [16], gravitational
search algorithm [17], etc.

In this work, the problem of designing PID controllers
with minimum robustness characteristics is addressed
by proposing two different techniques based on particle
swarm optimization:

1) A single-objective technique, in which the controller
design is accomplished by minimizing a time-domain
cost function subjected to robustness constraints. The
design procedure is based on two sequential steps: i)
optimization for minimum integral of time square error
(ITAE) for load disturbance rejection; ii) improvement
of SPT with a two degrees-of-freedom configuration.
This part is an extension of the authors work previously
reported in [18].

2) A many-objective technique, considering, simultane-
ously, the optimization of four design objectives. The
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aim is to obtain a set of non-dominated solutions that
represents different optima from which the decision
maker can choose the solution that better suits to its
problem. The objectives considered in this study are:
i) minimization of ITAE for SPT, ii) minimization of
ITAE for load DR, iii) minimization of the control ef-
fort (CE) and iv) maximization of the Vector Margin
(VM). The technique originally proposed by the au-
thors in [19] is extended and adapted here to the ro-
bust PID controller design problem. Single and multi-
objective PSO algorithms have been widely applied
to PID controllers design [10, 20, 21], however when
the number of objectives is higher than three (many-
objective) the problem complexity increases signifi-
cantly and so far the number of related publications
is scarce.

Indeed, concerning many-objective design problems,
there is the urge to develop new effective design tech-
niques with practical application. So, the motivation of
this work is to propose: a single objective PSO based op-
timization technique to design robust PID controllers, as
an alternative to concave-convex optimization. A Many-
Objective Particle Swarm Optimization technique to PID
controller design problems. As reported in the authors
previous work [22], Corner Based many-objective opti-
mization technique performs better than three well es-
tablished reference techniques: NSGAII (Non-dominated
Sorting Algorithm II) [23], SMPSO (Speed constrained
Multi-objective PSO) [24] and GDE3 (third Evolution
Step of Generalized Differential Evolution) [25]. The re-
ported results in [22] consider 4 to 10 different objectives
for 5 benchmark many-objective functions.

The remainder of the paper is structured as follows:
Section 2 presents some key issues to design PI-PID con-
trollers. Section 3 presents a single objective PSO based
technique to design PID controllers. Section 4, presents
the many-objective algorithm to design PID controllers.
In Section 5 simulation results are presented and analysed.
Finally, Section 7 presents some concluding remarks.

2. PI-PID CONTROLLERS: OVERVIEW OF
FUNDAMENTAL ASPECTS

This section presents key aspects to design PI-PID con-
trollers using an optimization approach. Some of the main
control design objectives can be easily perceived by con-
sidering a generic single-input single-output system block
diagram represented in Fig. 1 where r represents the refer-
ence input (set-point), y the controlled output, d1 the load
disturbance, d2 the output disturbance, n the noise signal,
u the controller output, Gc the controller transfer function,
and Gp the system or process to control. The global prob-
lem consists in designing the controller, such as the out-
put signal y tracks as close as possible the reference input

+ -
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+

+
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u
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+

+ + +

Fig. 1. General feedback loop.

(set-point tracking), while rejecting as much as possible
any signal disturbance and noise. The controller design
should also consider robustness issues, to be further de-
tailed in this paper. PID controllers can be represented by
different equations depending on the implementation ap-
proach used. In this study, the parallel form represented
respectively by (1) and (2), for the PI and PID controller
will be deployed.

GcPI(s) = Kp

[
1+

1
sTi

]
= Kp +

Ki

s
, (1)

GcPID(s) = Kp

[
1+

1
sTi

+ sTd

]
= Kp +

Ki

s
+ sKd , (2)

where Kp,Ti,Td ,Ki = Kp/Ti and Kd = KpTd , represent re-
spectively, the proportional gain, integrative time constant,
derivative time constant, integrative and derivative gains.
In practice, since equation (2) is a non-proper transfer
function, it cannot be physically implemented, requiring
alternative formats [1] such as using a derivative action
filter. It is also common to use a first order (or second or-
der) filter in series with the PID controller resulting in the
following expression:

Gc(s) = GcPID(s)G f t(s) = Kp

[
1+

1
sTi

+sTd

][
1

1+ sTf

]
(3)

with G f t representing the filter transfer function and Tf the
respective time constant. Recently, significant research ef-
forts have been devoted to reject the noise in the designing
of PID controllers [26, 27]. It is a common approach to
obtain the optimum (or near-optimum) controller settings
by applying a step signal either to the reference input or
load DR and measure the performance in the time-domain
using the well-known integral of absolute error (IAE):

IAE =
∫ ∞

0
|e(t)|dt, (4)

or the integral of time weighted absolute error (ITAE):

ITAE =
∫ ∞

0
t|e(t)|dt. (5)

The control effort (CE) should be as minimum as possible.
One way to evaluate the control effort is using:

CE =
∫ ∞

0
|u(t)|dt (6)
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Fig. 2. PID control with set-point weighting.

while another common way to evaluate the control signal
smoothness is with the total variation (TV) defined using
a discretization of the respective continuous signal as [4]:

TV =
∞

∑
i=0
|ui+1−ui| (7)

with u representing the controller output discrete vector.
As stated previously, when the PID controller is designed
to achieve the optimum load disturbance rejection, these
gains often results in poor SPT performance, namely in
terms of first overshoot. To improve the set-point tracking
response while maintaining the feedback loop disturbance
properties, two degrees-of-freedom configurations can be
used [28]. The general idea is to use a second controller
which usually is of a feedforward type. A very successful
and established technique is known as set-point weighting
[29], consisting in assigning a weight b, to the set-point
value in the error input to the proportional part (see Fig. 2
for the PID controller). In this case, the error term for the
proportional component, ep, is different from the standard
error applied to the integral and derivative components, e:

ep(t) = br(t)− y(t), (8)

e(t) = r(t)− y(t). (9)

It can be shown that the configuration presented in Fig.
2 is equivalent to a classical two degrees-of-freedom con-
figuration with a feedforward prefilter, G f , applied to a
referenced input outside the feedback loop as shown in
Fig. 3, represented for the PI and PID controller, respec-
tively by:

G f PI(s) =
bKps+Ki

Kps+Ki
, (10)

G f PID(s) =
bKps+Ki +Kds2

Kps+Ki +Kds2 . (11)

In the former feedforward PI equation, G f PI , can be rep-
resented in a format of a classic lead-lag compensator:

G f PI(s) =
bTis+1
sTi +1

=
sTlead +1
sTlag +1

(12)

with Tlead = bTi and Tlag = Ti.
Concerning the robustness issues, the design follows

the use of frequency-domain Nyquist plots circle con-
straints as proposed in [7], which will be described based
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Fig. 3. PI/PID control with a feedforward pre-filter.
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Fig. 4. Loop Nyquist plots with circles constraints.

on the illustrative example presented in Fig. 4. In this fig-
ure: L(jω)=Gc(jω)Gp(jω) represents the loop frequency
response, αmin represents the vector margin [30,31] whose
magnitude corresponds to the minimum distance between
the point −1+ j0 and the loop polar plot, GM and PM
the gain and phase margin, respectively, ct and rt , repre-
sent the complementary sensitivity circle center and ra-
dius, respectively. Two very convenient relations between
the vector margin and the gain and phase margins are rep-
resented by:

GM ≥ 1
1−αmin

, (13)

PM ≥ 2arcsin

(
αmin

2

)
. (14)

Considering that the sensitivity function is defined by:

S(jω) =
1

1+L(jω)
(15)

the relation between the maximum sensitivity value, Ms,
and the vector margin can be established by:

Ms =max |S(jω)|= 1
min |1+L(jω)|

=
1

αmin
⇒

⇒ αmin =
1

Ms
=V M. (16)

Determining the vector margin from (16) enables to ob-
tain two estimates for both gain and phase margins (13,
14). Another classic robustness measure is the maximum
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Table 1. Relation among Ms, vector margin, gain and
phase margins. Relation among Mt and circle
center (ct) and radius (rt).

Example Ms V M GM PM Mt ct rt

1 1.20 0.83 6.00 49.25◦ 1.20 −3.27 2.73
2 1.40 0.71 3.50 41.85◦ 1.40 −2.04 1.46
3 1.60 0.63 2.67 36.42◦ 1.60 −1.64 1.03
4 1.80 0.56 2.25 32.26◦ 1.80 −1.45 0.80
5 2.00 0.50 2.00 28.96◦ 2.00 −1.33 0.67

complementary sensitivity value, Mt , represented in the
following expression:

T (jω) =
L(jω)

1+L(jω)
, Mt = max |T (jω)| (17)

The maximum complementary sensitivity value is re-
lated with another circle in the Nyquist plot defined by,
center, ct , and radius, rt , evaluated with [7]:

ct =−
M2

t

M2
t −1

, (18)

rt =−
Mt

M2
t −1

. (19)

In order to illustrate the relation among maximum sen-
sitivity values, vector margin, gain and phase margins as
well as among maximum sensitivity values and the respec-
tive circle center and radius, some examples are presented
in Table 1. The overall objective is to design a PI/PID
controller for which the corresponding loop Nyquist plot
is outside both circles, which is formulated using these
circles constraints within the optimization problem [7].
As it can be seen from Fig. 4, while the vector margin
constraint is very useful to ensure minimum values for
gain and phase margins, the Mt circle may complement
the loop shaping procedure in lower frequency ranges. As
shown in Table 1, lower values of Mt correspond to larger
circle radius.

3. SINGLE-OBJECTIVE PI-PID CONTROLLER
DESIGN USING PSO ALGORITHM

A classical particle swarm optimization algorithm [32]
is deployed here as a simple tool to design PID controllers
subjected to robustness circle constraints. This selection is
based in the standard PSO algorithm implementation sim-
plicity. However, refined PSO versions can be deployed as
well (e.g. [33] and [34]). Two fundamental PSO equations
governing the swarm particles dynamics are:

vi(t +1) = ωvi(t)+ c1φ1[pbest i(t)− xi(t)]

+ c2φ2[gbest(t)− xi(t)], (20)

xi(t +1) = xi(t)+ vi(t +1) (21)

with: i representing the swarm element, t representing
the iteration number, ω the inertia weighting factor, c1

and c2 the cognitive and social constants, respectively,
φ1 and φ2 represent two randomly generated numbers
with uniform distribution in the range [0,1]. In this case
c1 = c2 = 2 is considered. In equation (20) pbest i repre-
sents the best individual value, found so far, for each par-
ticle and gbest the global best particle of the entire swarm
or specified neighbourhood. Position and velocity vec-
tors are d-dimensional. The inertia weight is usually de-
creased linearly (or otherwise as reported in [35]) between
a maximum starting value and a minimum ending value.
The velocity values evaluated with (20) are used to up-
date the particle positions (21). The PSO stopping crite-
rion adopted here is a pre-established number of iterations.
The proposed approach consists in a single objective opti-
mization using as criterion the ITAE (5) index minimiza-
tion subjected to vector margin and complementary sen-
sitivity robustness constraints. Each swarm member en-
codes the controller parameters: {Kp,Ki} or {Kp,Ki,Kd}
for the PI or PID case, respectively. The design methodol-
ogy proposed can be described by the following sequential
steps:

1) Design the PI-PID controller to obtain good controller
gain settings for the objective of load disturbance re-
jection. Vector margin (16) and complementary sensi-
tivity value (17) are used as constraints.

2) Using the controller gains obtained in step 1, design the
feedforward controller to improve the SPT response,
by either using a set-point weighting approach or a
more flexible lead-lag feedforward pre-filter.

Three relevant remarks regarding specific PSO imple-
mentation issues are:

• The swarm population is initialized using an inter-
view method that consists in generating elements ran-
domly until stable controllers are found, i.e., unstable
controllers are not allowed to incorporate the initial
swarm. This procedure is relevant to guarantee that
all particles of the initial swarm result in stable con-
trol systems. This procedure is adopted as prior ex-
perimentation indicated that for some systems most
(if not all) randomly generated elements represent un-
stable controllers.

• During the PSO execution, particles representing con-
troller setting violating the robustness constraints are
penalized as described by the cost functions repre-
sented by (22 - 23), where V Mmin represents the min-
imum value for the vector margin, Mtmax the maxi-
mum value for Mt , γ1 and γ2 representing penaliz-
ing weighting factors. The higher the values assigned
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to the penalizing factors the less influence the corre-
sponding particles will be in the PSO search.

i f V M <V Mmin⇒ costV M = γ1|V M−V Mmin|,
(22)

i f Mt ≥Mtmax ⇒ costMt = γ2|Mt −Mtmax |. (23)

• The controller design for load DR attaining certain ro-
bustness margins may enable the SPT improvement
with the set-point weighting approach. However,
minimizing the ITAE for SPT with the fixed feedback
loop while improving ITAE may result in high values
of overshoot. Thus, the following constraint is used
to promote smaller overshoot values.

i f Mp ≥Mpmax ⇒ costMp = γ3|Mp−Mpmax |. (24)

Mp represents the first overshoot. Mpmax the maximum
overshoot and γ3 a penalizing constant.
• The overall cost is given by ITAE and the penality

function:

cost = ITAE + costV M + costMt + costMp . (25)

4. FROM SINGLE-OBJECTIVE TO
MANY-OBJECTIVE PSO (MaPSO)

4.1. Concepts of evolutionary many-objective opti-
mization

A minimization problem can be formulated as (26) [36]:

min f (x) = ( f1(x), f2(x), ..., fm(x))
s.t. gl(x)≤ 0, l = 1,2, ...,k (26)

x ∈ S⊂ℜn,

where x = (x1,x2, ...,xn) is a n-dimensional decision vari-
able, gl(x), l = 1,2, ...,k represents the lth constraint, and
f j(x), j = 1,2, ...,m, is the jth objective function where
m represent sthe number of objectives to be optimized.
When the value of m in (26) is greater than three, is con-
sidered a Many-Objective Optimization Problem (MaOP).

Definition 1 (Pareto Dominance): Given two solu-
tions, x,y, it said that x dominates y (denoted by x ≺
y) if solution x is not worse than y in all objectives,
fi(x) ≤ fi(y) and if at least one objective fi(x) < fi(y)
for i = 1, . . . ,M.

Definition 2 (Maximin): Maximin [37] is an algorithm
used when the solutions in the front are more than the
available slots in the archive. The objective is to select
the solutions for a better distribution in the Pareto front.
Initially, the extreme solutions are selected and inserted in
the archive and removed from the front. Then, in a recur-
sive way, the minimum distance between each solution is
calculated in the front and the solutions which are already
in the archive and, in every iteration, the solution with the

higher distance value is chosen. This solution is removed
from the front and inserted in the archive. This process is
repeated until the archive is full.

Definition 3 (Corner Solutions): Corner Solutions are
solutions in the Pareto front where the boundaries inter-
sect. These solutions represent the maximum value for an
objective when the others have minimum values.

One of the main streams used to adapt single objec-
tive optimization algorithms to multi-objective optimiza-
tion algorithms, is directed to achieve a set of solutions
that respect the concepts of the Pareto dominance. More
concepts of Pareto optimal set and Pareto front, well
known by now, can be found in [38]. The multi-objective
PSO algorithms addressed in this work are also based on
non-dominated Pareto optimality concepts. The Multi-
objective PSO formulation use the same equations, (20)
and (21), of the single-objective PSO. However, while for
a standard single-objective non-multimodal search space
the aim is to find the single optimum, in this multi-
objective approach the aim is to obtain a set of non-
dominated solutions. Thus, when PSO is extended to
Multi-Objective Problems (MOPs) some crucial aspects
must be addressed such as: the process of selecting non-
dominated particles; How to update the global and the lo-
cal best particles? How to maintain the diversity of an
archive swarm? After each particle evaluation, based on
Pareto dominance principles, the swarm particles are can-
didates to belong to the archive. As the archive is lim-
ited in its capacity, it’s necessary to have methods to se-
lect the best ones. Normally at this stage, the promotion
of the population diversity is privileged. The main multi-
objective optimization concerns can be stated as to [39]:

• Preserve non-dominated points in the objective space.
• Continue to make algorithmic progress towards the

Pareto Front in objective function space.
• Maintain diversity of non-dominated points.
• Provide the decision maker ‘enough’ but limited

number of Pareto solutions for corresponding deci-
sion variable values for a given problem.

The key aspects which justify the significant complex-
ity increase, in many-objective optimization, due to the in-
crease of the number of the criteria considered, are related
with the following:

• A high percentage of non-dominated solutions at
early stages. This aspect affects the ability of algo-
rithms to converge for the global Pareto front.
• As the number of objectives grow, more solutions are

necessary to cover the global Pareto optimal front.
• The visualization of non-dominated solutions is more

difficult with the increase of objective number be-
cause the required projections in a two or three di-
mensional graph.
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t← 1;
Randomly generate the swarm pop(t) of npop
particles;

repeat
Validate pop(t);
Fill archive;

until stopping condition is reached;
Initialize the corner archive;
STEP 1
repeat

Update swarm;
Evolve swarm;
Update archive;
Update corner archive;
t← t +1;

until stopping condition is reached;
STEP 2
repeat

Update swarm;
Evolve swarm;
Update archive;
t← t +1;

until stopping condition is reached;

Algorithm 1: MaPSO algorithm for PID design

4.2. The proposed MaPSO algorithm
The many-objective algorithm proposed to solve the

PID robust design problem is presented in Algorithm 1.
Many-objective optimization problem solving can be a

difficult task. Algorithm 1 is based in the algorithm pro-
posed in [22]. In this work the swarm particles are initially
generated randomly. Therefore, a significant number of
the randomly initialized particles can represent unstable
controller solutions. In this case, if at least 5% of particles
in the swarm do not represent stable controllers it is neces-
sary to repeat the process with unstable particles set until
5% of stable controllers are met. These stable particles are
kept in the archive. Then, based in the particles kept in the
archive, a corner archive is built, in which one solution for
each corner (also known as extreme solutions) are stored.
In Step 1, of Algorithm 1, the main goal is to find the cor-
ner particles. These corner particles are the candidates to
gbest particles. Step 2, of Algorithm 1, privileges the so-
lutions diversity. Then, based in the Pareto principles of
non-dominance the particles are kept in the archive. These
particles will be the final solutions presented in the next
section. The general archive has limited space. As in this
work an archive with 20 solutions of capacity is deployed,
when candidates to integrate the archive are larger than 20,
the maximin [37] selection procedure is used.

Another very relevant issue is how the swarm particles
select their gbest particle. All the solutions in the archive
can be a potential gbest particle. For each particle in the

swarm two particles of the archive are selected randomly,
and from these two particles the nearest particle to the
swarm particle is selected as the respective gbest . The dis-
tances are evaluated in the objective space. The pbest lead-
ers are replaced if the new particle dominated the existing
ones.

Other parameters of the tests are: i) Number of particles
in swarm: 100; ii) Max number of iterations: 50.

The archive solutions have to keep the control design
robustness constrains: V M be equal or greater than 0.5
and Mt be equal or smaller than 1.76.

The technique deployed here to design PID controllers,
considers the following design criteria:

1) SPT by minimizing the ITAE (5): a unit step is applied
solely to reference input signal: (r(t) = 1, d(t) = 0).

2) Load DR by minimizing the ITAE (5): a unitary step
is applied solely to the load disturbance input signal:
(r(t) = 0,d(t) = 1).

3) Minimization of Control effort, by minimizing (6)
when (r(t) = 1 at t = 0s, d(t) = 1 at t = half the simu-
lation time).

4) Maximization of Vector Margin, by maximizing V M,
(16). The Vector Margin restriction was set to a lower
minimum value of 0.5.

5. SIMULATION RESULTS AND DISCUSSION

5.1. Single-objective PI-PID design
Two models used in [7] are considered in this study rep-

resenting an open-loop unstable system, Gp1 (27), and a
triple pole system, Gp2 (28):

Gp1(s) =
1

(s−1)(0.1s+1)
, (27)

Gp2(s) =
1

(s+1)3 . (28)

The control objective considered consists in optimizing
the system load rejection response when a unit step input
disturbance and the reference input with no signal applied.
The PSO conditions used are: swarm size m = 30, 60 iter-
ations, and ω was linearly decreased between 0.9 and 0.4.
The penalizing weights were set to γ1 = γ2 = γ3 = 20 in
(22), (23), and (24). These values were selected by prior
experimentation. However, other higher values penalizing
solutions which violate the defined constraints will work
as well. PI controller parameter range used was [0.1, 20]
for Kp and Ki. In the case of the PID controller the range
for the proportional and integrative gains are the same as
for the PI case and the range for Kd is [0.1, 20]. All simu-
lations were carried out in Matlab/Simulink environment
assuming the simulation time to be shown in the time-
response plots, with a fixed solver step interval of 0.01s.
PI control was applied to Gp1 system and PID control to
Gp2 system.
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Fig. 5. PI control results for system Gp1. Load disturbance
step responses.
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Fig. 6. PI control results for system Gp1. Set-point track-
ing responses.

The results obtained are presented in Figs. 5, 6, and 7
and in Tables 2 and 3, for 4 different cases represented by
(I to IV). As for system Gp1, the most influential constraint
in the response is Mt constraint, a fixed V M = 0.5 was
used for all the 4 cases. The Mt values considered were
{1.4,1.5,1.6,1.7} corresponding respectively to cases I to
IV. Fig. 5 presents the load unit step response, with the
top plot representing the system output signal (y) and the
lower part the controller output signal (u) for the depicted
cases. Fig. 6 presents the SPT response for the same cases
presented in Fig. 5. Fig. 7 presents the Nyquist plots with
the corresponding vector margin (V M) and Mt circles. As
it can be observed the V M value obtained is always su-
perior to the defined minimum, of V M = 0.5 and as the
Mt is increased the load DR improves and the control ef-
fort increases. The improvement in terms of the ITAE cri-
terion with the Mt increase can be observed by the cor-

Table 2. PI gains obtained using the PSO for system Gp1.

Case Kp Ki ITAE TV V M Ms Mt

I 7.28 4.35 0.33 1.78 0.64 1.56 1.4
II 7.87 7.03 0.14 1.87 0.61 1.64 1.5
III 8.58 9.94 0.08 1.98 0.57 1.75 1.6
IV 9.34 13.06 0.05 2.10 0.55 1.82 1.7

Table 3. PID gains obtained using the PSO for system
Gp2.

Case Kp Ki Kd ITAE TV V M Ms Mt

I 3.89 2.59 3.85 1.76 1.33 0.71 1.41 1.15
II 5.86 4.38 5.32 0.89 1.60 0.63 1.59 1.27
III 8.24 7.25 7.11 0.50 1.92 0.56 1.79 1.51
IV 10.96 11.44 9.02 0.30 2.26 0.50 2.00 1.76
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Case I:VM=0.64, Mt=1.4

Case II: VM=0.61, Mt=1.5

Case III:VM=0.57, Mt=1.6

Case IV:VM=0.55, Mt=1.7

Fig. 7. PI control results for system Gp1. Nyquist plots
with circles constraints.

responding decreased values presented in Table 3. The
values obtained for TV indicates that the control effort in-
crease corresponds to a TV increase, but not significant as
the control signal smoothness is maintained.

Fig. 8 shows a comparison of the results obtained
with the PSO with the results reported in [7] for Gp1,
considering a vector margin V M = 0.714 (equivalent to
Ms = 1.4) and Mt = 1.4. This is denoted as case V in Fig.
8, and the gains obtained with the PSO algorithm were
K p = 4.84 and Ki = 2.00 while the gains obtained in [7]
are K p = 4.67 and Ki = 1.76. As it can be observed the
results are very similar, slightly better for the PSO case,
showing that this simple algorithm can be used to design
PI controller as an alternative to concave-convex optimiza-
tion. The SPT tracking performance can be improved by
using a set-point weighting pre-filter represented by (10).

The results of optimizing the pre-filter using the PI
gains obtained for case II are presented in Fig. 9 for two
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Fig. 8. PI control results for system Gp1. Comparison with
the results obtained in [7]
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Case II− VM=0.61, Mt=1.5: b=0

Case II − VM=0.61, Mt=1.5: b=0.76

Case II − VM=0.61, Mt=1.5: b=0.66
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Fig. 9. PI control results for system Gp1 with set-point
weighting. Set-point tracking responses.

cases. In the case of b = 0.76 the optimization was per-
formed without any constraint (23) penalizing the over-
shoot. In the case of b = 0.66, the ITAE is worse than for
the case of b = 0.76, as a constraint was used penalizing
overshoots higher than 5%. Fig. 9 also shows that the im-
provements of the SPT tracking response are independent
of the DR, as expected. In the case of b = 0.66 the same
results can be obtained by using a two degrees-of-freedom
configuration with Tlead = bTi = 0.66× 1.76 = 1.16s and
Tlag = Ti = 1.76s.

The results achieved for PID control are presented in
Figs. 10-13 and Table 3, in the same format used for PI
control. For system, Gp2, the most influential constraint
is the vector margin. Thus Mt was made constant with
a minimum value of 1.1 for all cases. The V M values
considered were {0.71,0.63,0.56,0.5} corresponding re-
spectively to cases I to IV. The correspondences between

these V M values and the Ms values are presented in Table
1. The results presented for this plant, show that the PSO
can exactly match the specified constraint for all cases. In
Fig. 13 the results of enhancing the SPT response with
a set-point weighting using the pre-filter depicted in (11)
for the PID. As it can observed the degree of improve-
ment for the fixed DR PID gains are limited in this case.
In Fig. 13, the response obtained with a lead-lag pre-filter
governed by (12) is presented. As it can be observed the
response is significantly improved. As in this case the load
disturbance response is not independent for SPT, the load
DR also improved by the use a lead-lag pre-filter and the
achieved overshoot is ideal. The results of both exam-
ples indicates that PSO can easily accommodate robust-
ness constraints to design robust PI-PID controllers, and
constitute a simple and powerful alternative to other more
complex optimization techniques, such the one presented
in [7].

5.2. Many-objective PI-PID design
The same two models used in the single-objective case,

(27) and (28), are considered in the many objective de-
sign. To maintain the coherence with the single objective
optimization the results presented in this section concern:

• The PI controller is applied to control plant Gp1, us-
ing the two-degrees of freedom control configura-
tion represented in Fig. 3, with the lead-lag feed-
forward pre-filter represented by (10). The opti-
mization considers the four objectives formulated
in section 4.2. Thus the controller parameters are
{Kp,Ki,Tlead ,Tlag}.
• The PID controller is applied to control plant Gp2,

using the two degrees-of-freedom control configura-
tion represented in Fig. 3, with the lead-lag feed-
forward pre-filter represented by (11). The optimiza-
tion criteria considers the four objectives formulated
in section 4.2. Thus, the controller parameters are
{Kp,Ki,Kd ,Tlead ,Tlag}.

The results presented in this section were achieved run-
ning the proposed MaPSO algorithm with the following
conditions: i) Swarm size: 100; ii) Archive size: 20;
iii) Number of iterations per run: 50; iv) ω = 0.728; v)
c1 = c2 = 2.

All simulations were carried out in Matlab/Simulink en-
vironment assuming the simulation time to be shown in
the time-response plots, with a fixed solver step interval of
0.01s. The MaPSO was run ten times per system. The re-
sults presented represent the 20 non-dominated solutions
obtained from merging the final archives using the max-
imin method [37]. However, the proposed MaPSO design
method requires just one run.

The overall design for both cases is to achieve a Pareto
front with optimum solutions regarding all four design ob-
jectives allowing the control engineer to select the most
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Case I:VM=0.71, Mt=1.15
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Fig. 10. PID control results for system Gp2. Load-step re-
sponses.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

t (sec)

y

 

 

Case I:VM=0.71, Mt=1.15

Case II: VM=0.63, Mt=1.27

Case III:VM=0.56, Mt=1.51

Case IV:VM=0.5, Mt=1.76
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Fig. 11. PID control results for system Gp2. Set-point
tracking responses.

appropriate parameter set. The results obtained for plant
Gp1 are presented in Figs. 14 and 15 concerning a final
non-dominated set with 20 solutions. Figs. 14 presents
system output signals (y) to the SPT responses when a unit
step is applied at t = 0s and the load DR when a step is ap-
plied at t = 10s and the corresponding PI controller output
signal (u). Fig. 15 shows the Nyquist plots for all the fi-
nal 20 controller solutions. In Fig. 15 besides the Nyquist
polar plot for the 20 final solutions the V M and maximum
complementary sensitivity circle constrains are presented.
For the case of V M = 0.71 the Mt constrain is not indi-
cated in the figure legend as it is the same as Mt = 1.4.

Table 4 presents the results achieved for the 20 non-
dominated solutions, both in the parameter space and in
the objective space, which represent a wide variation in
terms of performance regarding the design criteria consid-
ered. Acting as the decision maker in this case, from the
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Fig. 12. PID control results for system Gp2. Nyquist plots
with circles constraints.
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Case II− VM=0.63, Mt=1.27: b=0

Case II− VM=0.63, Mt=1.27: b=0.05

Case II− VM=0.63 Mt=1.27, Lead−Lag: Tlead=0.1 Tlag=1.16
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Fig. 13. PID control results for system Gp2 with set-point
filtering and lead-lag pre-filtering.

20 PI controller solutions presented in Table 4, four solu-
tions (shown in bold) were selected and the correspond-
ing SPT response and load DR responses are presented
in Figs. 16. The criteria used to select these four cases
were: small values for the first overshoot, good perfor-
mance rejecting the load disturbance and good robustness
properties in terms of Mt and V M values. As it can be
observed from Fig. 16, these four PI controller solutions
present different trade-off between SPT, DR, and the CE.
For instance, solution 1 has fast set-point tracking, small
first overshoot and good DR, with the cost of demanding
a higher control effort. On the other hand, solutions #4,
#9 and #11, present slower SPT, no first overshoot, and
worth DR, but better control effort value. Fig. 17 presents
Nyquist plots for the selected 4 solutions. Concerning the
robustness values, the better ones are solutions #9 and #11,
and the worth ones are solutions #1 and #4. Table 4 shows
that the 4 selected solutions presents quite low values for
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Fig. 14. Gp1 results. SPT and DR response and Con-
troller output signals for the 20 solutions.
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Mt = 1.40 / VM = 0.64

Mt = 1.50 / VM = 0.61

Mt = 1.60 / VM = 0.57

Mt = 1.70 / VM = 0.55

                 VM = 0.71

Fig. 15. Gp1 results. Nyquist plots for the 20 final solu-
tions.
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Fig. 16. Gp1 results. SPT and Dr response and Con-
troller output signal for the 4 selected solu-
tions.

Tlead with a minimum variation for all four cases.

Table 4. Non-dominated front obtained by Gp1.

# variables objectives Ms Mt
Kp Ki Tlead Tlag ITAE

SPT
ITAE
LDR

CE V M

1 11.38 7.51 0.10 0.34 0.32 0.18 30.78 0.57 1.75 1.54

2 8.61 5.59 0.10 1.23 0.87 0.24 29.02 0.61 1.63 1.44

3 6.55 3.52 0.10 1.12 0.86 0.45 29.43 0.66 1.52 1.38

4 11.43 9.02 0.10 1.15 0.87 0.13 28.90 0.56 1.78 1.58

5 3.94 1.01 0.99 2.81 2.41 2.88 30.03 0.74 1.35 1.43

6 6.50 5.03 0.10 1.20 0.71 0.22 29.16 0.64 1.56 1.46

7 5.33 0.66 6.35 7.88 1.09 8.09 31.85 0.71 1.40 1.27

8 4.91 0.95 3.43 4.79 0.47 4.14 31.20 0.72 1.38 1.32

9 8.88 5.40 0.21 0.88 0.50 0.27 29.83 0.61 1.63 1.44

10 9.45 4.31 0.10 0.84 0.83 0.45 29.72 0.61 1.63 1.42

11 7.24 4.33 0.10 1.58 1.47 0.33 28.67 0.64 1.56 1.40

12 4.21 1.71 2.19 2.86 0.53 1.09 31.15 0.72 1.38 1.46

13 5.95 2.12 1.10 2.08 0.84 1.10 30.32 0.69 1.46 1.33

14 3.67 0.92 1.81 3.21 1.55 3.17 30.98 0.75 1.33 1.47

15 3.72 1.50 1.64 2.81 0.67 1.21 30.47 0.73 1.36 1.53

16 8.82 8.38 0.25 0.44 0.20 0.11 31.08 0.59 1.70 1.54

17 8.30 4.98 0.36 1.21 0.58 0.30 29.66 0.62 1.61 1.42

18 3.71 1.43 0.40 1.59 1.70 1.32 30.11 0.74 1.36 1.52

19 4.47 1.76 0.10 1.31 1.81 1.12 29.76 0.72 1.39 1.43

20 8.43 1.73 4.06 4.78 0.09 2.36 31.55 0.65 1.55 1.32
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Fig. 17. Gp1 results. Nyquist plots for the 4 selected solu-
tions.

The results obtained for the PID case, for plant Gp2,
considering the final set of 20 plants are illustrated in
Figs. 18 and 19. Fig. 18 presents the SPT response when
an unit step is applied at t = 0s, and a DR when a unit
step is applied to the load disturbance at t = 35s as well as
the respective controller signal output. These figures illus-
trate that the control engineer may select the solution with
best compromise regarding both responses performance.
Fig. 19 presents the Nyquist plots obtained for the corre-
sponding 20 loop transfer functions. As it can be observed
from these figures, due to the third order pole model in
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Fig. 18. Gp2 results. SPT and DR response and Con-
troller output signals for the set of 20 selected
solutions.
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Mt = 1.15 / VM = 0.71
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Mt = 1.76 / VM = 0.5

Fig. 19. Gp2 results. Nyquist plots for the 20 solutions.

question, the Nyquist plots can be rather irregular in terms
of its curvature. Table 5 presents the set of values obtained
for the PID controller and lead-lag pre-filter, the values
obtained regarding the four design objectives considered,
and values for Ms and Mt . Table 5 results clearly show
that for the case of Tlead the variation is minimum, as most
cases converged to the minimum interval value of 0.1s.

6. PID RESULTS COMPARISON

The techniques considered to compare the results
achieved with the MaPSO for PID control applied to the
system Gp2 are the following:

1) The Cohen-Coon (CC) PID tuning rules [40], pre-
sented in (29), where K, T, and L, represent respec-
tively the dc gain, the dominant time constant and the
timed delay of a first order plus timed delay (FOPTD)

Table 5. Non-dominated front obtained by Gp2.

#
variables objectives

Ms Mt
Kp Ki Kd Tlead Tlag ITAE ITAE CE V M

SPT LDR

1 11.76 11.35 10.98 0.10 0.57 1.13 0.33 43.78 0.50 2.00 1.74

2 5.71 4.58 8.28 0.10 1.84 3.30 1.39 36.79 0.63 1.59 1.22

3 11.41 10.36 14.69 0.10 0.24 2.77 0.50 49.67 0.50 1.98 1.71

4 11.23 4.67 8.87 0.15 2.63 6.88 0.58 36.38 0.50 2.00 1.74

5 8.30 2.44 6.81 0.10 0.69 0.84 1.56 39.98 0.56 1.78 1.48

6 3.37 1.00 2.42 0.10 0.37 1.33 4.37 37.82 0.71 1.40 1.01

7 3.74 1.54 3.24 1.57 2.13 2.67 2.20 37.68 0.71 1.40 1.01

8 4.32 3.98 7.09 0.10 0.33 5.32 2.19 40.11 0.67 1.48 1.14

9 6.73 6.05 9.03 0.10 2.21 4.65 1.02 36.47 0.60 1.66 1.31

10 2.89 1.00 1.79 0.10 1.40 3.87 3.89 36.89 0.71 1.41 1.03

11 6.67 5.90 8.40 0.10 0.55 2.30 0.98 40.40 0.61 1.64 1.30

12 7.59 5.21 7.97 0.10 4.28 18.35 0.74 34.37 0.59 1.70 1.38

13 7.77 7.73 8.86 0.10 1.11 1.52 0.71 38.31 0.58 1.72 1.39

14 10.37 6.84 10.0 0.10 0.50 1.19 0.48 43.60 0.53 1.90 1.61

15 8.32 3.21 6.63 0.84 1.39 1.64 0.91 38.81 0.56 1.79 1.50

16 5.39 3.22 5.07 1.33 1.42 4.28 1.11 38.46 0.65 1.54 1.19

17 4.84 2.26 2.85 0.10 3.66 14.42 1.15 35.17 0.60 1.69 1.41

18 7.58 4.40 8.53 5.31 7.40 14.37 0.88 36.57 0.59 1.70 1.38

19 5.91 4.24 7.16 0.10 0.96 1.87 1.16 37.97 0.63 1.58 1.22

20 6.06 4.19 7.64 0.10 1.65 2.58 1.19 36.94 0.63 1.60 1.24

model approximation to the system to be controlled;
2) The Murrill [41] tuning rules based on the ITAE min-

imization for load disturbance rejection, presented in
(30);

3) The Magnitude Optimum for Disturbance Rejection
(DRMO) [42].

4) The results presented in [7] based on a technique mini-
mizing the IAE, resulting for system (28) in the follow-
ing controller settings, when a constraint of Ms = 1.4
was used: K p = 3.81, Ki = 3.33 and Kd = 4.25.

Kp =
1
K

T
L

(
4
3
+

L
4T

)
,

Ti = L
32+6 L

T

13+8 L
T

,

Td = L
4

11+2 L
T

,

(29)

Kp =
1.357

K

(
L
T

)−0.947

,

Ti =
T

0.842
( L

T

)−0.738 ,

Td = 0.381T
(

L
T

)0.995

.

(30)
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As the proposed MaPSO considers equally relevant the
optimization of 4 different criteria: ITAE minimization for
SPT, ITAE minimization for load DR, CE minimization,
VM maximization, the procedure adopted for comparing
with the Cohen and Coon and Murril ITAE methods is the
following:

• Obtain the FOPTD model approximation using the
two-point open-loop identification method [43]. For
the third-order pole system this approximation re-
sults in the following settings: K = 1; T = 1.74s;
L = 1.47s;
• Evaluate the Cohen-Coon controller settings using

(29) which converted to the ideal controller format
used in this study (30) results in the following set-
tings: K pcc = 1.19, Kicc = 0.64 and Kdcc = 0.55. De-
termine the corresponding robustness values achieved
with this controller gain set: V M = 0.73, Ms = 1.34,
Mt = 1.06.
• Evaluate the ITAE controller settings using (30),

which converted to the ideal controller format used
in this study (30) results in the following settings:
K pitae = 1.56, Kiitae = 0.88 and Kditae = 0.89. De-
termine the corresponding robustness values achieved
with this controller gain set: V M = 0.71, Ms = 1.4,
Mt = 1.01.
• From the 20 non-dominated solutions obtained with

the proposed MaPSO, presented in Table 5, select one
with has the most similar value in terms of vector
margin (VM) and compare the results terms of LDR
responses and well as CE values. As the design pro-
posed with MaPSO used a lead-lag input reference
pre-filter, the values obtained with the MaPSO are
used for the CC and ITAE rules simulation.
• As the maximum value obtained for VM with the

MaPSO was 0.71, with 3 of the 20 non-dominated
solutions (see Table 5) presenting the same value (#6,
#7, #10) and similar Mt values, solution #7 is selected
as it present better balancing between the SPT and
LDR values.

The comparison results between MaPSO, Cohen and
Coon tuning and Murril ITAE rules are presented in Fig-
ure 20 and Table 6. As it can be observed the results show
that the MaPSO solution performs much better for LDR
than the Cohen-Coon and ITAE tuning rules in terms of
the ITAE, requiring a slightly higher control effort.

Regarding the comparison with the DRMO [42]
method, the obtained PID gains are: K p= 2.95; Ki= 1.74
and Kd = 1.5, resulting in values for V M = 0.58
(Ms = 1.72) and Mt = 1.48. The closest solution ob-
tained with the MaPSO is solution #5 with VM=0.56 and
Mt=1.48. The results comparing these two methods are
presented in Fig. 21, and Table 6. As it can be observed
the MaPSO solution outperforms the DRMO method for
LDR requiring similar control effort.
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Fig. 20. MaPSO versus Cohen-Cohen and Murrill rules
for Gp2. Load disturbance rejection (LDR) re-
sponses when a unit step is applied d = 1 is ap-
plied at t = 0s.

Table 6. Comparison between MaPSO solution #7,
Cohen-Coon and Murril ITAE for Gp2.

Method K p Ki Kd ITAE ITAE CE LDR VM Ms Mt

LDR STP

MaMPSO (#7) 3.74 1.54 3.24 2.20 2.68 19.36 0.71 1.4 1.01

Cohen-Coon 1.19 0.64 0.55 7.11 5.34 18.45 0.73 1.38 1.01

ITAE (Murril) 1.56 0.88 0.89 5.07 4.94 18.86 0.73 1.38 1.12

MaMPSO (#5) 8.30 2.44 6.81 2.20 2.68 19.60 0.56 1.78 1.01

DRMO 2.95 1.74 1.5 2.45 4.17 19.43 0.58 1.72 1.48

MaMPSO (#20) 6.06 4.19 7.64 1.12 2.56 19.77 0.63 1.59 1.23

Hast et al. [7] 3.81 3.33 4.25 2.00 6.33 19.70 0.72 1.4 1.26
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Fig. 21. MaPSO versus DRMO method for Gp2. Load
disturbance rejection (LDR) responses when a
unit step is applied d = 1 is applied at t = 0s.

Concerning the comparison with the ITAE optimization
method proposed by Hast et al. [7], it is important to men-
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Fig. 22. MaPSO versus IAE minimization for LDR by
Hast et al. [7] for Gp2. Load disturbance rejec-
tion (LDR) responses when a unit step is applied
d = 1 is applied at t = 0s.

tion that while the controller gains achieved in [7] consider
solely a maximum sensitivity constraint. The comparison
results presented in Figure 22 and Table 6, consider two
MaPSO solution #7 and #20. While solution#7 present
very similar values in terms of the VM it performs worst
in terms of the ITAE for LDR. However, as it can be ob-
served from Table 6, the maximum sensitivity values are
quite different. Considering solution #20 which presents a
similar Mt value to the one presented by the Hast solution,
with a smaller VM, the performance in terms of ITAE for
LDR is better for the MaPSO approach.

7. CONCLUSION

In this paper two particle swarm optimization algorithm
based techniques were proposed to address the problem of
designing PI-PID controllers fulfilling minimum robust-
ness properties. The two reported techniques are: i) a
single-objective PSO optimization technique, to sequen-
tially design PI-PID controllers firstly to deal with load
disturbance rejection. Then design a lead-lag pre-filter
in a two degrees-of-freedom configuration with the fixed
feedback loop, in order to optimize the system load distur-
bance rejection; The robustness constraints used are based
on vector margin and maximum complementary sensitiv-
ity circles constraints. ii) A many-objective optimization
technique that optimizes simultaneously four different de-
sign criteria. The design criteria considered are: set-point
tracking, load disturbance rejection, control effort mini-
mization, maximization of the vector margin. Simulation
results were presented for both single and many objective
optimization approaches, which show the benefits of the
proposed PI-PID design techniques, in comparison with
both classic and optimization methods.
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