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Robust Adaptive Backstepping Control for an Uncertain Nonlinear Sys-
tem with Input Constraint based on Lyapunov Redesign
Fang Wang*, Qin Zou, and Qun Zong

Abstract: This paper presents the control problem for a class of n-order semi-strict nonlinear system subjects to
unknown parameters, uncertainty, and input constraint. The controller is designed via combining backstepping
control and Lyapunov redesign. Firstly, based on the Lyapunov function, a composite adaptive law is constructed
to estimate the unknown parameters. To sequel, a robust term is designed to handle the matched and unmatched
uncertainties on the basis of Lyapunov redesign technique. The “explosion of terms” problem that inherent in
backstepping control is avoided by the robust second-order filters. Thirdly, an auxiliary signal provided by the
auxiliary system is employed to handle the influence of the input constraint. It is proved that the closed-loop
system is stable in a Lyapunov framework theory and the semi-global uniformly ultimate boundedness of all signals
is achieved. Finally, numerical simulations are carried out to evaluate the performance of the proposed control
strategy. Numerical example and the application of the hypersonic vehicle (HSV) tracking control are simulated to
demonstrate the effectiveness of the proposed control scheme.

Keywords: Backstepping control, input constraint, Lyapunov redesign technique, nonlinear system, matched and
unmatched uncertainty, unknown Parameter.

1. INTRODUCTION

The control problem of uncertain nonlinear system has
received a lot of attentions in recent years. There are
mainly two approaches to solve the uncertainties, one is
the robust control and the other is adaptive control. Lya-
punov redesign control is one of the robust control meth-
ods. It supposes that an uncertainty satisfies the matching
condition and special inequality and a feedback control
law is designed firstly such that the origin of the nomi-
nal closed-loop system is asymptotically stable. Then, the
controller is redesigned by adding a feedback controller
in a way that the overall controller stabilizes the actual
system in the presence of uncertainty [1, 2]. It has been
applied in some engineering application. As a typical non-
linear control approach, backstepping methodology has
been received more and more attention and widely applied
to engineering application [3–9].

Through comparing backsteping control with H-infinity
control, passive control (PC) and sliding mode control
(SMC), the advantages of backstepping control and the
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reason for choosing this control method are given as fol-
lows.

As we all know, H-infinity control is a robust control
method, it is feasible to cope with uncertainty. The main
idea of it is to design a controller which makes the inter-
nal stabilization of system to minimize the infinity norm
of the closed transfer function [10]. Although it can ef-
fectively handle the uncertainty, the design procedure is
too complex, and the order of the controller is high. So it
may induce that it is difficult to be applied in engineering
area. The principle idea of backstepping methodology is
that the complex system is divided into the lower dimen-
sion subsystem at first, then the Lyapunov function and in-
termediate virtual control inputs are recursively designed
for every subsystem. The recursive design proceeds until
“backstepping” has been achieved by the whole system,
then the actual control input is obtained to achieve satis-
factory control performance of the system.

Passive control (PC) is the ‘energy shaping’ approach,
and it considers the energy of the system and gives a clear
physical meaning, such that the changes of the overall
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storage function can take a desired form [11, 12]. In fact,
passivity provides a competitive tool for studying stability
of uncertain or nonlinear systems [13]. The main idea of
passivity theory is that the passive properties of systems
can keep the systems internal stable [14, 15]. Much re-
search focuses on the smooth state feedback passive prob-
lem of the affine nonlinear system. However, feedback
can’t change the relative degree and zero dynamic, and the
system must satisfy the conditions that its relative degree
is one and it is a minimum phase system. These condi-
tions are very harsh, it constrains the application of the
feedback passive control method. In fact, a passive sys-
tem may have no relative degree, but most of the passivity
control is based on the assumption that the relative degree
exists. Backstepping control can eliminate the constraint
of relative degree.

SMC is one of the most efficient techniques to cope
with external disturbance and parametric uncertainty [16].
However, its application requires that the system has to
satisfy “matched condition”. What is more, the bounds
of uncertainties which may not be easily obtained in prac-
tical implementation is an important clue to SMC[ R8],
since the stability analysis is based on the known upper
bounds of the uncertainties. Besides, sign function in-
duces chattering problem caused by that the switching
gain of SMC must be chosen larger than the bound of
uncertainty [17, 18]. As a feasible and typical nonlinear
control approach, backstepping methodology proposed by
Kokotovic is a powerful tool to deal with the unmatched
uncertainty [19]. It overcomes the limitation on FBL and
is a powerful means to handle unmatched uncertainty [20].
And it has been received more and more attention.

Moreover, compared with H-infinity control, passive
control and SMC, the backstepping control mainly has the
following advantages. (a) It is a powerful and systematic
technique that recursively interlaces the choice of a Lya-
punov function with the feedback control design. (b) It is
the systematic construction of a Lyapunov function for the
nonlinear systems, and the control goal can be achieved
with reduced control effort. It is worthy to point out that it
overcomes the limitation on FBL and is a powerful means
to handle unmatched uncertainty [21].

It is noted that the “explosion of terms” problem in-
duced by repeated analytic time derivative of the virtual
control input is the limitation of the standard backstep-
ping control. It inevitably leads to a complicated algo-
rithm with heavy computation burden, and the complex-
ity of the controller design increases with the increase of
the system order. A first-order filter [22], command fil-
ters [23] and robust second order filters [24] are employed
to eliminate the complexity computation of time deriva-
tive of virtual control inputs to overcome the “explosion
of terms” problem. From both theory and engineering as-
pects, input constraint is great of importance to be taken
into consideration. In theory, if input constraint is not con-

sidered, the closed-loop system may suffer from important
performance limitations or even lose stability [25]. For
many practical dynamic systems, physical input saturation
on hardware dictates that the magnitude of the control sig-
nal is always constrained. Since input constraint affect not
only the performance of the system, but also the stability
of the system, this problem has received much attention
[26–32].

Therefore, in this paper, a class of semi-strict nonlin-
ear system with matched and unmatched uncertainty, input
constraint is addressed based on backstepping control and
Lyapunov redesign technique. The motivation is shown as
follows.

Firstly, it is noted that the nonlinear system in semi-
strict feedback form with matched, unmatched uncertainty
and input constraint has been received more and more at-
tention, since many practice systems such as robot, Duff-
ing function system and other engineering system can be
transformed into this form. To the best of our knowledge,
no other works have solved the control design problem of
semi-strict feedback systems with parameter uncertainties
and input constraint.

Secondly, in the works that investigate the control de-
sign problem based on backstepping control or Lyapunov
redesign technique only consider parameter uncertainty or
only consider matched uncertainty or unmatched uncer-
tainty. And input constraint is not considered. In this pa-
per, the semi-strict system under parameter uncertainty,
matched uncertainty or unmatched uncertainty and input
constraint is considered, and by effectively combining
backstepping control and Lyapunov redesign technique,
the advantages of these two methods are played adequate
role in control strategy development and achieve the stable
tracking control of output. Moreover, the implementation
feasibility of the proposed controller is verified by apply-
ing in tracking control problem of hypersonic vehicle.

Thirdly, during the controller design procedure, new ro-
bust second-order filters are established to avoid the “ex-
plosion of terms” problem. An auxiliary signal provided
by the auxiliary system is used to handle the influence
of input constraint, it is used at the level of controller
design and stability analysis. The unknown parameters
are estimated by the designed adaptive law. Furthermore,
matched and unmatched uncertainty is coped with by the
Lyapunov redesign technique. Then the stability of the
closed-loop system is analyzed in the framework of Lya-
punov theory, and the semi-globally ultimate of all signals
are assured.

The other parts of this paper are organized as follows.
The problem formulation is stated in section 2. Then, the
robust adaptive controller on the basis of the combination
of backstepping control and Lyapunov redesign technique
is designed and the closed-loop system stability is ana-
lyzed in section 3. The effectiveness of the proposed con-
trol strategy is testified through simulations in section 4,
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and this paper ends with the conclusions.

2. PROBLEM FORMULATION

The control problem presented in this paper is for a
class of semi-strict nonlinear system with unknown pa-
rameters, uncertainty and input constraint, the nonlinear
system is generally described as follows:

ẋ1 = f1(x̄1)+φT
1 (x̄1)θ1 +g1(x̄1)(x2 +d1(x̄1, t)),

ẋ2 = f2(x̄2)+φT
2 (x̄2)θ2 +g2(x̄2)(x3 +d2(x̄2, t)),

...

ẋi = fi(x̄i)+φT
i (x̄i)θi +gi(x̄i)(xi+1 +di(x̄i, t)), (1)

...

ẋn = fn(x̄n)+φT
n (x̄n)θn +gn(x̄n)(u+dn(x̄n, t)),

y = x1,

where x̄i = (x1, · · ·xi)
T , i = 1, ..., n, y ∈ R and u ∈ R are the

state vector, system output and input, respectively. θi ∈Rpi

represent the vectors of unknown parameters, fi(x̄i) and
gi(x̄i) (i = 1, ..., n) are known smooth functions. di(x̄i, t),
i = 1, ..., n denote the uncertain nonlinearity. φi(x̄i) ∈ Rpi ,
i = 1, ..., n are known smooth functions.

Considering input constraints, the control input is de-
fined by the following

u =

{
umaxsgn(uc), |uc| ≥ umax

uc,0 < |uc|< umax
(2)

umaxis the maximum value of the control input, anduc is
the control input to be designed.

The control objective is to makex1follow a desired
trajectoryyd in spite of the aforementioned unknown pa-
rameters, uncertainty, and input constraint, and guarantee
that the closed-loop system is stable under the designed
robust adaptive backstepping redesign control lawuc.

The following assumption and theorem are needed to
facilitate control system design.

Assumption 1: yd , ẏd are continuous and bound.
Assumption 2: The unknown unmatched uncertainty

di(x̄i, t), (i = 1, ..., n − 1), and the matched uncertainty
dn(x̄n, t) are assumed to satisfy the following inequalities

|di(x̄i, t)| ≤ hi(x̄i)+qi |x̄i+1| , i = 1, · · · ,n−1
|dn(x̄n, t)| ≤ hn(x̄n)+qn |u|.

(3)

Here hi(x̄i), i = 1, ..., n are the continuous and positive
functions and qi ∈ [0,1), i = 1, ..., n.

Assumption 3: The input gain gi(x̄i) is nonzero with
known sign. Thus, without loss of generality, assume

gi(x̄i)≥ gi > 0, i = 1,2, ...,n,

where gi > 0, i = 1, 2,..., n are known positive constants.

Theorem 1 [33]: The following inequality holds for
any ε0 > 0 and for any η0 ∈ R

|η0| ≤ (kη0 ε0 +η0 tanh(
η0

ε0
)),kη0 > 0,ε0 > 0, (4)

where kη0 is a constant that satisfies kη0 = e−kη0+1, i.e.,
kη0 = 0.2758.

3. CONTROLLER DESIGN AND STABILITY
ANALYSIS

In this section, backstepping technique and Lyapunov
redesign control are integrated to design the controller for
system (1). The controller design procedure starts from
the first equation of (1), and the virtual control input is de-
signed. Then this procedure proceeds. The estimation for
the uncertain parameters is updated by the adaptive laws.
The matched/unmatched uncertainty is tackled by the Lya-
punov redesign technique. The novel second-order fil-
ters are constructed to overcome the “explosion of terms”
problem. The auxiliary system is adopted to provided sig-
nal to analyze the input constraints. Then stability of all
signals in the closed-loop system is achieved.

3.1. Robust adaptive backstepping Lyapunov redesign
control design

According to the backstepping design procedure, the con-
troller is designed according to the following steps. The
function arguments are removed in brief.

Step 1: The virtual control input x2d is designed for x1-
subsystem.

Considering the first equation in (1), i.e., the output
tracking error is defined as

z1 = x1 − yd . (5)

With the consideration of parameter estimation and
tracking error, the Lyapunov candidate function is con-
structed as

V1 = 0.5z2
1 + θ̃ T

1 Γ−1
1 θ̃1, (6)

where Γ1 = ΓT
1 is the adaption gain matrix. θ̃1 is the es-

timation error of the unknown parameter vectorθ1: θ̃1 =
θ̂1 −θ1. Since θ1 is unknown, it needs to be estimated on-
line. The representation θ̂1 will be applied to denote the
estimate of θ1, and an adaptive law is developed to update
the parameter θ1 based on the Lyapunov stability.

If the uncertainty is not considered and the time deriva-
tive of (6)can be expressed as

V̇1 = z1( f1 +φT
1 θ1 +g1x2 − ẏd)+ θ̃ T

1 Γ−1 ˙̂θ1. (7)

The virtual control input is designed as

x2d0 = 1/g1(−k1z1 − f1 −φT
1 θ̂1 + ẏd), (8)
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where k1 is the positive design parameter.
Now taking the uncertain nonlinearity into considera-

tion, then (7)is rewritten as

V̇1 = z1( f1 +φT
1 θ1 +g1x2 +g1d1 − ẏd)+ θ̃ T

1 Γ−1 ˙̂θ1. (9)

So the virtual control input (8) can be redesigned as

x2d = x2d0 + x2dr, (10)

where x2dr is robust feedback for attenuating the effect of
uncertain nonlinearity g1d1, and the formulation is

x2dr =− γ2
1 z1g1

γ1 |z1|+ εe−at . (11)

Furthermore, the adaptive law for θ̂1 is designed as

˙̂θ1 = Γ1(φ1z1 −η1θ̂1), (12)

where η1 is the positive constant.
Based on (8),(11) and (12), (9) becomes

V̇1 =−k1z2
1 + z1g1x2dr + z1d1 −η1θ̃ T

1 θ̂1 + z1g1z2. (13)

It is noted that

− θ̃ T
1 θ̂1 ≤−0.5

∥∥θ̃1
∥∥2

+0.5∥θ1∥2 ,

z1d1 ≤ |z1|(h1 +q1 |x2d0|+q1γ1). (14)

And

z1g1x2dr + z1d1

=− γ2
1 (z1g1)

2

γ1 |z1|+ εe−at

+
(γ1 |z1g1|+ εe−at) |z1g1|(h1 +q1 |x2d0|+q1γ1)

γ1 |z1g1|+ εe−at

=
γ1(z1g1)

2(−γ1(1−q1)+h1 +q1 |x2d0|)
γ1 |z1g1|+ εe−at

+
εe−at |z1g1|(h1 +q1 |x2d0|+q1γ1)

γ1 |z1g1|+ εe−at . (15)

If γ1 >
h1+q1|x2d0|

1−q1
, then

z1g1x2dr + z1g1d1 ≤
εe−at |z1g1|γ1

γ1 |z1g1|+ εe−at < εe−at (16)

From (14)-(16), it can be obtained that (13) satisfies

V̇1 ≤−k1z2
1−0.5η1(

∥∥θ̃1
∥∥2−∥θ1∥2)+εe−at +z1g1z2. (17)

The error signal of z2 is defined as

z2 = x2 − x2d . (18)

Step 2: The virtual control input is designed for thex2-
subsystem.

In the standard backstepping control, the time deriva-
tive ofx2d is needed in the next step, but it is difficult to
find the time derivative for the existence of the uncertain
nonlinearity, even the time derivative is can be analytic
computed, the computation load is very heavy. Therefore,
the second-order filter is constructed to avoid the analytic
computation of the time derivative of the virtual control
x2d .

The following second-order filter that is used{
α̇11 =−(α11 − x2d)/τ11 −ξ11 tanh(ζ11ξ11(α11 − x2d)),
α̇12 =−(α12 − α̇11)/τ12 −ξ12 tanh(ζ12ξ12(α12 − α̇11)),

(19)

where τ11, τ12 are the time constants of the filter while ξ11,
ξ12, ζ11, ζ12 are constants.

Considering the second equation in (1), i.e.,

ẋ2 = f2 +ΦT
2 θ2 +g2(x3 +d2). (20)

The Lyapunov candidate function is constructed as

V2 = 0.5z2
2 + θ̃ T

2 Γ−1
2 θ̃2 +0.5e2

11 +0.5e2
12, (21)

where θ̃2 is the estimation error of the unknown parameter
vector θ2: θ̃2 = θ̂2 − θ2. Γ2 = ΓT

2 is the adaption gain
matrix.

The uncertain nonlinearity is not considered. The time
derivative of (21) is

V̇2 =z2( f2 +ΦT
2 θ2 +g2x3 −α22)+ θ̃ T

2 Γ−1
2

˙̂θ2

+ e11ė11 + e12ė12, (22)

where e11, e12 are the filter error and defined as e11 =α11−
x2d , e12 = α12 − α̇11.

If the virtual control input is designed as

x3d0 = 1/g2(−k2z2 − f2 −ΦT
2 θ̂2 +α22 − z1g1), (23)

where k2 is the positive design parameter.
Taking the uncertain nonlinearity into consideration,

then (22) is rewritten as

V̇2 =z2( f2 +ΦT
2 θ2 +g2x3 +g2d2 −α22)

+ θ̃ T
2 Γ−1

2
˙̂θ2 + e11ė11 + e12ė12. (24)

The virtual control input (8) is redesigned as

x3d = x3d0 + x3dr, (25)

where x3dr denotes robust feedback to attenuate the effect
of uncertain nonlinearity g2d2, and it is designed as

x3dr =− γ2
2 z2g2

γ2 |z2g2|+ εe−at . (26)

The adaptive law forθ̂2is chosen as

˙̂θ2 = Γ2(Φ2(x̄2)z2 −η2θ̂2), (27)
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where Γ2 = ΓT
2 is the adaption gain matrix and η2 is the

positive constant.
Based on (23), (25)-(27), (24) becomes

V̇2 =− k2z2
2 + z2g2x3dr + z2g2d2

−η2θ̃2θ̂2 + z2g2z3 + e11ė11 + e12ė12. (28)

It is noted that

− θ̃ T
2 θ̂2 ≤−0.5

∥∥θ̃2
∥∥2

+0.5∥θ2∥2

z2g2d2 ≤ |z2g2| |h2 +q2 |x3|| (29)

≤ |z2g2|(h2 +q2 |x3d0|+q2γ2).

And

z2g2x2dr + z2g2d2

=
γ2(z2g2)

2(−γ2(1−q2)+h2 +q2 |x3d0|)
γ2 |z2g2|+ εe−at (30)

+
εe−at |z2g2|(h2 +q2 |x3d0|+q2γ2)

γ2 |z2g2|+ εe−at .

If γ2 >
h2+q2|x3d0|(1−q2)

1−q2
, then

z2g2x3dr + z2g2d2 ≤
εe−at |z2g2|γ2

γ2 |z2g2|+ εe−at < εe−at . (31)

The last two terms of (28) satisfies

e11ė11 + e12ė12

≤−1/τ11e2
11 −ξ11e11 tanh(ζ11ξ11e11)+ |e11| |ẋ2d |

−1/τ12e2
12 −ξ12e12 tanh(ζ12ξ12e12)+ |e12| |α̈11| .

(32)

On the basis of (4), if ξ11 > |ẋ2d |max ,ξ12 > |α̈11|max, the
above inequality yields

−ξ11e11 tanh(ζ11ξ11e11)+ |e11| |ẋ2d | ≤ kη0/ζ11,

−ξ12e12 tanh(ζ12ξ12e12)+ |e12| |α̈11| ≤+kη0/ζ12.
(33)

From (29)-(33), (28) satisfies

V̇2 ≤− k2z2
2 −0.5η2

∥∥θ̃2
∥∥2

+0.5η2 ∥θ2∥2 + εe−at

+ z2g2z3 −1/τ11e2
11 −1/τ12e2

12 + kη0/ζ11 + kη0/ζ12,
(34)

where z3 is the error signal of x3 and defined as z3 = x3 −
x3d with x3d is the virtual control of the x2-subsystem.

Step i: The virtual control inputxi+1,d is designed for the
xi-subsystem.

The second-order filter is constructed to avoid the ana-
lytic computation of the time derivative of the virtual con-
trol xi,d

α̇i−1,1 =−αi−1,1−xid

τi−1,1

−ξi−1,1 tanh(ζi−1,1ξi−1,1(αi−1,1 − xi−1,d)),

α̇i−1,2 =−αi−1,2−α̇i−1,1
τi−1,2

−ξi−1,2 tanh(ζi−1,2ξi−1,2(αi−1,2 − α̇i−1,1)),

(35)

where τi−1,1, τi−1,2 are the time constants of the filter while
ξi−1,1, ξi−1,2, ζi−1,1, ζi−1,2 are constants.

Considering the i-th equation in (1), i.e.,

ẋi = fi +ΦT
i θi +gi(xi+1 +di). (36)

The Lyapunov candidate function is constructed as

Vi = 0.5z2
i + θ̃ T

i Γ−1
i θ̃i +0.5e2

i−1,1 +0.5e2
i−1,2, (37)

where θ̃i is the estimation error of the unknown parame-
ter vector θi:θ̃i = θ̂i − θi, ei−1,1,ei−1,2 are the filter error
ei−1,1 = αi−1,1 − xi−1,d , ei−1,2 = αi−1,2 − α̇i−1,1.

The uncertain nonlinearity is not considered. The time
derivative of (37) is

V̇i =zi( fi +ΦT
i θi +gixi+1 −αi2)

+ θ̃ T
i Γ−1

i
˙̂θi + ei1ėi1 + ei2ėi2. (38)

If the virtual control input is designed as

xi+1,d0 = g−1
i (−kizi − fi −ΦT

i θ̂i +αi2 − zi−1gi−1), (39)

where ki is the positive design parameter.
Taking the uncertain nonlinearity into consideration,

then (38) is rewritten as

V̇i =zi( fi +ΦT
i θi +gixi+1 +gidi −αi2)

+ θ̃ T
i Γ−1

i
˙̂θi + ei−1,1ėi−1,1 + ei−1,2ėi−1,2. (40)

The virtual control input (39)is redesigned as

xi+1,d = xi+1,d0 + xi+1,dr, (41)

where xi+1,dr denotes a robust feedback to attenuate the
effect of uncertain nonlinearity gidi and it is designed as

xi+1,dr =−
γ2

i+1zigi

γi+1 |zigi|+ εe−at . (42)

The adaptive law forθ̂iis designed as

˙̂θi = Γi(Φizi −ηiθ̂i), (43)

where Γi = ΓT
i is the adaption gain matrix and ηi is the

positive constant.
Based on (39), (41)-(43), (40) becomes

V̇i =− kiz2
i + zigixi+1,dr + zigidi −ηiθ̃ T

i θ̂i

+ zigizi+1 + ei−1,1ėi−1,1 + ei−1,2ėi−1,2. (44)

It is noted that

− θ̃ T
i θ̂i ≤−0.5

∥∥θ̃i
∥∥2

+0.5∥θi∥2

zigidi ≤ |zigi|(hi +qi |xi+1,d0|+qiγi)

zigixidr + zigidi (45)

=
γi(zigi)

2(−γi(1−qi)+hi +qi |xi+1d0|)
γi |zigi|+ εe−at
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+
εe−at |zigi|(hi +qi |xi+1d0|+qiγi)

γi |zigi|+ εe−at .

If γi >
hi+qi|xi+1,d0|

1−qi
, then

γiqi+hi+qi |xi+1,d0|< γi,zigixi+1,dr+zigidi ≤ εe−at . (46)

The last two terms of (44) satisfies

ei−1,1ėi−1,1 + ei−1,2ėi−1,2

≤−1/τi−1,1e2
i−1,1 −1/τi−1,2e2

i−1,2

−ξi−1,1ei−1,1 tanh(ζi−1,1ξi−1,1ei−1,1) (47)

−ξi−1,2ei−1,2 tanh(ζi−1,2ξi−1,2ei−1,2)

+ |ei−1,1| |ẋid |+ |ei−1,2| |α̈i−1,1| .

Base on (4), if ξi−1,1 > |ẋid |max, ξi−1,2 > |α̈i−1,1|max,

−ξi−1,1ei−1,1 tanh(ζi−1,1ξi−1,1ei−1,1)+ |ei−1,1ẋid |
≤ kη0/ζi−1,1,

−ξi−1,2ei−1,2 tanh(ζi−1,2ξi−1,2ei−1,2)+ |ei−1,2α̈i−1,1|
≤ kη0/ζi−1,2.

(48)

From(45)-(48), (44) satisfies

V̇i ≤− kiz2
i −0.5ηi

∥∥θ̃i
∥∥2

+0.5ηi ∥θi∥2 + εe−at

+ zigizi+1 −1/τi−1,1e2
i−1,1 −1/τi−1,2e2

i−1,2

+ kη0/ζi−1,1 + kη0/ζi−1,2. (49)

zi+1 is the error signal of xi+1 and defined as

zi+1 = xi+1 − xi+1,d . (50)

Here xi+1,d is the virtual control of the ith subsystem.
Step n: The control input uc is designed for system (1).
The second-order filter is constructed to avoid the an-

alytic computation of the time derivative of the virtual
controlxn−1,d

α̇n−1,1 =−αn−1,1−xnd

τn−1,1

−ξn−1,1 tanh(ζn−1,1ξn−1,1(αn−1,1 − xn,d)),

α̇n−1,2 =−αn−1,2−α̇n−1,1
τn−1,2

−ξn−1,2 tanh(ζn−1,2ξn−1,2(αn−1,2 − α̇n−1,1)),

(51)

where τn−1,1, τn−1,2 are the time constants of the filter and
ξn−1,1, ξn−1,2, ζn−1,1, ζn−1,2 are constants.

Considering the nth equation in (1) and input constraint
(2)

ẋn = fn +ΦT
n θn +gn(uc +∆u+dn), (52)

where ∆u = u−uc.
The Lyapunov candidate function is constructed as

Vn0 = 0.5z2
n + θ̃ T

n Γ−1
n θ̃n +0.5e2

n−1,1 +0.5e2
n−1,2, (53)

where en−1,1, en−1,2 are the filter error en−1,1 = αn−1,1 −
xn,d , en−1,2 = αn−1,2 − α̇n−1,1, θ̃n is the estimation error of
the unknown parameter vector θn: θ̃n = θ̂n −θn.

The uncertain nonlinearity is not considered. The time
derivative of (53) is

V̇n0 =zn( fn +ΦT
n θn +gnu0 −αn−1,2)

+ θ̃ T
n Γ−1

n
˙̂θn + en−1,1ėn−1,1 + en−1,2ėn−1,2. (54)

If the control input is designed as

u0 =g−1
n (−kn(zn −σu)− fn −ΦT

n θ̂n)

+g−1
n (αn−1,2 − zn−1gn−1), (55)

where kn is the positive design parameter.
Taking the uncertain nonlinearity into account, the aug-

mented Lyapunov function is as

Vn =Vn0 +0.5σ 2
u . (56)

The time derivative of (56) is

V̇n =zn( fn +ΦT
n θn +gn(uc +∆u)+gndn −αn−1,2)

+ θ̃ T
n Γ−1

n
˙̂θn + en−1,1ėn−1,1 + en−1,2ėn−1,2 +σuσ̇u.

(57)

The control input (50)is redesigned as

uc = u0 +ur, (58)

where ur presents robust feedback to attenuate the effect
of uncertain nonlinearity gndn, and it is designed as

ur =− γ2
n zngn

γn |zngn|+ εe−at . (59)

The following auxiliary system is introduced to analyze
the effect of the input constraint

σ̇u =

{
−kσu σu − 1

σu
(|zngn∆u|+0.5µ2∆u2)−gn∆u, |σu| ≥ ψu

0, |σu|< ψu,

(60)

where µ > |gn|, ψu > 0 is a small parameter and should be
chosen according to the requirement of the tracking per-
formance.

The adaptive law for θ̂n is chosen as

˙̂θn = Γn(Φnzn −ηnθ̂n), (61)

where Γn = ΓT
n is the adaption gain matrix and ηn is the

positive constant.
Remark 1: In control law (58), combined with the in-

put constraint block (60), the role of the term σu is as fol-
lows:

If |σu| ≥ ψu, which means there is input saturation:
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(a) If uc ≥ umax, σu keeps decreasing to decrease uc until
uc = umax.

(b) If uc ≤ umin, σu keeps increasing to increase uc until
uc = umin.

So u = umin or u = umax.
If |σu| < ψu, σ̇u = 0, i.e., there is no input saturation,

the influence of the term σu is to keep umin ≤ uc ≤ umax,
therefore, u = uc.

Based on (55), (58)-(61), (57) becomes

V̇n =− knz2
n + knznσu + zngnur + zngndn + zngn∆u

−ηnθ̃ T
n θ̂n +σuσ̇u + en−1,1ėn−1,1 + en−1,2ėn−1,2.

(62)

It is noted that

−θ̃ T
n θ̂n ≤−0.5

∥∥θ̃n
∥∥2

+0.5∥θn∥2,

zngndn ≤ |zngn| |λn +qn |u|| ≤ |zngn|(λn +qi |uc|+qnγn),

zngnvr + zngndn (63)

=
γn(zngn)

2(−γn(1−qn)+hn +qn |uc|)
γn |zngn|+ εe−at

+
εe−at |zngn|(hn + |uc|+qnγn)

γn |zngn|+ εe−at .

If γn >
hn+qn|uc|

1−qn
, then

− γn(1−qn)+hn +qn |uc|< 0,

γnqn +hn +qn |uc|< γn, (64)

and

zngnur + zngndn ≤ εe−at . (65)

The last two terms of (62) satisfies

en−1,1ėn−1,1 + en−1,2ėn−1,2

≤−1/τn−1,1e2
n−1,1 −1/τn−1,2e2

n−1,2 + |en−1,1| |ẋnd |
−ξn−1,1en−1,1 tanh(ζn−1,1ξn−1,1en−1,1)

+ |en−1,2| |α̈n−1,1|
−ξn−1,2en−1,2 tanh(ζn−1,2ξn−1,2en−1,2). (66)

If ξn−1,1 > |ẋnd |max, ξn−1,2 > |α̈n−1,1|max,

−ξn−1,1en−1,1 tanh(ζn−1,1ξn−1,1en−1,1)+ |en−1,1ẋnd |
≤ kη0/ζn−1,1,

−ξn−1,2en−1,2 tanh(ζn−1,2ξn−1,2en−1,2)+ |en−1,2α̈n−1,1|
≤ kη0/ζn−1,2

(67)

From (63)-(67), (62) satisfies

V̇n ≤− knz2
n −0.5ηn

∥∥θ̃n
∥∥2

+0.5ηn ∥θn∥2 + εe−at

−1/τn−1,1e2
n−1,1 −1/τn−1,2e2

n−1,2 + knznσu

+ zngn∆u+σuσ̇u − znzn−1gn−1 (68)

+ kη0/ζn−1,1 + kη0/ζn−1,2.

Define G = knznσu + zngn∆u+σuσ̇u, substituting (60)
into it, then it satisfies

G =− kσu σ 2
u −0.5µ2

n ∆u2 + zngn∆u

−|zngn∆u|+ knznσu −gn∆uσu. (69)

Since knσuzn − gnσu∆u ≤ 0.5k2
nz2

n + σ 2
u + 0.5µ2

n ∆u2,
zngn∆u−|zngn∆u| ≤ 0, the following inequality holds

G ≤ 0.5k2
nz2

n +σ 2
u − kσu σ 2

u . (70)

Therefore, (68) satisfies

V̇n ≤− (kn −0.5k2
n)z

2
n − (kσu −1)σ 2

u −0.5ηn
∥∥θ̃n

∥∥2

+ εe−at −1/τn−1,1e2
n−1,1 −1/τn−1,2e2

n−1,2 (71)

+0.5ηn ∥θn∥2 + kη0/ζn−1,1 + kη0/ζn−1,2.

After comparing the stability analysis parts of [24] and
this paper, It can be obtained that without the introduction
of state error variableei, the stability analysis on the filter
error and the closed-loop system become succinctly.

Remark 2: It is known that the hyperbolic tan-
gent functiony = tanh(x)is smoother than the saturation

functiony = sat(x) =
{

sgn(x), x ≥ k
x/k, x < k

. Thus, for the

filter with hyperbolic tangent funciton, and the filter with
saturation function, even if the estimation ability of filter
that includes saturation function component, is equal to
the filter that includes hyperbolic tangent function com-
ponent, the dynamic process of outputs of the former filter
is smoother than that of the latter filter. And in this paper,
the outputs of the filters are the reference commands of the
next controller design steps. When applying the designed
control strategy to the control of hypersonic vehicle, un-
der the proposed controller and the smooth reference com-
mands, the responses of the states (γ,α,q) of the hyper-
sonic vehicle are smooth (Moreover, to obtain the smooth
response of V and h, the reference commands of V and h
are smoothened using a second-order filter with a natural
frequency and a damping ratio, which can be seen from
the simulation section.). During the flight process of the
hypersonic vehicle, it is important and necessary for the
smooth change of every state. Based on aforementioned,
the hyperbolic tangent function component is superior to
the saturation function component, thus the performances
of the filters proposed in this paper can be improved.

The stability of the closed-loop system is analyzed. The
semi-global stability of the closed-loop system will be
shown in the next subsection.

3.2. Stability analysis of the closed-loop system
Theorem 2: Given the uncertain nonlinear system (1),

without loss of generality, the system subjects to unknown
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parameter vector θi, (i = 1, ..., n), matched/unmatched
uncertain nonlinearity di, (i = 1, ..., n) and control input
saturation (2). Then with the application of the control
laws (10), (25), (41), (58), the second-order filters (19),
(35), (51) and adaptive laws (12), (27), (43), (61). If
all Assumptions 1-3 are satisfied and there are exist con-
trol parameters, adaptive parameters and filter parame-
ters such that the control scheme guarantees the follow-
ing properties: all the signals of the system are semi
uniformly ultimately bounded (SGUUB). Moreover, the
tracking errorz1can be ensured to converge to an arbitrar-
ily small neighbour-hood around zero by properly choos-
ing the control parameters.

Proof: The proof includes two parts.
1) The state of the auxiliary system (60) satisfies the

condition |σu| ≥ ψu, i.e., there exists input saturation.
Construct the Lyapunov candidate function as

V ≤
n

∑
i=1

Vi +
2nε

a
e−at . (72)

Using the derivative respect to time,

V̇ ≤
n

∑
i=1

Vi −2nεe−at . (73)

On the basis of (17), (34), (49) and (71), the following
inequality holds

V̇ ≤−
n−1

∑
i=1

kiz2
i −

n

∑
i=1

0.5ηi
∥∥θ̃i

∥∥2 − (kn −0.5k2
n)z

2
n

− (kσu −1)σ 2
u −nεe−at −

n−1

∑
j=1

(1/τ j,1e2
j,1 +1/τ j,2e2

j,2)

+
n−1

∑
j=1

kη0(1/ζ j,1 +1/ζ j,2)+
n

∑
i=1

(0.5ηi ∥θi∥2)

≤−2cV +κ, (74)

where c=min
{

ki,kn −0.5k2
n,ηi/2,τ j,1,τ j,2,a/4,kσu −1

}
,

κ = ∑n
i=1(0.5ηi ∥θi∥2)+∑n−1

j=1 kη0(1/ζ j,1 + 1/ζ j,2), it can
be concluded from (74) that, if kσu > 1, κ > 0, error sig-
nals zi and θ̃i asymptotically converges to a compact set
. In addition, the auxiliary design variable σu asymptoti-
cally converge to compact set.

Standard arguments can now be applied to solve the dif-
ferential inequality given in inequality(74) as follows:

0≤V (t)≤ κ/2c+(V (0)−κ/2c)exp(−2ct),∀t ≥ 0. (75)

The inequality (75) indicates that V (t) is bounded
byκ/2c, i.e., for any t ≥ 0, V (t) ≤ κ/2c, which indi-
cates that zi, θi, e j,1, e j,2, σu, ϕu are SGUUB. Note that,
sinceθ̃i = θ̂i −θi, θ̂i is SGUUB. Owing to bounded of x1d

and ẋ1d it can be concluded that x1 and ẋ1 are SGUUB. Ac-
cording to the definition of x2d , x2 is SGUUB. Similarly,
for i = 3, ..., n, xi is SGUUB. So semi-globally uniformly

ultimate boundedness of all signals of the closed-loop sys-
tem is assured.

Based on what was discussed above, the tracking error
z1 converges to an arbitrarily small region will be shown.
Because V̇ (t) ≤ 0, V ≥ 0, V is a decreasing function or
constant function.

Inequality (75) indicates that

z2
1 ≤V (t)

≤ κ/c+(2V (0)−κ/c)exp(−2ct), ∀t ≥ 0, (76)

e2
j,l ≤V (t)

≤ κ/c+(2V (0)−κ/c)exp(−2ct),∀t ≥ 0. (77)

The tracking error obviously yields

|z1| ≤
√

κ/c+(2V (0)−κ/c)exp(−2ct),

∀t ≥ 0, (78)

|e j,l | ≤
√

κ/c+(2V (0)−κ/c)exp(−2ct),

∀t ≥ 0. (79)

Thus

lim
t→∞

|z1| ≤
√

κ/c, (80)

lim
t→∞

|e j,l | ≤
√

κ/c. (81)

The convergence region of z1 can be expressed as the
compact set

Sz1 =
{

z1

∣∣∣|z1| ≤
√

κ/c
}

(82)

and the filter errors converge to the compact sets

Se j,l =
{

e j,l

∣∣∣|e j,l | ≤
√

κ/c
}
,

j = 1, ...,n−1, l = 1,2. (83)

It is noted that for any given parameters ai, kη0 , ζ j,1,
ζ j,2, ηi, κ is the unknown but is a bounded constant which
is independent of c. By increasing the values of ki, ηi,
λmin, Γi, τ j,1, τ j,2, a,kσu , i.e., increasing the value of c to a
big enough value, the value of κ/c can be made arbitrarily
small. It can be concluded that κ/c can be made arbitrarily
small by choosing c large enough.

Therefore, the control objective is reached when the in-
put constraint occurs, i.e., the desired trajectory of non-
linear system (1) is followed in the presence of unknown,
uncertainty under input constraint (2).

To proceed, the stability proof of Theorem 2 is proved
as following when there is no saturation.

2) The state of the auxiliary design system (60) satisfies
the condition, |σu| < ψu, i.e., there does not exist input
saturation. So ∆u = 0 and u = uc, the control input u is
bounded. Thus, uc is bounded.
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The Lyapunov candidate function for the n-step is con-
structed as (60), and the time derivative is

V̇n0 =zn( fn +ΦT
n θn +gnu−αn−1,2)

+ θ̃ T
n Γ−1

n
˙̂θn + en−1,1ėn−1,1 + en−1,2ėn−1,2. (84)

The control input uc is redesigned as

uc = u0 +ur, (85)

where ur denotes robust feedback to attenuate the effect of
uncertain nonlinearity gndn, and it is designed as

ur =− γ2
n zngn

γn |zngn|+ εe−at . (86)

The adaptive law for θ̂n is same as (61). Similar to the
proof of the n step, (84) satisfies

V̇n0 ≤− knz2
n −0.5ηn

∥∥θ̃n
∥∥2

+ εe−at −1/τn−1,1e2
n−1,1

−1/τn−1,2e2
n−1,2 +0.5ηn ∥θn∥2 + kη0/ζn−1,1

+ kη0/ζn−1,2. (87)

The Lyapunov function for the whole closed-loop sys-
temis constructed as

V̄ ≤
n−1

∑
j=1

Vj +Vn0 +
2nε

a
e−at . (88)

The time derivative of it satisfies

˙̄V ≤−
n−1

∑
i=1

kiz2
i −

n

∑
i=1

0.5ηi
∥∥θ̃i

∥∥2 − (kn −0.5k2
n)z

2
n

−nεe−at −
n−1

∑
j=1

(1/τ j,1e2
j,1 +1/τ j,2e2

j,2) (89)

+
n−1

∑
j=1

kη0(1/ζ j,1 +1/ζ j,2)+
n

∑
i=1

(0.5ηi ∥θi∥2)

≤−2c1V +κ,

where c1 = min{ki,ηi/2,τ j,1,τ j,2,a/2}, κ = ∑n
i=1(0.5ηi

∥θi∥2)+∑n−1
j=1 kη0(1/ζ j,1 +1/ζ j,2).

Likely, the convergence region of z1 can be expressed
as the following compact set

S̄z1 =
{

z1

∣∣∣|z1| ≤
√

κ/c1

}
, (90)

and the filter errors converge to the compact sets

S̄e j,l =
{

e j,l

∣∣∣|e j,l | ≤
√

κ/c1

}
. (91)

Additionally, semi-globally uniformly ultimate bound-
edness of all signals of the closed-loop system is guaran-
teed.

Remark 3: In this paper, the asymptotic stability of the
closed-loop system is achieved, and the controller design

scheme is applied to the tracking control of hypersonic ve-
hicle. We design the robust second-order filter to solve the
“explosion of terms” problem that inherent in backstep-
ping control. In the further work, the finite time or fixed
time filter will be designed to achieve the fast response of
the filter.

Remark 4: Though the control design method is also
based on the combination of backstepping control and
Lyapunov redesign technique, the main difference from
[2] is given as follows.

First of all, not only unknown parameters and uncer-
tainty but also input constraint is taken into consideration
in this paper. Through designing an auxiliary system, an
auxiliary signal is provided to handle the influence of in-
put constraint. The auxiliary signal is applied at the level
of controller design and stability analysis.

Besides, a new robust second-order filter is developed
to solve the “explosion of terms” problem to avoid the
complex computation of virtual control inputs inherent in
backstepping control design procedure. The advantage of
the proposed second-order filters is given in Remark 2.

At last, both numerical example and the application of
the hypersonic vehicle tracking control problem are sim-
ulated to demonstrate the effectiveness of the proposed
control scheme in coping with uncertainty and input con-
straint.

4. NUMERICAL SIMULATIONS

4.1. Numerical example
In this section, a second-order system is considered and

the simulation is carried out to illustrate the performance
of the robust adaptive backstepping control scheme devel-
oped in the Section 3.

ẋ1 = x2
1 +φT

1 (x1)θ1 +2x2 +2d1(x1,x2, t),

ẋ2 = x1 +2x2
2 +φT

2 (x1,x2)θ2 + ex2 u+ ex2 d2(x1,x2, t),

y = x1, (92)

where φT
1 (x1) = x2

1 sin(x1), φT
2 (x1,x2) = [x1x2,x2 cos(x1)],

d1(x1,x2, t) = 0.2x2 + x2
1 sin(0.01t), d2(x1,x2, t) = 3x2

sin(10πt).
In order to do simulation, the nominal values of θ1 and

θ2are assumed to be that θ1 = 1, θ2 = [1,1.5]T . The input
constraint is |u| ≤ 15. And the external disturbances satis-
fies |d1(x1,x2, t)| ≤ 0.2 |x2|+

∣∣x2
1

∣∣ , |d2(x1,x2, t)| ≤ 3 |x2|.
The objective is to design a control input as in the above

section to guarantee that the output of the closed-loop sys-
tem track a reference trajectory x1d = sin(πt).

After many simulations, the control parameters that
makes that designed control system achieve relative good
tracking performance are adopted as k1 = 5, k2 = 12,
k3 = 20, kσu = 0.01, µ = 150, ψu = 0.01, ε = 5, a = 0.01,
Γ1 = Γ2 = 0.1diag(1 1), η1 = 0.02, η2 = 0.01, τ1 = τ1 =
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(a) (b)

Fig. 1. (a)Time response of output tracking, (b)Time re-
sponse of control input.

(a) (b)

Fig. 2. (a)Estimation of virtual control input x2d ,
(b)Estimation of virtual control input α̇11.

0.2, ξ1 = ξ2 = 0.01, ζ1 = ζ2 = 100. To the better demon-
stration of the capability of the designed control scheme
in tackling input constraint, two cases response (with and
without input constraints) are presented in one figure, and
the local time response of the curves during the dynamic
change process are given.The simulation results are with
and without input constraint are presented in Figs.1 and 2.

As shown in Fig. 1, it is obvious that the proposed
control strategy guarantee the good tracking performance.
And the behaviour of input is smooth. Control input satu-
ration is only observed in the initial phase, and it is about
0.08 seconds. After this initial phase, the control moments
are within their limits and no saturation is observed. In
addition, it is obvious that the proposed control scheme
leads to a slower response for system output coverage to
reference command than that of the response without in-
put constraints, which is about in 0.01seconds. However,
the proposed control approach can still guarantee the sta-
bilization in spite of a longer response and handles the
input constraints efficiently. In addition, the second-order
has the good capability of estimation from Fig. 2.

It can be concluded from the simulation results that the
designed controller satisfies the following two aspects. (a)
During the dynamic tuning phase, it guarantees that the

control system is still stable when there is input saturation.
(b) During the steady-state phase, it assures the control
system is stable.

4.2. Aerospace application example
To further show the effectiveness of the designed con-

trol strategy , we will consider a HSV with the model de-
scribed as [34]

V̇ = 1
m (T cosα −D)−gsinγ,

ḣ =V sinγ,
γ̇ = 1

mV (L+T sinα)− 1
V gcosγ, (93)

q̇ =
Myy

Iyy
,

α̇ = q− γ̇.

This model is composed of five state variables: velocity
V , altitude h, flight-path angel γ , pitch rate q, angle of
attack α .The control inputs are elevator deflection δe and
throttle setting β , while the outputs to be controlled are
selected as the velocity and the altitude. And m denotes
vehicle mass, Iyy means the moment of inertia, ρ is air
density, S is reference area, c̄ is mean aerodynamic chord,
g represents gravitational acceleration.

The approximations of the forces (thrust T , drag D, lift
L) and moments (pitch moment Myy) employed here are
given as follows:

T = 0.5ρV 2SCT ,

D = 0.5ρV 2SCD,

L = 0.5ρV 2SCL, (94)

My = 0.5ρV 2Sc̄ · (CM(α)+CM(δe)+CM(q)),

and the aerodynamic parametersC∗are chosen as:

CT =CT,β β +CT,0,CD =CD,α2 α2 +CD,α α +CD,0,

CL =CL,α α,CM(α) =CM,α2 α2 +CM,α α +CM,0,

CM(δe) =CM,δe(δe −α),CM(q) (95)

=
c̄q
2V

(CMq,α2 α2 +CMq,α α +CMq,0).

Aerodynamic coefficients, force coefficients and
physics parameters are referred to [35].

The control objective is to ensure that the closed-loop
system is stable and the state V and h can track a given the
reference signals Vre f and hre f in the presence of aerody-
namic uncertainty and input constraint.

As shown in [36–38], the control input for altitude and
velocity can be designed separately based on the back-
grounds of hypersonic vehicle.

Substituting (94) and (95) into (93), the dynamic of ve-
locity can be transformed into the following form

V̇ = FV +ΦT
V 1θV +ΦV 2θV β . (96)
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And the other states dynamics of (93) can be transformed
into the following form

ḣ =V sinγ,
γ̇ = Fγ +Φγ1θγ +Φγ2α,

α̇ = q− γ̇, (97)

q̇ = ΦT
q1θq +Φq2δe,

where unknown aerodynamic parameter vectors are

θV = [CT 0,CDα2 ,CDα ,CD0]
T ,

θγ =CT 0, (98)

θq =
[
CMα2 ,CMα − ce,CM0,CMqα2 ,CMqα ,CMq0

]T
,

and functions FV , Fγ , Fq, ΦV 1, ΦV 2, Φγ1, Φγ2, Φq1, Φq2 are

FV (x,xre f ) =−gsinγ,

Fγ =− g
V

cosγ +
ρV SCT β

2m
β sinα,

ΦV 1 =
ρV 2S

2m

[
cosα,−α2,−α,−1

]T
,

ΦV 2 =
ρV 2SCT β cosα

2m
,

Φγ1 =
ρV S sinα

2m
, Φγ2 =

ρV SCLα

2m
,

Φq1 =
ρV 2Sc̄

2Iyy

[
α2,α,1, c̄qα2/2V , c̄qα

/
2V , c̄q

/
2V

]T
,

Φq2 =
ρV 2Sc̄ce

2Iyy
. (99)

Based on the preceding section, the control inputs are
designed for (96) and (97).

The simulation is done to test the designed control strat-
egy. In the simulation, aerodynamic coefficients, force co-
efficients and physics parameters in the simulation study
are referred to [35]. The input constraints are set as
β ∈ [0.1, 1.2], δe ∈ [−0.2618, 0.2618] rad. The refer-
ence signals Vre f and are set as 1000 ft/s step-velocity
command, and the altitude is kept at the trimmed flight
condition, i.e., hre f = 110000 ft. The reference commands
are generated by a second-order prefilter with a natural
frequency 0.03 rad/s and a damping factor 0.95.

Remark 5: To the best of our knowledge, it is impor-
tant and necessary for the hypersonic vehicle to achieve
the stable tracking in short time(in finite time or fixed
time). In this paper, by using tuning controller parame-
ters, the stable tracking control is obtained in short time.
And we only get the fast response speed in the simula-
tion result without theoretical guarantee. Therefore, in the
further work, to achieve the theoretical results and simu-
lation results of fast performance of the designed control
scheme, we will do the research based on the results of
this paper to obtain the finite time or fixed time of the pro-
posed system and apply it into hypersonic vehicle flight
control system.

Fig. 3. Time response of outputs velocity.

Fig. 4. Time response of outputs altitude.

The simulation results are shown in Figs. 3-6,which
demonstrate that the designed controller can achieve the
stable tracking of vehicle and altitude in the presence of
input constraint and aerodynamic uncertainty.

5. CONCLUSION

In this paper, a Lyapunov redesign approach is em-
ployed to synthesize backstepping control to construct
the stabilizing control input for a class of nonlinear sys-
tem with unknown parameters, uncertainty and input con-
straint. The Lyapunov redesign approach is used to cancel
the uncertainty. Robust second-order filters are employed
to eliminate the “explosion of terms” problem inherent in
the traditional backstepping control. The auxiliary system
is constructed to analyze the input constraint, and the state
of it is utilized to design control law and the closed-loop
system analysis. Simulation results are conducted to show
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Fig. 5. Time response of control input.

Fig. 6. Time response of control input.

that the developed controller handles the input constraint
effectively and the system trajectory tracks its command.

REFERENCES

[1] H. K. Khalil, Nonlinear systems, New Jersey: Prentice
Hall, 2002.

[2] G. Montaseri and M. J. Yazdanpanah, “Adaptive control
of uncertain nonlinear systems using mixed backstepping
and Lyapunov redesign techniques,” Commun Nonlinear
Sci Numer Simulat, vol. 17, no.8, pp. 3367-3380, August
2012. [click]

[3] M. A. Hamida and A. G. Jesus de Leon, “Robust integral
backstepping control for sensorless IPM synchronous mo-
tor controller,” Journal of the Franklin Institute, vol. 349,
no.5, pp.1734-1757, June 2012.

[4] D. J. Lee, “Distributed backstepping control of multiple
thrust-propelled vehicles on a balanced graph,” Automat-
ica, vol. 48, no.11, pp. 2971-2977, November 2012. [click]

[5] F. Zhang, G. R. Duan, and B. Zhou, “Robust adaptive con-
trol for a class of cascaded nonlinear systems with applica-
tions to space interception,” Internal Journal of Robust and
Nonlinear Control, vol. 24, no.15, pp. 1-31, October 2014.

[6] M. I. El-Hawwary and M. Maggiore, “Reduction theorems
for stability of closed sets with application to backstepping
control design,” Automatica, vol. 49, no.1, pp. 214-222,
January 2013.

[7] D. Won and W. Kim, “Disturbance observer based back-
stepping for position control of electro-hydraulic systems,”
International Journal of Control, Automation, and Sys-
tems, vol. 13, no.2, pp. 488-493, April 2015. [click]

[8] F. Bribiesca-Argomedo, and M. Krstic, “Backstepping-
forwarding control and observation for hyperbolic PDEs
with fredholm integrals,” IEEE Trans. on Automatic Con-
trol, vol. 60, no.8, pp. 1-10, February 2015.

[9] Q. K. Shen, and P. Shi, “Distributed command fil-
tered backstepping consensus tracking control of nonlinear
multiple-agent systems in strict-feedback form,” Automat-
ica, no.53, pp. 120-124, March 2015. [click]

[10] Y. Song, X. S. Fang and Q. D. Diao, “Mixed H-2/H-infinity
distributed robust model predictive control for polytopic
uncertain systems subject to actuator saturation and miss-
ing measurements,” Internal Journal of Systems Science,
vol. 47, no. 4, pp.777-790, April 2016. [click]

[11] A. Isidori, Nonlinear control systems, Berlin: Springer,
1995.

[12] R. Ortega, A. Vander Schaft, I. Maschke, and E. Gerardo,
“Putting energy back in control,” IEEE Control Systems
Magazine, vol. 21, no.2, pp. 18-33, August 2002.

[13] J. Song and S.P. He, “Finite-time robust passive control for
a class of uncertain Lipschitz nonlinear systems with time-
delays,” Neurocomputing, vol.159, no.2, pp. 275-281, July
2015. [click]

[14] H. Zeng, Y. He, M. Wu and S.P. Xiao, “Passivity analysis
for neural networks with a time-varying delay,” Neurocom-
puting, vol, 74, no.5, pp. 730-734, February 2011. [click]

[15] S. He and F. Liu, “Finite-time H-fuzzy control of nonlinear
jump systems with time delays via dynamic observer-based
state feedback,” IEEE Trans. Fuzzy Syst. vol. 20, no.4, De-
cember2012.

[16] J. Na, M. N. Mahyuddin, G. Herrmann, and P. Barber, “Ro-
bust adaptive finite-time parameter estimation and control
for robotic systems,” International Journal of Robust and
Nonlinear Control, vol. 25,no. 16, pp. 3045-3071, Novem-
ber 2015. [click]

[17] S.T. Wang and J. T. Fei, “Robust adaptive sliding mode
control of MEMS gyroscope using T-S fuzzy model,” Non-
linear Dyn, vol. 77, no. 1-2, pp. 361-371, February 2014.
[click]

[18] Z. W. Qiao, T. N. Shi, Y. D. Wang and C. Xia, “New
sliding-mode observer for position sensorless control of
permanent-magnet synchronous motor,” IEEE Trans.on In-
dustrial Electronics, vol. 60, no.2, pp. 710-719, February
2013.

http://dx.doi.org/10.1016/j.cnsns.2011.12.005
http://dx.doi.org/10.1016/j.automatica.2012.08.005
http://dx.doi.org/10.1007/s12555-013-0396-y
http://dx.doi.org/10.1016/j.automatica.2014.12.046
http://dx.doi.org/10.1080/00207721.2014.905647
http://dx.doi.org/10.1016/j.neucom.2015.01.038
http://dx.doi.org/10.1016/j.neucom.2010.09.020
http://dx.doi.org/10.1002/rnc.3247View/save citation
http://dx.doi.org/10.1007/s11071-014-1300-x


224 Fang Wang, Qin Zou, and Qun Zong

[19] H. J. Xu, H.J., M.D. Mirmirani and P.A. Ioannou, “Adap-
tive sliding mode control design for a hypersonic flight ve-
hicle,” Journal of Guidance Control and Dynamics , vol.7,
no.5, pp. 829-838, December 2014.

[20] M. Kristic, I. Kanellakopoulos and P. Kosotovic, Nonlin-
ear and adaptive control design, Wiley & Sons, New York,
1995:1-598.

[21] P. Kokotovic and M. Arcak, “Survey constructive nonlinear
control: a historical perspective,” Automatica, vol.37, no.5,
pp. 637-662, May 2001. [click]

[22] W. J. Dong, J. A. Farrell, M. M. Polycarpou and V. Djapic,
“Command filtered adaptive backstepping,” IEEE Trans.
on Control Systems Technology, vol. 20, no.3, pp. 566-580,
May 2012.

[23] M. Chen, S. S. Ge, and B. B. Ren, “Adaptive tracking con-
trol of uncertain MIMO nonlinear systems with input con-
straints,” Automatica, vol. 47, no.3, pp. 452-465, March
2011. [click]

[24] H. Li, L. H. Dou, and Z. Su, “Adaptive dynamic surface
based nonsingular fast terminal sliding mode control for
semistrict feedback system,” Journal of Dynamics, System,
Measurements, and Control, no.134, pp. 1-9, May2012.

[25] N. O. Perez-Arancibia, T. C. Tsao, and J. S. Gibson, “Satu-
ration induced instability and its avoidance in adaptive con-
trol of hard disk drives,” IEEE Trans. on Control System
Technology, vol. 18, no. 2, pp. 368-382, September 2010.

[26] C. Y. Wen, J. Zhou , Z. T. Liu and H Su, “Robust adaptive
control of uncertain nonlinear systems in the presence of
input saturation and external disturbance,” IEEE Trans. on
Automatic Control, vol. 56, no. 7, pp. 1672-1678, March
2012.

[27] E. G. Gilbert, and C. J. Ong, “Constrained linear systems
with hard constraints and disturbances: an extended com-
mand governor with large domain of attraction,” Automat-
ica, no. 47, pp. 334-340, February 2011. [click]

[28] D. Bernardini, and A. Bemporad, “Stabilizing model pre-
dictive control of stochastic constrained linear systems,”
IEEE Trans. on Automatic Control, vol. 5, no. 6, pp. 1468-
1480, June2012.

[29] Y. J. Maruki, K. Kawano, H. Suemitsua and T. Matsuo,
“Adaptive backstepping control of wheeled inverted pen-
dulum with velocity estimator,” International Journal of
Control, Automation, and Systems, vol.12, no. 5, pp.1040-
1048, August 2014. [click]

[30] J. S. Huang, C. Y. Wen, W. Wang and Z. P. Jiang, “Adap-
tive stabilization and tracking control of a nonholonomic
mobile robot with input saturation and disturbance,” Sys-
tems & Control Letters, vol. 62, no. 3, pp. 234-241, March
2013. [click]

[31] X. W. Bu, X. Y. Wu, Y. X. Chen and R.Y. Bai, “Design
of a class of new nonlinear disturbance observers based on
tracking differentiators for uncertain dynamic systems,” In-
ternational Journal of Control, Automation, and Systems,
vol. 13, no. 3, pp. 595-602, March 2015. [click]

[32] R. Y. Yuan, X. M. Tan, G. L. Fan and J. Yi, “Robust adap-
tive neural network control for a class of uncertain nonlin-
ear systems with actuator amplitude and rate saturations,”
Neurocomputing, vol. 125, no.3, pp. 72-80, February 2014.
[click]

[33] M. M. Polycarpou and P. A. Ioannou, “A robust adaptive
nonlinear control design,” Automatica, vol. 32, no.3, pp.
423-427, March 1996.

[34] Z. D. Wilcox, W. MacKunis, S. Bhat and R Lind, “Robust
nonlinear control of a hypersonic aircraft in the presence of
aerothermoelastic effects,” Proc. of American Control Con-
ference, Hyatt Regency Riverfront, St. Louis, MO, USA,
2533-2538,2009.

[35] H. J. Xu and M. Mirmirani, “Adaptive sliding mode control
design for a hypersonic flight vehicle,” Journal of Guid-
ance, Control, and Dynamics, vol. 27, no.5, pp. 829-838,
December 2014. [click]

[36] Q. Zong, F. Wang, and B. L. Tian, “Robust adaptive ap-
proximate backstepping control design for a flexible air-
breathing hypersonic vehicle,” Journal of Aerospace Engi-
neering, vol. 28, no.4, pp. 1-14, July 2015.

[37] L. Fiorentini, A. Serrani, M. Bolender and DB Doman,
“Nonlinear robust adaptive control of flexible air-breathing
hypersonic vehicles,” Journal of Guidance, Control, and
Dynamics, vol. 32, no. 2, pp. 401-415, March-April 2009.
[click]

[38] Q. Zong, F. Wang, R. Su and S.K. Shao, “Robust adaptive
backstepping control design for a flexible air-breathing hy-
personic vehicle subject to input constraint,” Proc IMechE
Part G: Journal of Aerospace Engineering, vol. 229, no.1,
pp. 10-25, January 2015. [click]

Fang Wang received her M.S. degree
in Computational Mathematics from Yan-
shan University, Hebei, China, in 2008.
In 2014, she received her Ph.D. degree
in control theory and control engineering
from Tianjin University, Tianjin, China.
She is currently a lecturer in Yanshan Uni-
versity. Her major research interests in-
clude nonlinear control theories, adaptive

control, robust control, guidance and control of aircraft.

Qin Zou has completed her Ph.D. de-
gree from Kochi University of Technol-
ogy, Japan, in 2008, which major is Pho-
toelectron. She also completed her Ph.D.
degree from Yanshan University, Hebei,
China, 2008, which major is Materials Sci-
ence. She is currently a Professor in Yan-
shan University, and her research filed is
majorly in materials science of aerospace.

http://dx.doi.org/10.1016/S0005-1098(01)00002-4
http://dx.doi.org/10.1016/j.automatica.2011.01.025
http://dx.doi.org/10.1016/j.automatica.2010.10.016
http://dx.doi.org/10.1007/s12555-013-0402-4
http://dx.doi.org/10.1016/j.sysconle.2012.11.020
http://dx.doi.org/10.1007/s12555-014-0173-6
http://dx.doi.org/10.1016/j.neucom.2012.09.036
http://dx.doi.org/10.2514/1.12596
http://dx.doi.org/10.2514/1.39210
http://dx.doi.org/10.1177/0954410014525128


Robust Adaptive Backstepping Control for an Uncertain Nonlinear System with Input Constraint based on Lyapunov ...225

Qun Zong was born in Tianjin, China, in
1961. He received the Bachelors, Mas-
ters, and Ph.D. degrees in automatic con-
trol from Tianjin University, Tianjin, in
1983, 1995, and 2002, respectively. Since
1983, he has been with the School of Elec-
trical Engineering and Automation, Tian-
jin University, where he is currently a Pro-
fessor. His main research interests include

complex system modeling and flight control.


