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Iterative Learning Control for a Class of Mixed Hyperbolic-parabolic Dis-
tributed Parameter Systems
Qin Fu*, Wei-Guo Gu, Pan-Pan Gu, and Jian-Rong Wu

Abstract: This paper deals with the problem of iterative learning control algorithm for a class of mixed dis-
tributed parameter systems. Here, the considered distributed parameter systems are composed of mixed hyperbolic-
parabolic partial differential equations. The domain of the system is divided into two parts in which the system is
hyperbolic and parabolic, respectively, with transmission conditions at the interface. According to the character-
istics of the systems, iterative learning control laws are proposed for such mixed hyperbolic-parabolic distributed
parameter systems based on P-type learning scheme. Using the contraction mapping method, it is shown that the
scheme can guarantee the output tracking errors on L2 space converge along the iteration axis. A simulation example
illustrates the effectiveness of the proposed method.

Keywords: Hyperbolic-parabolic partial differential equations, iterative learning control, L2 space, mixed dis-
tributed parameter systems, P-type learning scheme.

1. INTRODUCTION

Since the complete algorithm of iterative learning con-
trol (ILC) was first proposed by Arimoto et al. [1], it has
become the hot issues of cybernetics and has attracted
broad attention in recent years [2–5]. The basic idea of
ILC is to improve the control signal for the present oper-
ation cycle by feeding back the control error in the pre-
vious cycle. And the classical formulation of ILC design
problem is as follows: find an update mechanism for the
output trajectory of a new cycle based on the information
from previous cycles so that the output trajectory con-
verges asymptotically to the desired reference trajectory.
Owing to its simplicity and effectiveness, ILC has been
found to be a good alternative in many areas and appli-
cations, e.g., see [6] for detailed results. Nowadays, ILC
is playing a more and more important role in controlling
repeatable processes.

Due to many practical problems can be described by
distributed parameter systems (DPSs) governed by partial
differential equations (PDEs), the applications of DPSs
have been involved in many fields in the last few years,
and a series of the research achievements have been ob-
tained [7–9]. In the field of control for DPSs, hitherto,
there are two methods often used: one is the bound-
ary control [10–12], the other is the distributed control
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[13, 14]. This paper deals with the distributed control
problems of DPSs.

Since the variables of the DPSs are related to infinite
dimensional space, studies of ILC for infinite dimensional
processes are limited and there have been only a few
works reported on ILC for DPSs, while ILC has been
widely investigated for finite dimensional systems. Fur-
thermore, most of them focus on parabolic DPSs. Pa-
pers [15–17] designed ILC algorithms for parabolic DPSs
by using P-type learning scheme. Paper [18] discussed
both P-type and D-type ILC schemes for a parabolic DPS,
which was transformed into a linear system on Hilbert
space. In [19], ILC was applied to a temporal-spatial dis-
cretized first order hyperbolic PDE, guaranteeing stabil-
ity of the closed loop system and satisfying the require-
ments of performance. Recently, paper [20] proposed a
ILC algorithm for a distributed parameter system which is
governed by a second order hyperbolic PDE, and the cor-
responding convergence condition was given. In [21], a
D-type ILC algorithm for irregular DPSs was introduced
with the aid of the weak convergences in functional anal-
ysis.

Mixed partial differential equations (MPDEs), one
class of partial differential equations, arise in many
mathematical-physical models (e.g., fluid dynamics,
ground water flow, semiconductor equations) and have
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been used in the literature to model a wide phenom-
ena of practical applications in science and engineer-
ing [22–29]. The so-called ’mixed’, means that this
kind of equations have different types in different do-
mains. For instance, while a PDE is hyperbolic in one
domain and parabolic in another domain, it is called the
mixed hyperbolic-parabolic PDE [24–29]. Hitherto, the
related research works about MPDEs have mainly focused
on its well-posedness [24–26] and numerical solutions
[22, 23, 27–29]. Papers [24–26] discussed the uniqueness,
existence and stability for MPDEs. In [27–29], the numer-
ical methods were proposed for solving multi-dimensional
hyperbolic-parabolic differential equations by difference
schemes. As a matter of course, a system governed
by MPDEs is referred to as mixed distributed parameter
system (MDPS). How to apply iterative learning control
scheme to MDPS and conduct corresponding control de-
sign, to the best of our knowledge, there is no relevant
literature about this.

The problem of iterative learning control algorithm for
MDPSs will be first put forward in this paper. The consid-
ered MDPSs are composed of mixed hyperbolic-parabolic
PDEs just as that in [29]. According to the characteris-
tics of the systems, iterative learning control laws are pro-
posed for such mixed hyperbolic-parabolic DPSs based
on P-type learning scheme. Using the contraction map-
ping method, it is shown that the scheme can guarantee
the output tracking errors on L2 space converge along the
iteration axis.

In this paper, the following notational conventions are
adopted: for function Q(t,x): [−1,1]× [0,1]→ R, take the

norm: ∥Q(t, ·)∥L2 =
√∫ 1

0 Q2(t,x)dx, and define ∥Q∥L2,s =

max
t∈[−1,1]

∥Q(t, ·)∥2
L2 .

2. PROBLEM DESCRIPTION

Firstly, we give a brief description of the follow-
ing multi-dimensional hyperbolic-parabolic PDE given in
[29], with Dirichlet and Neumann conditions.

∂ 2u(t,x)
∂ t2 −

n
∑

r=1
(ar(x)uxr)xr +σu(t,x)

= f (t,x),0 ≤ t ≤ 1,x = (x1,x2, · · · ,xn) ∈ Ω,
∂u(t,x)

∂ t
−

n
∑

r=1
(ar(x)uxr)xr +σu(t,x)

= g(t,x),−1 ≤ t ≤ 0,x = (x1,x2, · · · ,xn) ∈ Ω,

u(−1,x) =
K
∑
j=1

α ju(µ j,x)+
L
∑
j=1

β jut(λ j,x)+φ(x),

x ∈ Ω̄,
K
∑
j=1

|α j|,
L
∑
j=1

|β j| ≤ 1,0 < µ j,λ j ≤ 1,

u(t,x) = 0,x ∈ S1,
∂u(t,x)

∂ n⃗
= 0,

x ∈ S2,−1 ≤ t ≤ 1,

(1)

where Ω be the unit open cube in the n-dimensional Eu-
clidean space Rn, that is,

Ω = {x|x = (x1,x2, · · · ,xn),0 < xk < 1,1 ≤ k ≤ n} ,

while

S = {x|x = (x1,x2, · · · ,xn),xm = 0 or 1,

0 ≤ xk ≤ 1,k ̸= m,1 ≤ m ≤ n} ,
S1 = {x|x = (x1,x2, · · · ,xn),xm = 0 or 1,

0 ≤ xk ≤ 1,k ̸= m,1 ≤ m ≤ r}
S2 = {x|x = (x1,x2, · · · ,xn),xm = 0 or 1,

0 ≤ xk ≤ 1,k ̸= m,r+1 ≤ m ≤ n} ,

with boundary S = S1∪S2 and Ω̄ = Ω∪S. Here, ar(x)(x ∈
Ω), φ(x)(x ∈ Ω̄), f (t,x)(t ∈ [0,1], x ∈ Ω), g(t,x)(t ∈
[−1,0], x ∈ Ω) are smooth functions, n⃗ is the normal vec-
tor to Ω, σ is a positive number and ar(x)≥ a > 0.

Remark 1: The uniqueness and existence of solution
of (1) have been given in [29].

In this paper, we will expand the ILC framework to the
mixed hyperbolic-parabolic DPSs governed by (1). For
convenience, we take n = 1, α j = 0( j = 1,2, · · · ,K),β j =
0( j = 1,2, · · · ,L). For the requirement of ILC design,
we replace both f (t,x) and g(t,x) given in (1) with con-
trol variable u(t,x), and replace u(t,x) given in (1) with
state variable Q(t,x), respectively. By adding an output
variable y(t,x) with general form, the following mixed
hyperbolic-parabolic DPS governed by (1) is given:

∂ 2Q(t,x)
∂ t2 − (a(x)Qx(t,x))x +σQ(t,x)

= u(t,x),0 ≤ t ≤ 1,x ∈ (0,1),
∂Q(t,x)

∂ t
− (a(x)Qx(t,x))x +σQ(t,x)

= u(t,x),−1 ≤ t ≤ 0,x ∈ (0,1),
y(t,x) =C(t)Q(t,x)+D(t)u(t,x),

−1 ≤ t ≤ 1,x ∈ (0,1),

(2)

with initial-boundary conditions: Q(−1,x) = φ(x), x ∈

[0,1]; Q(t,0) = 0 (or
∂Q(t,x)

∂x

∣∣∣∣
x=0

= 0), Q(t,1) = 0 (or

∂Q(t,x)
∂x

∣∣∣∣
x=1

= 0), −1 ≤ t ≤ 1, where Q(t,x), u(t,x),

y(t,x) ∈ R represent the state, control input and output of
the system, respectively, and a(x)≥ a > 0.

Remark 2: It is easy to see that, the system (2) is
parabolic in [−1,0]× (0,1), and hyperbolic in [0,1]×
(0,1).

The system (2) is assumed to satisfy the following as-
sumptions:

Assumption 1: 0 < D1 ≤ D(t) ≤ D2, where D1,D2

are known constants. That is the system (1) has direct
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transmission from inputs to outputs. |C(t)| ≤ C, where C
is an unknown constant.

Assumption 2: For the given trajectory yr(t,x), there
exists a unique ur(t,x) such that

∂ 2Qr(t,x)
∂ t2 − ∂

∂x

(
a(x)

∂Qr(t,x)
∂x

)
+σQr(t,x)

= ur(t,x),0 ≤ t ≤ 1,x ∈ (0,1),
∂Qr(t,x)

∂ t
− ∂

∂x

(
a(x)

∂Qr(t,x)
∂x

)
+σQr(t,x)

= ur(t,x),−1 ≤ t ≤ 0,x ∈ (0,1),
yr(t,x) =C(t)Qr(t,x)+D(t)ur(t,x),

−1 ≤ t ≤ 1,x ∈ (0,1).

It is assumed that the system (2) is repeatable over t ∈
[−1,1]. Rewrite the system (2) at each iteration as:

∂ 2Qk(t,x)
∂ t2 − ∂

∂x

(
a(x)

∂Qk(t,x)
∂x

)
+σQk(t,x)

= uk(t,x),0 ≤ t ≤ 1,x ∈ (0,1),
∂Qk(t,x)

∂ t
− ∂

∂x

(
a(x)

∂Qk(t,x)
∂x

)
+σQk(t,x)

= uk(t,x),−1 ≤ t ≤ 0,x ∈ (0,1),
yk(t,x) =C(t)Qk(t,x)+D(t)uk(t,x),

−1 ≤ t ≤ 1,x ∈ (0,1).
(3)

Assumption 3: The initial-boundary resetting condi-
tions hold for all iterations, i.e., Qk(−1,x) = φ(x),x ∈

[0,1]; Qk(t,0) = 0(or
∂Qk(t,x)

∂x
|x=0 = 0), Qk(t,1) =

0(or
∂Qk(t,x)

∂x
|x=1 = 0), −1 ≤ t ≤ 1. k = 0,1,2, · · · .

The learning control target is to find an appropri-
ate learning scheme, so that the iterative learning se-
quence yk(t,x) uniformly converges to the desired trajec-
tory yr(t,x) on L2 space, that is

lim
k→∞

∥ek∥L2,s = 0,

where ek(t,x) = yr(t,x)− yk(t,x).
Lemma 1 [4]: Suppose {ak}, {bk} are two non-

negative real sequences satisfying
ak+1 ≤ ρak +bk, 0 ≤ ρ < 1,

if lim
k→∞

bk = 0, then lim
k→∞

ak = 0.

3. MAIN RESULTS

For D1,D2 given in Assumption 1, take a positive num-
ber ε satisfying

D2

D1
<

√
1+ ε +1√
1+ ε −1

. (4)

Constructing the learning scheme for the system (3) as
follows:

uk+1(t,x) = uk(t,x)+qek(t,x), (5)

where q > 0 is the learning gain, then we have the follow-
ing theorem:

Theorem 1: Let Assumptions 1-3 are satisfied . If

ρ = max
t∈[−1,1]

|1−qD(t)|< 1√
1+ ε

, (6)

then the iterative process of the system (3) is convergent,
under the effect of the control law (5) , i.e., lim

k→∞
∥ek∥L2,s =

0.

Proof: Denote δQk(t,x) = Qk+1(t,x) − Qk(t,x),
δuk(t,x) = uk+1(t,x)− uk(t,x). It follows from (3) and
(5) that

ek+1(t,x) =ek(t,x)+ yk(t,x)− yk+1(t,x)

=ek(t,x)−C(t)δQk(t,x)−D(t)δuk(t,x)

=ek(t,x)−C(t)δQk(t,x)−qD(t)ek(t,x)

=(1−qD(t))ek(t,x)−C(t)δQk(t,x).

From (6) and Assumption 1, we have

|ek+1(t,x)| ≤ ρ |ek(t,x)|+C |δQk(t,x)| .

Using the basic inequality, it yields

(ek+1(t,x))2 ≤(1+ ε)ρ2(ek(t,x))2

+(1+
1
ε
)C2(δQk(t,x))2.

Integrating both sides with respect to x from 0 to 1, we get

∥ek+1(t, ·)∥2
L2 ≤(1+ ε)ρ2 ∥ek(t, ·)∥2

L2

+(1+
1
ε
)C2 ∥δQk(t, ·)∥2

L2 .

For λ > 0, we have

max
t∈[−1,0]

{
e−λ (t+1) ∥ek+1(t, ·)∥2

L2

}
≤

(1+ ε)ρ2 max
t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
+(1+

1
ε
)C2 max

t∈[−1,0]

{
e−λ (t+1) ∥δQk(t, ·)∥2

L2

}
, (7)

max
t∈[0,1]

{
e−λ t ∥ek+1(t, ·)∥2

L2

}
≤

(1+ ε)ρ2 max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}
+(1+

1
ε
)C2 max

t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
. (8)

It follows from (3) and (5) that

∂ (δQk(t,x))
∂ t

− ∂
∂x

(
a(x)

∂ (δQk(t,x))
∂x

)
+σδQk(t,x)

= qek(t,x), −1 ≤ t ≤ 0,x ∈ (0,1), (9)
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∂ 2(δQk(t,x))
∂ t2 − ∂

∂x

(
a(x)

∂ (δQk(t,x))
∂x

)
+σδQk(t,x)

= qek(t,x), 0 ≤ t ≤ 1,x ∈ (0,1). (10)

Multiplying both sides of (9) by δQk(t,x) and integrat-
ing with respect to x from 0 to 1, we can get∫ 1

0

{
δQk(t,x)

∂ (δQk(t,x))
∂ t

}
dx

−
∫ 1

0

{
δQk(t,x)

∂
∂x

(
a(x)

∂ (δQk(t,x))
∂x

)}
dx

+σ
∫ 1

0
(δQk(t,x))2dx

= q
∫ 1

0
δQk(t,x)ek(t,x)dx, −1 ≤ t ≤ 0, (11)

while∫ 1

0

{
δQk(t,x)

∂ (δQk(t,x))
∂ t

}
dx

=
1
2

d
dt

∫ 1

0
(δQk(t,x))2dx =

1
2

d
dt

∥δQk(t, ·)∥2
L2 , (12)∫ 1

0
δQk(t,x)ek(t,x)dx ≤ 1

2

∫ 1

0
(δQk(t,x))2dx

+
1
2

∫ 1

0
(ek(t,x))2dx

=
1
2
∥δQk(t, ·)∥2

L2 +
1
2
∥ek(t, ·)∥2

L2 . (13)

Integrating by parts and combining with the boundary re-
setting conditions given in Assumptions 3, we can derive∫ 1

0

{
δQk(t,x)

∂
∂x

(
a(x)

∂ (δQk(t,x))
∂x

)}
dx

=

{
δQk(t,x)a(x)

∂ (δQk(t,x))
∂x

}∣∣∣∣1
0

−
∫ 1

0

{
∂ (δQk(t,x))

∂x
a(x)

∂ (δQk(t,x))
∂x

}
dx

=−
∫ 1

0

{
∂ (δQk(t,x))

∂x
a(x)

∂ (δQk(t,x))
∂x

}
dx ≤ 0.

(14)

Note that σ > 0. Substituting (12)-(14) into (11), it yields

d
dt

∥δQk(t, ·)∥2
L2 ≤ q∥δQk(t, ·)∥2

L2 +q∥ek(t, ·)∥2
L2 ,

−1 ≤ t ≤ 0.

Applying Gronwall lemma and combining with the initial
resetting conditions given in Assumptions 3, we have

∥δQk(t, ·)∥2
L2 ≤ q

∫ t

−1
eq(t−η) ∥ek(η , ·)∥2

L2 dη

≤ qeq
∫ t

−1
∥ek(η , ·)∥2

L2 dη

= qeq
∫ t

−1
eλ (η+1)e−λ (η+1) ∥ek(η , ·)∥2

L2 dη

≤ qeq
∫ t

−1
eλ (η+1)dη max

t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
= qeq e

λ (t+1)−1
λ

max
t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
.

(15)

Therefore

max
t∈[−1,0]

{
e−λ (t+1) ∥δQk(t, ·)∥2

L2

}
≤ qeq max

t∈[−1,0]

{
1−e−λ (t+1)

λ

}
× max

t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
= qeq 1−e−λ

λ
max

t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
.

Substituting the above expression into (7), it yields

max
t∈[−1,0]

{
e−λ (t+1) ∥ek+1(t, ·)∥2

L2

}
≤
{
(1+ ε)ρ2 +(1+

1
ε
)C2qeq 1−e−λ

λ

}
× max

t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}
. (16)

It follows from (6) that (1+ ε)ρ2 < 1. Therefore, there
exists a sufficiently large λ such that

(1+ ε)ρ2 +(1+
1
ε
)C2qeq 1−e−λ

λ
< 1. (17)

From (16), (17), it can be concluded that

lim
k→∞

{
max

t∈[−1,0]

{
e−λ (t+1) ∥ek(t, ·)∥2

L2

}}
= 0. (18)

We have

e−λ (t+1) ∥ek(t, ·)∥2
L2 ≥ e−λ ∥ek(t, ·)∥2

L2 , t ∈ [−1,0],

which implies

∥ek(t, ·)∥2
L2 ≤ eλ e−λ (t+1) ∥ek(t, ·)∥2

L2 , t ∈ [−1,0]. (19)

It follows from (18), (19) that

lim
k→∞

{
max

t∈[−1,0]
∥ek(t, ·)∥2

L2

}
= 0. (20)

From (15), (18), we can get

lim
k→∞

{
max

t∈[−1,0]
∥δQk(t, ·)∥2

L2

}
= 0.

Then

lim
k→∞

∥δQk(0, ·)∥2
L2 = 0. (21)
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Multiplying both sides of (10) by
∂ (δQk(t,x))

∂ t
and in-

tegrating with respect to x from 0 to 1, we can obtain∫ 1

0

{
∂ (δQk(t,x))

∂ t
∂ 2(δQk(t,x))

∂ t2

}
dx

−
∫ 1

0

{
∂ (δQk(t,x))

∂ t
∂
∂x

(
a(x)

∂ (δQk(t,x))
∂x

)}
dx

+σ
∫ 1

0

∂ (δQk(t,x))
∂ t

δQk(t,x)dx

= q
∫ 1

0

∂ (δQk(t,x))
∂ t

ek(t,x)dx,0 ≤ t ≤ 1, (22)

while∫ 1

0

{
∂ (δQk(t,x))

∂ t
∂ 2(δQk(t,x))

∂ t2

}
dx

=
1
2

d
dt

∫ 1

0

(
∂ (δQk(t,x))

∂ t

)2

dx

=
1
2

d
dt

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

, (23)∣∣∣∣∫ 1

0

∂ (δQk(t,x))
∂ t

δQk(t,x)dx
∣∣∣∣

≤ 1
2

∫ 1

0

(
∂ (δQk(t,x))

∂ t

)2

dx+
1
2

∫ 1

0
(δQk(t,x))2dx

=
1
2

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

+
1
2
∥δQk(t, ·)∥2

L2 , (24)∫ 1

0

∂ (δQk(t,x))
∂ t

ek(t,x)dx

≤ 1
2

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

+
1
2
∥ek(t, ·)∥2

L2 . (25)

Integrating by parts and combining with the boundary re-
setting conditions given in Assumptions 3, we can derive∫ 1

0

{
∂ (δQk(t,x))

∂ t
∂
∂x

(
a(x)

∂ (δQk(t,x))
∂x

)}
dx

=

{
∂ (δQk(t,x))

∂ t
a(x)

∂ (δQk(t,x))
∂x

}∣∣∣∣1
0

−
∫ 1

0

{
∂ 2(δQk(t,x))

∂ t∂x
a(x)

∂ (δQk(t,x))
∂x

}
dx

=−1
2

d
dt

∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx. (26)

Substituting (23)-(26) into (22), it yields

d
dt

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

+
d
dt

∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx

≤ (σ +q)
∥∥∥∥∂ (δQk(t, ·))

∂ t

∥∥∥∥2

L2

+σ ∥δQk(t, ·)∥2
L2

+q∥ek(t, ·)∥2
L2 .

It follows from a(x)≥ a > 0 that

d
dt

{∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

+
∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx

}

≤ (σ +q)
∥∥∥∥∂ (δQk(t, ·))

∂ t

∥∥∥∥2

L2

+σ ∥δQk(t, ·)∥2
L2

+q∥ek(t, ·)∥2
L2

≤ (σ +q)
∥∥∥∥∂ (δQk(t, ·))

∂ t

∥∥∥∥2

L2

+σ ∥δQk(t, ·)∥2
L2

+q∥ek(t, ·)∥2
L2

+(σ +q)
∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx,

0 ≤ t ≤ 1.

Applying Gronwall lemma and combining with the initial
resetting conditions given in Assumptions 3, we have∥∥∥∥∂ (δQk(t, ·))

∂ t

∥∥∥∥2

L2

+
∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx

≤
∫ t

0
e(σ+q)(t−η)

{
σ ∥δQk(η , ·)∥2

L2 +q∥ek(η , ·)∥2
L2

}
dη

≤ eσ+q e
λ t −1

λ

{
σ max

t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
+q max

t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}}
.

So

max
t∈[0,1]

{
e−λ t

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

}

≤ max
t∈[0,1]

{
e−λ t

{∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

+
∫ 1

0

{
a(x)

(
∂ (δQk(t,x))

∂x

)2
}

dx

}}

≤ eσ+q max
t∈[0,1]

{
1−e−λ t

λ

}
×
{

σ max
t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
+q max

t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}}
= eσ+q 1−e−λ

λ

{
σ max

t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
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+q max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}}
. (27)

On the other hand, by using the basic inequality, we
have

d
dt

∥δQk(t, ·)∥2
L2 =

d
dt

∫ 1

0
(δQk(t,x))2dx

= 2
∫ 1

0
δQk(t,x)

∂δQk(t,x)
∂ t

dx

≤
∫ 1

0
(δQk(t,x))2dx+

∫ 1

0

(
∂δQk(t,x)

∂ t

)2

dx

= ∥δQk(t, ·)∥2
L2 +

∥∥∥∥∂δQk(t, ·)
∂ t

∥∥∥∥2

L2

, 0 ≤ t ≤ 1.

Applying Gronwall lemma, we can obtain

∥δQk(t, ·)∥2
L2 ≤

∫ t

0

{
et−η

∥∥∥∥∂δQk(η , ·)
∂η

∥∥∥∥2

L2

}
dη

+ et ∥δQk(0, ·)∥2
L2

= et
∫ t

0

{
e(λ−1)η e−λη

∥∥∥∥∂δQk(η , ·)
∂η

∥∥∥∥2

L2

}
dη

+ et ∥δQk(0, ·)∥2
L2

≤ et
∫ t

0
e(λ−1)η dη max

t∈[0,1]

{
e−λ t

∥∥∥∥∂δQk(t, ·)
∂ t

∥∥∥∥2

L2

}
+ e∥δQk(0, ·)∥2

L2

=
eλ t −et

λ −1
max
t∈[0,1]

{
e−λ t

∥∥∥∥∂δQk(t, ·)
∂ t

∥∥∥∥2

L2

}
+ e∥δQk(0, ·)∥2

L2 .

Take λ > 1, then

max
t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
≤ max

t∈[0,1]

{
1−e−(λ−1)t

λ −1

}
max
t∈[0,1]

{
e−λ t

∥∥∥∥∂δQk(t, ·)
∂ t

∥∥∥∥2

L2

}

+ max
t∈[0,1]

{
e−λ te∥δQk(0, ·)∥2

L2

}
=

1−e−(λ−1)

λ −1

× max
t∈[0,1]

{
e−λ t

∥∥∥∥∂δQk(t, ·)
∂ t

∥∥∥∥2

L2

}
+ e∥δQk(0, ·)∥2

L2 .

(28)

Substituting (28) into (27) and selecting λ large enough
such that

σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ −1
< 1,

we have

max
t∈[0,1]

{
e−λ t

∥∥∥∥∂ (δQk(t, ·))
∂ t

∥∥∥∥2

L2

}

≤
qeσ+q 1−e−λ

λ

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}
+

σeσ+q+1 1−e−λ

λ

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

∥δQk(0, ·)∥2
L2 .

Substituting the above expression into (28), it yields

max
t∈[0,1]

{
e−λ t ∥δQk(t, ·)∥2

L2

}
≤ 1−e−(λ−1)

λ −1
qeσ+q 1−e−λ

λ

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

× max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}
+

(
e+

σeσ+q+1 1−e−λ

λ
1−e−(λ−1)

λ−1

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

)
∥δQk(0, ·)∥2

L2 .

Substituting the above expression into (8) and denoting

α=
1−e−(λ−1)

λ −1
qeσ+q 1−e−λ

λ

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

,

β=e+
σeσ+q+1 1−e−λ

λ
1−e−(λ−1)

λ−1

1−σeσ+q 1−e−λ

λ
1−e−(λ−1)

λ−1

,

we can obtain

max
t∈[0,1]

{
e−λ t ∥ek+1(t, ·)∥2

L2

}
≤
{
(1+ ε)ρ2+(1+

1
ε
)C2α

}
max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}
+(1+

1
ε
)C2β ∥δQk(0, ·)∥2

L2 . (29)

It is clear that α → 0 as λ → ∞, so we can select λ large
enough such that

(1+ ε)ρ2+(1+
1
ε
)C2α < 1. (30)

Applying lemma 1 to (29) and combining with (21),(30),
we have

lim
k→∞

{
max
t∈[0,1]

{
e−λ t ∥ek(t, ·)∥2

L2

}}
= 0.

Therefore

lim
k→∞

{
max
t∈[0,1]

∥ek(t, ·)∥2
L2

}
= 0. (31)

From (20), (31), it can be concluded that

lim
k→∞

{
max

t∈[−1,1]
∥ek(t, ·)∥2

L2

}
= 0.

Then

lim
k→∞

∥ek∥L2,s = 0.

This completes the proof. □
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Remark 3: From Assumption 1, when we choose the

learning gain q such that

√
1+ε −1

D1
√

1+ε
< q <

√
1+ε+1

D2
√

1+ε
, the

convergence condition (6) holds. And from (4), the learn-
ing gain q satisfying the convergence condition (6) always
exists.

Remark 4: From (3), (5) and Remark 1, as long as the
initial control u0(t,x) is selected a piecewise smooth func-
tion ((t,x) ∈ [−1,0]× (0,1),(t,x) ∈ [0,1]× (0,1)), the so-
lutions of the system (3) at kth iteration are always existing
and unique (k = 0,1,2, · · ·).

4. SIMULATION EXAMPLE

Taking a(x) = 1, σ = 1, C(t) = D(t) = 1, then the sys-
tem (2) is as follows:

∂ 2Q(t,x)
∂ t2 − ∂ 2Q(t,x)

∂x2 +Q(t,x)

= u(t,x),0 ≤ t ≤ 1,x ∈ (0,1),
∂Q(t,x)

∂ t
− ∂ 2Q(t,x)

∂x2 +Q(t,x)

= u(t,x),−1 ≤ t ≤ 0,x ∈ (0,1),
y(t,x) = Q(t,x)+u(t,x),

−1 ≤ t ≤ 1,x ∈ (0,1).

For the given desired trajectory: yr(t,x) = 3etx(x− 1)−
2et , we have Qr(t,x) = etx(x−1), ur(t,x) = 2etx(x−1)−
2et .

Construct the kth iteration

∂ 2Qk(t,x)
∂ t2 − ∂ 2Qk(t,x)

∂x2 +Qk(t,x)

= uk(t,x),0 ≤ t ≤ 1,x ∈ (0,1),
∂Qk(t,x)

∂ t
− ∂ 2Qk(t,x)

∂x2 +Qk(t,x)

= uk(t,x),−1 ≤ t ≤ 0,x ∈ (0,1),
yk(t,x) = Qk(t,x)+uk(t,x),

−1 ≤ t ≤ 1,x ∈ (0,1).

Combining with the initial-boundary resetting conditions
in Assumption 3, we take the initial-boundary (Dirichlet)
values at kth iteration:

Qk(−1,x) = Qr(−1,x)=e−1x(x−1),
Qk(t,0) = 0, Qk(t,1) = 0.

Take the initial control u0(t,x) = 1, and construct the
following iterative learning control:

uk+1(t,x) = uk(t,x)+qek(t,x),

k = 0,1,2, · · · . Taking ε =
9
16

, it follows from (6) that the
iteration is convergent for 0.2 < q < 1.8. Therefore, we
take q = 1.5. By using the mathematical software Mathe-
matica, it is easy to see that the output tracking errors on
L2 space tend to zero as k → ∞ (shown in Fig. 1). Further-
more, the simulation results of the output tracking errors
ek(t,x) with the change of the iteration index k are shown
in Figs. 2-4. From Figs. 2-4, we can know that |ek(t,x)|
becomes small gradually as k increases.

1 2 3 4 5 6
k

10

20

30

40

50

60

þekþL
2,s

Fig. 1. Iterations for the output tracking errors.

Fig. 2. Trajectory of e0(t,x) over [−1,1]× [0,1] .

Fig. 3. Trajectory of e3(t,x) over [−1,1]× [0,1].

Fig. 4. Trajectory of e6(t,x) over [−1,1]× [0,1].
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5. CONCLUSIONS

This paper considers the iterative learning control prob-
lem for a class of mixed distributed parameter systems
which are composed of mixed hyperbolic-parabolic partial
differential equations. By using P-type learning scheme,
the convergence theorem of the output tracking errors on
L2 space is established based on the contraction mapping
method. The simulation result is consistent with theo-
retical analysis. How to apply iterative learning control
scheme to other MDPSs as mentioned in the references of
this paper, it remains further research.
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