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Free-Matrix-based Integral Inequality for Stability Analysis of Uncertain
T-S Fuzzy Systems with Time-varying Delay
Wen-Pin Luo*, Jun Yang, and Xin Zhao

Abstract: This paper focuses on further improved stability criteria for uncertain T-S fuzzy systems with time-
varying delay by delay-partitioning approach and Free-Matrix-based integral inequality. A modified augmented
Lyapunov-Krasovskii functional (LKF) is established by partitioning the delay in all integral terms. Then, on the
basis of taking into account the independent upper bounds of the delay derivative in various delay intervals, some
new results on tighter bounding inequalities, such as Peng-Park’s integral inequality and the Free-Matrix-based
integral inequality are employed to effectively reduce the enlargement in bounding the derivative of LKF, therefore,
less conservative results can be expected in terms of es and LMIs. Finally, three numerical examples are included
to show that the proposed method is less conservative than existing ones.

Keywords: Delay-partitioning approach, free-matrix-based integral inequality, linear matrix inequalities (LMIs),
Lyapunov-Krasovskii functional (LKF), stability, time-varying delay, T-S fuzzy systems.

1. INTRODUCTION

Ever since Takagi-Sugeno (T-S) fuzzy model was firstly
introduced in [1], considerable attentions have been paid
to stability analysis and control synthesis of this model
during the past three decades, due to the fact that it can
combine the flexibility of fuzzy logic theory and fruitful
linear system theory into a unified framework to approxi-
mate complex nonlinear systems (especially those with in-
complete information) such as truck-trailer system, TORA
system, inverted pendulum system and chaotic systems
[1–4]. Furthermore, time-delay phenomenon widely ex-
ists in practical systems and is often a source of instability
and poor performance, therefore, stability analysis for T-S
fuzzy systems with (time-varing) delay has attracted much
attentions over the last two decades, see, e.g., [5–10] and
references therein. As far as the recent techniques adopted
in the stability analysis of T-S fuzzy systems with time-
varying delay are concerned, the delay-partitioning ap-
proach is the most noteworthy since it has been proved that
less conservative results can be expected with increasing
delay-partitioning segments [11, 12, 14, 15]. On the other
hand, as [16] pointed out that, for the delay-partitioning
approach, further less conservative stability conditions for
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time-varying delay systems can be achieved by taking into
account of independent upper bounds of the delay deriva-
tive in various delay-partitioning intervals.

Recently, [15] has developed less conservative stabil-
ity criteria than those in [6, 14, 17] for the uncertain T-S
fuzzy systems with interval time-varying delay via delay-
partitioning approach and a tighter bounding inequality
(Peng-Park’s integral inequality) established by recipro-
cally convex approach [18]. More recently, on the basis
of a novel LKF and reciprocally convex approach [18],
[11] has achieved less conservative results than those in
[6,15,20–23,25] for the uncertain T-S fuzzy systems with
time-varying delay. Most recently, for the uncertain T-S
fuzzy systems with time-varying delay, by means of delay-
partitioning approach, Finsler’s lemma and an appropriate
LKF established in the framework of state vector augmen-
tation, [24] employs some tighter bounding inequalities to
effectively estimate the derivative of LKF, thus less con-
servative stability criteria than those in [6, 11,21,23] have
obtained in [24]. However, when revisiting this problem,
we find that the aforementioned works still leave plenty of
room for improvement since that the challenges of deriv-
ing a further less conservative result is to construct an ap-
propriate LKF that includes more useful augmented state
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information and to reduce the enlargement in bounding the
derivative of LKF as much as possible.

Motivated by the above discussion, the main purpose of
this paper is to develop less conservative stability criteria
for uncertain T-S fuzzy systems with time-varying delay
on the basis of delay-partitioning approach and Finsler’s
lemma. Firstly, inspired by the work [11], an appropri-
ate augmented LKF is established by partitioning time
delay into all integral terms, and the τ(t)-dependent and
[Ti j]m×m-dependent sub-LKFs are included in the aug-
mented LKF, which make the appropriate LKF include
more useful augmented state information. Secondly, the
independent upper bounds of the delay derivative in the
various delay intervals have been taken into full account.
Thirdly, some new results on tighter bounding inequali-
ties, i.e., Peng-Park’s integral inequality (reciprocally con-
vex approach) and the Free-Matrix-based integral inequal-
ity (which includes the well-known Wirtinger-based in-
equality as its special case) have been employed to effec-
tively reduce the enlargement in bounding the derivative
of LKF. Finally, three numerical examples are provided to
show the merits of the proposed results.

The rest of this paper is organized as follows. The main
problem is formulated in Section 2 and the improved sta-
bility criteria for the uncertain T-S fuzzy systems with
time-varying delay are derived in Section 3. In Section 4,
three numerical examples are provided; and a concluding
remark is given in Section 5.

Notations: Through this paper, Rn and Rn×m denote,
respectively, the n-dimensional Euclidean space and the
set of all n×m real matrices; the notation A> (≥)B means
that A−B is positive (semi-positive) definite; I (0) is the
identity (zero) matrix with appropriate dimension; AT de-
notes the transpose; He{A} represents the sum of A and
AT; ∥•∥ denotes the Euclidean norm in Rn; “*" denotes the
elements below the main diagonal of a symmetric block
matrix; C([−τ,0],Rn) is the family of continuous func-
tions ϕ from interval [−τ,0] to Rn with the norm ∥ϕ∥τ =
sup−τ≤θ≤0 ∥ϕ(θ)∥; let xt(θ) = x(t +θ), θ ∈ [−τ,0].

2. PROBLEM FORMULATION

In this section, a class of uncertain T-S fuzzy sys-
tems with time-varying delay is concerned. For each
i = 1,2, · · · ,r (r is the number of plant rules), the ith rule
of this T-S fuzzy model is represented as follows:
Plant Rule i: IF θ1(t) is Mi1, θ2(t) is Mi2, · · · , θp(t) is
Mip, THEN{

ẋ(t) = Ai(t)x(t)+Adi(t)x(t − τ(t)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−τ,0],
(1)

where θ1(t), θ2(t), · · · , θp(t) are the premise variables,
and each Mil(i = 1,2, · · · ,r; l = 1,2, · · · , p) is a fuzzy set;
x(t) ∈ Rn is the state vector; ϕ(t) ∈ C([−τ ,0],Rn) is the

initial function; the delay τ(t) is a time-varying functional
satisfying

0 ≤ τ(t)≤ τ, (2)

τ̇(t)≤ µ, (3)

where τ and µ are constants; Ai(t) = Ai +∆Ai(t), Adi(t) =
Adi +∆Adi(t), Ai and Adi are constant real matrices with
appropriate dimensions. The matrices ∆Ai(t) and ∆Adi(t)
denote the uncertainties in the system which are defined
as

[∆Ai(t),∆Adi(t)] = HF(t)[Ei,Edi], (4)

where H, Ei and Edi are known constant matrices and F(t)
is an unknown matrix function satisfying

FT(t)F(t)≤ I. (5)

By a center-average defuzzier, product inference and
singleton fuzzifier, the dynamic fuzzy model in (1) can
be represented by ẋ(t) =

r

∑
i=1

hi(θ(t)){Ai(t)x(t)+Adi(t)x(t − τ(t))},

x(t) = ϕ(t), t ∈ [−τ,0],
(6)

where

hi(θ(t)) =
∏p

l=1 Mil(θl(t))
∑r

i=1 ∏p
l=1 Mil(θl(t))

, i = 1, · · · ,r, (7)

in which Mil(θl(t)) is the grade of membership of θl(t)
in Mil , and θ(t) = (θ1(t), · · · ,θr(t)); By definition, the
fuzzy weighting functions hi(θ(t)) satisfy hi(θ(t)) ≥ 0
and ∑r

i=1 hi(θ(t)) = 1. For notational simplicity, hi is
used to represent hi(θ(t)) in the following description.

Before proceeding, recall the following lemmas which
will be used throughout the proofs.

Lemma 1 (Finsler’s lemma [27]): Let ζ ∈ Rn, Φ =
ΦT ∈ Rn×n, and B ∈ Rm×n such that rank(B) < n. Then
the following statements are equivalent:

(i) ζ TΦζ < 0, ∀ Bζ = 0, ζ ̸= 0;

(ii) B⊥TΦB⊥ < 0;
(iii) ∃ L ∈ Rn×m : Φ+He(LB)< 0,

where B⊥ ∈ Rn×(n−rank(B)) is the right orthogonal comple-
ment of B.

Lemma 2 [28]: Let x be a differentiable function:
[α,β ] → Rn. For symmetric matrices Z ∈ Rn×n, X ∈

R2n×2n and Y ∈R2n×n with
[

X Y
∗ Z

]
≥ 0, if the integrals
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concerned are well defined, then the following inequality
holds:

−
∫ β

α
ẋT(s)Zẋ(s)ds ≤ ϖ̂T(t)[(β −α)X +He(Y Π)]ϖ̂(t),

(8)
where Π = [I, −I] and ϖ̂(t) = [xT(β ), xT(α)]T.

Lemma 3 (Peng-Park’s integral inequality [15, 18]):

For any matrix
[

Z S
∗ Z

]
≥ 0, positive scalars τ and τ(t)

satisfying 0 < τ(t) < τ , vector function ẋ : [−τ,0] → Rn

such that the concerned integrations are well defined, then

−τ
∫ t

t−τ
ẋT(s)Zẋ(s)ds ≤ ϖT(t)Ωϖ(t),

where

ϖ(t) = [xT(t),xT(t − τ(t)),xT(t − τ)]T,

Ω =

 −Z Z −S S
∗ −2Z +He(S) −S+Z
∗ ∗ −Z

 .
Lemma 4 (Free-Matrix-based integral inequality [29]):

Let x be a differentiable function: [α ,β ]→ Rn. For sym-
metric matrices Z ∈ Rn×n and W1,W3 ∈ R3n×3n, and any
matrices W2 ∈ R3n×3n and N1,N2 ∈ R3n×n satisfying W1 W2 N1

∗ W3 N2

∗ ∗ Z

≥ 0,

then, the following inequality holds:

−
∫ β

α
ẋT(s)Zẋ(s)ds ≤ ϖ̄T(t)Ω̄ϖ̄(t), (9)

where ϖ̄(t) = [xT(β ), xT(α), 1
β−α

∫ β
α xT(s)ds]T and

Ω̄ = (β −α)(W1 +
1
3W3)+He{N1Π̄1 +N2Π̄2},

Π̄1 = ē1 − ē2,Π̄2 = 2ē3 − ē1 − ē2,
ē1 = [I, 0, 0], ē2 = [0, I, 0], ē3 = [0, 0, I].

Remark 1: By setting N1 = 1
β−α [−Z, Z, 0]T, N2 =

3
β−α [Z, Z, −2Z]T, W1 = N1Z−1NT

1 , W2 = N1Z−1NT
2 and

W3 = N2Z−1NT
2 , the Free-Matrix-based integral inequality

(9) reduces to the well-known Wirtinger-based inequality
[26]. Since the Free-Matrix-based integral inequality is
composed of a set of adjustable slack variables, it can
provide extra freedom in reducing the conservativeness of
the inequality and yield less conservative conditions than
the use of the Wirtinger-based inequality does [29].

Lemma 5 [30]: Let Q = QT, H, E and F(t) satisfy-
ing FT(t)F(t)≤ I are appropriately dimensional matrices,
then the following inequality

Q+He{HF(t)E}< 0

is true, if and only if the following inequality holds for any
ε > 0,

Q+ ε−1HHT + εETE < 0.

3. MAIN RESULTS

This section aims to develop further improved stability
criteria for uncertain fuzzy system (6) with time-varying
delay by delay-partitioning approach.

For any integer m ≥ 1, define δ = τ
m , then [0,τ] can be

divided into m segments, i.e.,

[0,τ] =
∪m

j=1[( j−1)δ , jδ ]. (10)

For any t ≥ 0, there should exist an integer k ∈ {1, · · · ,m},
such that τ(t) ∈ [(k−1)δ , kδ ].

Remark 2: In previous works such as [11, 13, 24, 31]
and references therein, considerable attention has been
paid to the case that the derivative of the time-varying de-
lay τ̇(t) satisfies (3). In fact, τ̇(t) may have different upper
bounds in various delay intervals, that is,

τ̇(t)≤ µk, τ(t) ∈ [(k−1)δ , kδ ], k = 1,2, · · · ,m. (11)

In this case, the treatment in [11,13,24,31] means that τ̇(t)
in (11) is enlarged to τ̇(t) ≤ µ = max{µ1,µ2, · · · ,µm},
which may inevitably lead to conservativeness [16].

For notational simplification, motivated by [15], let
es =

0, · · · ,0︸ ︷︷ ︸
s−1

, I,0, · · · ,0︸ ︷︷ ︸
m−s+4

T

, s = 1,2, · · · ,m+4

ζ (t) = [xT(t − τ(t)), ẋT(t), 1
δ
∫ t

t−δ xT(s)ds, ζ T
1 (t),

xT(t −mδ )]T,
(12)

where

ζ1(t) = [xT(t),xT(t −δ ), · · · ,xT(t − (m−1)δ )]T.

Based on Lyapunov-Krasovskii stability theorem [32],
we firstly state the following stability criterion for the
nominal system (6), i.e., the system (6) without parameter
uncertainties.

Theorem 1: Given a positive integer m, scalars τ ≥
0, δ = τ

m and µk (k = 1, · · · ,m), then the nominal system
(6) with a time-delay τ(t) satisfying (2) and (11) is asymp-
totically stable if there exist symmetric positive matrices
Z0, Z j, Q j ∈ Rn×n( j = 1, ..., m), T = [Ti j]m×m ∈ Rmn×mn,
P ∈R2n×2n, Rl ∈R2n×2n (l = 1, ..., m−1), symmetric ma-
trices Xi j ∈ R2n×2n, W1,W3 ∈ R3n×3n, and any matrices
Yi j ∈ R2n×n, W2 ∈ R3n×3n, N1,N2 ∈ R3n×n, L ∈ R(m+4)n×n



Free-Matrix-based Integral Inequality for Stability Analysis of Uncertain T-S Fuzzy Systems with Time-varying ... 951

and Si j ∈ Rn×n (i = 1, · · · ,r; j = 1, · · · ,m), such that the
following LMIs hold for i = 1, · · · ,r and k = 1, · · · ,m:

Ψ =

 W1 W2 N1

∗ W3 N2

∗ ∗ Z0

≥ 0, (13)

Λ(i,k) =
[

Xi j Yi j

∗ Z j

]
≥ 0, j = 1, · · · ,m, (14)

ϒ(i,k) =
[

Zk Sik

∗ Zk

]
≥ 0, (15)

Ξ(i,k)+He{LΓi}< 0, (16)

where

Ξ(i,k) =
3

∑
j=0

Ξ j +Ξ4(k)+Ξ5(i,k)+ e2Z̄eT
2 ,

Γi = AieT
4 +AdieT

1 − eT
2 ,

Ξ0 =

 eT
4

eT
5

eT
3

T

Ω0

 eT
4

eT
5

eT
3

 ,
Ξ1 = He

{[
eT

4
δeT

3

]T

P
[

eT
2

eT
4 − eT

5

]}
,

Ξ2 =


eT

4
eT

5
...

eT
m+3


T

T


eT

4
eT

5
...

eT
m+3

−


eT
5

eT
6
...

eT
m+4


T

T


eT

5
eT

6
...

eT
m+4

 ,

Ξ3 =
m−1

∑
j=1

([
eT

j+3
eT

j+4

]T

R j

[
eT

j+3
eT

j+4

]
−
[

eT
j+4

eT
j+5

]T

R j

[
eT

j+4
eT

j+5

])
,

Ξ4(k) =
k−1

∑
j=1

[
e j+3Q jeT

j+3 − e j+4Q jeT
j+4

]
+ ek+3QkeT

k+3

− (1−µk)e1QkeT
1 ,

Ξ5(i,k) =
m

∑
j=1, j ̸=k

[
eT

j+3
eT

j+4

]T [
δ 2Xi j +He{δYi jΠ}

][ eT
j+3

eT
j+4

]

+

 eT
k+3
eT

1
eT

k+4

T −Zk Zk −Sik Sik

∗ −2Zk +He(Sik) Zk −Sik

∗ ∗ −Zk

 eT
k+3
eT

1
eT

k+4

 ,
with Z̄ = δ 2

m
∑
j=0

Z j, Ω0 = δ [δ (W1 +
1
3W3) + He{N1Π̄1 +

N2Π̄2}], and Π, Π̄1, Π̄2 are defined in Lemma 2 and
Lemma 4.

Proof: For any t ≥ 0, there should exist an integer k ∈
{1, · · · ,m}, such that τ(t) ∈ [(k−1)δ , kδ ]. Then, choose
the following LKF candidate:

V (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} =
5

∑
i=1

Vi(xt), (17)

where

V1(xt) = ηT
0 (t)Pη0(t),

V2(xt) =
∫ t

t−δ
ζ T

1 (s)T ζ1(s)ds,

V3(xt) =
m−1

∑
j=1

∫ t

t−δ
ηT

j (s)R jη j(s)ds,

V4(xt) =
k−1

∑
j=1

∫ t−( j−1)δ

t− jδ
xT(s)Q jx(s)ds

+
∫ t−(k−1)δ

t−τ(t)
xT(s)Qkx(s)ds,

V5(xt) =
m

∑
j=1

δ
∫ −( j−1)δ

− jδ

∫ t

t+θ
ẋT(s)Z j ẋ(s)dsdθ

+δ
∫ 0

−δ

∫ t

t+θ
ẋT(s)Z0ẋ(s)dsdθ ,

with η0(t) = [xT(t),
∫ t

t−δ xT(s)ds]T and η j(s) = [xT(s −
( j−1)δ ),xT(s− jδ )]T, j = 1, · · · ,m−1.

Taking derivative of V (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} along the
trajectory of the nominal system (6) yields:

V̇ (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} =
5

∑
i=1

V̇i(xt), (18)

where

V̇1(xt) = 2ηT
0 (t)Pη̇0(t) = ζ T(t)Ξ1ζ (t), (19)

V̇2(xt) = ζ T
1 (t)T ζ1(t)−ζ T

1 (t −δ )T ζ1(t −δ )
= ζ T(t)Ξ2ζ (t), (20)

V̇3(xt) =
m−1

∑
j=1

[ηT
j (t)R jη j(t)−ηT

j (t −δ )R jη j(t −δ )]

= ζ T(t)Ξ3ζ (t), (21)

V̇4(xt)≤
k−1

∑
j=1

[xT(t − ( j−1)δ )Q jx(t − ( j−1)δ )

− xT(t − jδ )Q jx(t − jδ ]
+ xT(t − (k−1)δ )Qkx(t − (k−1)δ )
− (1−µk)xT(t − τ(t))Qkx(t − τ(t))

= ζ T(t)Ξ4(k)ζ (t), (22)

V̇5(xt) = ẋT(t)Z̄ẋ(t)−δ
m

∑
j=1

∫ t−( j−1)δ

t− jδ
ẋT(s)Z j ẋ(s)ds

−δ
∫ t

t−δ
ẋT(s)Z0ẋ(s)ds. (23)

Applying Lemma 2 and Lemma 3 (Peng-Park’s inte-
gral inequality) to bound the second item in (23), it can

be deduced for
[

X̂ j Ŷj

∗ Z j

]
≥ 0 ( j = 1, · · · ,m, j ̸= k) and
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[
Zk Ŝk

∗ Zk

]
≥ 0 (where X̂ j =

r
∑

i=1
hiXi j, Ŷj =

r
∑

i=1
hiYi j and

Ŝk =
r
∑

i=1
hiSik) that

−δ
m

∑
j=1

∫ t−( j−1)δ

t− jδ
ẋT(s)Z j ẋ(s)ds

≤
m

∑
j=1, j ̸=k

ϖT
1 (t)

[
δ 2X̂ j +He{δŶjΠ}

]
ϖ1(t)

+ϖT
2 (t)

 −Zk Zk − Ŝk Ŝk

∗ −2Zk +He(Ŝk) Zk − Ŝk

∗ ∗ −Zk

ϖ2(t)

=
r

∑
i=1

hiζ T(t)Ξ5(i,k)ζ (t),

(24)

where ϖ1(t) =
[
xT(t − ( j−1)δ ),xT(t − jδ )

]T and
ϖ2(t) = [xT(t − (k−1)δ ),xT(t − τ(t)),xT(t − kδ )]T.

On the other hand, it follows from the Free-Matrix-
based integral inequality (Lemma 4) that

−δ
∫ t

t−δ
ẋT(s)Z0ẋ(s)ds ≤ ϖT

3 (t)Ω0ϖ3(t) = ζ T(t)Ξ0ζ (t).

(25)

where ϖ3(t) =
[
xT(t),xT(t −δ ), 1

δ
∫ t

t−δ xT(s)ds
]T

.
By (18)-(25), the following inequality holds

V̇ (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} ≤
r

∑
i=1

hiζ T(t)Ξ(i,k)ζ (t), (26)

where Ξ(i,k) is defined in Theorem 1.
Furthermore, the nominal system (6) with the aug-

mented vector ζ (t) can be rewritten as:

0 =
r

∑
i=1

hiΓiζ (t),

where Γi is defined in Theorem 1.
Therefore, the asymptotic stability conditions for the

nominal system (6) can be represented by
r

∑
i=1

hiζ T(t)Ξ(i,k)ζ (t)< 0,

sub ject to : 0 =
r

∑
i=1

hiΓiζ (t).
(27)

By Finsler’s lemma, for L ∈ R(m+4)n×n, the conditions
in (27) are equivalent to

r

∑
i=1

hiζ T(t)[Ξ(i,k)+He{LΓi}]ζ (t)< 0. (28)

Then, it follows from (26), (27), (28) and LMIs (16)
that V̇ (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} < 0. This means

V̇ (t,xt)|{τ(t)∈[(k−1)δ , kδ ]} <−γ ∥x(t)∥2

for a sufficiently small γ > 0. Therefore, by Lyapunov-
Krasovskii stability theorem [32], the nominal system (6)
with any delay τ(t) satisfying (2) and (11) is globally
asymptotically stable. This completes the proof. □

For the uncertain T-S fuzzy system (6), replacing Ai and
Adi with Ai +HF(t)Ei and Adi +HF(t)Edi in (16), then,
the following result can be readily derived by applying
Lemma 5 and Schur complement [33]. Thus, it is omitted
here.

Theorem 2: Given a positive integer m, scalars τ ≥ 0,
µk (k = 1, ..., m) and δ = τ

m , then the uncertain T-S
system (6) with the time-delay τ(t) satisfying (2) and
(11) is asymptotically stable if there exist scalars εik > 0
(i = 1, ..., r; k = 1, ..., m), symmetric positive matrices
Z0, Z j, Q j ∈ Rn×n ( j = 1, ..., m), T = [Ti j]m×m ∈ Rmn×mn,
P ∈R2n×2n, Rl ∈R2n×2n (l = 1, ..., m−1), symmetric ma-
trices Xi j ∈ R2n×2n, W1,W3 ∈ R3n×3n, and any matrices
Yi j ∈R2n×n, W2 ∈R3n×3n, N1, N2 ∈R3n×n, L ∈R(m+4)n×n

and Si j ∈ Rn×n (i = 1, · · · ,r; j = 1, · · · ,m), such that the
following LMIs hold for i = 1, · · · ,r and k = 1, · · · ,m:

Ψ ≥ 0, Λ(i,k)≥ 0, ϒ(i,k)≥ 0, Ξ(i,k)+He{LΓi} LH εik(e4ET
i + e1ET

di)
∗ −εikI 0
∗ ∗ −εikI

< 0,

(29)

where Ψ, Λ(i,k), ϒ(i,k), Ξ(i,k) and Γi are defined in
Theorem 1.

Remark 3: Based on delay-partitioning approach,
the augmented LKF (17) is much different from those
in [6, 15, 20, 22, 23, 25, 29] from the following re-
spects: i) The modified augmented LKF (17) is estab-
lished by partitioning time delay in all integral terms;
ii) the [Ti j]m×m-dependent sub-LKF is introduced, so
the relationships between the augmented state vectors
[xT(t),xT(t − δ ), · · · ,xT(t − mδ )]T have been taken a
full consideration; iii) by employing the τ(t)-dependent
sub-LKF, the independent upper bounds of the delay
derivative in various delay segments have been taken
a full account. With these differences and advantages
above-mentioned, less conservative results than those in
[6, 15, 20, 22, 23, 25, 29] can be expected, which will be
demonstrated later by numerical examples.

Remark 4: The Free-Matrix-based integral inequality
(Lemma 4) [29] is employed to effectively bound the in-
tegral term −δ

∫ t
t−δ ẋT(s)Z0ẋ(s)ds. Since this integral in-

equality is composed of a set of adjustable slack variables,
it can provide extra freedom in reducing the conservative-
ness of the inequality and further lead to less conservative
conditions than the use of the Wirtinger-based inequality
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does in [11, 24]. This will be verified by numerical simu-
lations in the next section.

Finally, in the case of the time-varying delay τ(t) being
non-differentiable or unknown τ̇(t), setting Qk = 0(Q j ̸=
0, j = 1, · · · ,k − 1) in Theorem 2, one has the following
corollary.

Corollary 1: Given a positive integer m, scalars τ ≥ 0
and δ = τ

m , then the uncertain T-S system (6) with a time-
delay τ(t) satisfying (2) is asymptotically stable if there
exist scalars εik > 0 (i = 1, ..., r; k = 1, ..., m), symmetric
positive matrices Z0, Z j, Q j ∈ Rn×n ( j = 1, ..., m), T =
[Ti j]m×m ∈Rmn×mn, P ∈R2n×2n, Rl ∈R2n×2n (l = 1, ..., m−
1), symmetric matrices Xi j ∈R2n×2n, W1, W3 ∈R3n×3n, and
any matrices Yi j ∈ R2n×n, W2 ∈ R3n×3n, N1, N2 ∈ R3n×n,
L ∈ R(m+4)n×n and Si j ∈ Rn×n (i = 1, ..., r; j = 1, ..., m),
such that the following LMIs hold for i = 1,2, · · · ,r and
k = 1,2, · · · ,m:

Ψ ≥ 0, Λ(i,k)≥ 0, ϒ(i,k)≥ 0, Ξ̃(i,k)+He{LΓi} LH εik(e4ET
i + e1ET

di)
∗ −εikI 0
∗ ∗ −εikI

< 0,

(30)

where Ξ̃(i,k) =
3
∑
j=0

Ξ j + Ξ̃4(k) + Ξ5(i,k) + e2Z̄eT
2 with

Ξ̃4(k) =
k−1
∑
j=1

[
e j+3Q jeT

j+3 − e j+4Q jeT
j+4

]
, and Ψ, Λ(i,k),

ϒ(i,k), Γi, Ξ j, Ξ5(i,k) and Z̄ are defined in Theorem 1.

4. NUMERICAL EXAMPLE

This section gives three examples to demonstrate the
effectiveness of the proposed approach.

Example 1: Consider the system (6) with time-varying
delay and the following parameters [19, 29, 34]:

A1(t) = A2(t) =
[

−2 0
0 −0.9

]
,

Ad1(t) = Ad2(t) =
[

−1 0
−1 −1

]
.

For comparison, we assume that µ1 = · · · = µm = µ
(similarly hereinafter) in Theorem 1. For various values
of µ , the maximum admissible upper bounds (MAUBs)
of time-varying delay τ(t) derived from [19, 29, 34] and
Theorem 1 proposed in this paper are tabulated in Table
1, where “−” denotes that the results are not provided in
these papers, similarly hereinafter. As shown in the table,
the criteria derived in this paper are less conservative than
those in [19, 29, 34].

Table 1. The achieved MAUBs of τ(t) for various values
of µ– Example 1.

Methods \ µ 0 0.05 0.10 0.50 3.00
[19] 1.99 1.81 1.75 1.61 1.60
[34] 2.52 2.17 2.02 1.62 1.60

[29] Cor. 1 3.03 2.55 2.37 1.71 1.66
[29] Th. 1 3.03 2.57 2.41 1.93 –

Th. 1 (m = 2) 5.95 5.22 4.65 2.43 2.11
Th. 1 (m = 3) 6.09 5.32 4.72 2.46 2.20

Table 2. The achieved MAUBs of τ(t) for various values
of µ– Example 2.

Methods \ µ 0 0.1 ≥ 1
[35] 1.60 – 0.72
[6] 1.60 1.48 0.83
[22] 1.60 1.48 0.98
[23] 1.60 1.49 1.26
[25] 1.80 – 0.99
[20] 1.66 1.53 1.27

[11] (m = 3) 2.00 1.81 1.36
[24] (m = 3) 2.33 2.17 1.64

Th. 1 (m = 3) 2.45 2.21 1.67
Th. 1 (m = 4) 2.53 2.27 1.72

Example 2: Consider the T-S fuzzy system (6) with
time-varying delay and the following rules [15, 25, 35]:

R1 : If θ(t) is±π/2, then x(t) = A1x(t)+Ad1x(t − τ(t));
R2 : If θ(t) is 0, then x(t) = A2x(t)+Ad2x(t − τ(t)).

(31)

where

A1 =

[
−2 0
0 −0.9

]
, Ad1 =

[
−1 0
−1 −1

]
,

A2 =

[
−1 0.5
0 −1

]
, Ad2 =

[
−1 0
0.1 −1

]
.

The membership functions for above rules 1 and 2 are

h1(θ(t)) = sin2(θ(t)), h2(θ(t)) = cos2(θ(t)), (32)

where θ(t) = x1(t).

For various values of µ , the MAUBs of τ(t) derived
from [6, 11, 20, 22–25, 35] and Theorem 1 proposed in
this paper are tabulated in Table 2. As shown in Table 2,
the criteria derived in this paper improve some previous
ones [6, 11, 20, 22–25, 35]. With initial state conditions
[1,−1]T , Fig. 1 shows the simulation results of the state
responses of the T-S fuzzy system (31) with µ = 0.1,
0 ≤ τ(t) ≤ 1.53, 1.81, 2.17, 2.27 listed respectively in
Table 2; and the phase portraits of system (31) is given in
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Fig. 2. It shows from the simulation results (Figs. 1 and
2) that the MAUBs of τ(t) listed in Table 2 are capable of
guaranteeing asymptotical stability of (31).

Example 3: Consider the following uncertain T-S fuzzy
system [6, 11, 21, 23, 24]:

ẋ(t) =
2

∑
i=1

hi{(θ(t))[Ai(t)x(t)+Adi(t)x(t−τ(t))}, (33)

where

A1 =

[
−2 1
0.5 −1

]
, Ad1 =

[
−1 0
−1 −1

]
,

A2 =

[
−2 0
0 −1

]
, Ad2 =

[
−1.6 0

0 −1

]
,

E1 =

[
1.6 0
0 0.05

]
, Ed1 =

[
0.1 0
0 0.3

]
,

E2 =

[
1.6 0
0 −0.05

]
, Ed2 =

[
0.1 0
0 0.3

]
,

H =

[
0.03 0

0 −0.03

]
,

Table 3. The achieved MAUBs of τ(t) for various values
of µ– Example 3.

Methods \ µ 0 0.1 0.5 Unknown
[21] 0.95 0.89 0.63 –
[6] 1.17 1.12 0.93 0.50
[23] 1.19 1.15 1.10 1.05

[11] (m = 2) 1.40 1.32 1.13 1.12
[24] (m = 2) 1.47 1.42 1.29 1.23
[24] (m = 3) 1.64 1.60 1.49 1.42

Th. 2 / Cor. 1
(m = 3)

1.71 1.65 1.52 1.44

Table 4. The achieved MAUBs of τ for various values of
µ1, µ2– Example 3.

µ1 \ µ2 0 0.1 0.5 0.9
0 1.490 1.419 1.243 1.243

0.1 1.479 1.418 1.241 1.230
0.5 1.471 1.405 1.232 1.228
0.9 1.237 1.231 1.230 1.227

and the membership functions are defined in (32).
For various values of µ , the MAUBs of τ(t) derived

from [6, 11, 21, 23, 24] and Theorem 2 and Corollary 1
proposed in this paper are are summarized in Table 3. It
can be concluded that the result proposed in this paper is
less conservative than those in [6, 11, 21, 23, 24]. With
initial state conditions [1,−1]T and the unknown matrix
function F(t) = diag{sint,cost}, Fig. 3 shows the simula-
tion results of the state responses of the system (33) with
µ = 0.5, 0 ≤ τ(t) ≤ 1.10, 1.13, 1.49, 1.52 listed respec-
tively in Table 3; and the phase portraits of (33) is given
in Fig.4. It also shows from the simulation results (Figs.3
and 4) that the MAUBs of τ(t) listed in Table 3 are capa-
ble of guaranteeing asymptotically robust stability of the
uncertain system (33).

Finaly, in order to further verify Remark 2, by Theorem
2, the MAUBs of τ(t) for m = 2 and various values of µ1

and µ2 are calculated in Table 4. From this table, it can be
concluded that the achieved MAUB is 1.405 when µ1 =
0.5 and µ2 = 0.1. However, if τ̇(t) is bounded by (3) with
τ̇(t)≤ µ =max{µ1, µ2}=0.5, the achieved MAUB is only
1.232. Then, the effectiveness of the proposed method is
further illustrated.

5. CONCLUSION

Taking advantage of delay-partitioning approach, LMI
approach and Finsler’s lemma, this paper is mainly con-
cerned with the further improved stability criteria for un-
certain T-S fuzzy systems with time-varying delay. A
modified augmented LKF is established by partitioning
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the delay in all integral terms, and the τ(t)-dependent and
[Ti j]m×m-dependent sub-LKFs are introduced to the aug-
mented LKF, which make the LKF include more useful
augmented state information. Meanwhile, the indepen-
dent upper bounds of the delay derivative in various de-
lay intervals have been taken a full consideration. Then,
Peng-Park’s integral inequality and the Free-Matrix-based
integral inequality (which yields less conservative stability
criteria than the use of Wirtinger-based inequality does)
are utilized to effectively bound the derivative of LKF.
Therefore, less conservative stability criteria in terms of
es and LMIs can be achieved. Finally, three numerical ex-
amples are included to show the merits of the proposed
results.
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