
International Journal of Control, Automation and Systems 15(3) (2017) 1314-1321
http://dx.doi.org/10.1007/s12555-015-0210-0

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Fractional Sliding Mode Control of Underwater ROVs Subject to Non-
differentiable Disturbances
Aldo-Jonathan Muñoz-Vázquez*, Heriberto Ramírez-Rodríguez, Vicente Parra-Vega, and Anand Sánchez-Orta

Abstract: Some hydrodynamic phenomena of an underwater Remotely Operated Vehicle (ROV), such as turbu-
lence, cavitation, and multi-phase fluidic regimes, are associated to continuous but nowhere differentiable functions.
These disturbances stand as complex forces potentially influencing the ROVs during typical navigation tasks. In this
paper, the tracking control of a ROV subject to nonsmooth Hölder disturbances is proposed based on a fractional-
order robust controller that ensures exponential tracking. Notably, the controller gives rise to a closed-loop system
with the following characteristics: a) continuous control signal that alleviates chattering effects; b) the fractional
sliding motion is substantiated on a proposed resetting memory principle; c) the control is robust to model uncer-
tainties; and d) exact rejection of Hölder disturbances in finite-time. A representative simulation study reveals the
feasibility of the proposed scheme.
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1. INTRODUCTION

An underwater Remotely Operated Vehicle (ROV) con-
stitutes a nonlinear coupled dynamical system, [1], sub-
ject to a wide class of exogenous disturbances as well as
parametric uncertainties and unmodeled dynamics, such
as added mass, cavitation, turbulence due to thrusters and
interface to rigid plates, and stream jets, to name a few,
[2]. Thus, the design of a robust controller that withstands
any, or all, of those uncertain forces is of interest for de-
signing the next generation of ROVs.

Several control approaches for ROVs have been pro-
posed, from typical inverse dynamics that are prone to in-
stability for any uncertainty, [3], to H∞ schemes based on
linearized models, [4], and sliding mode structures [5–7].
However, classical sliding mode schemes compromise the
performance due to harmful chattering, [8], meanwhile
high-order sliding mode structures assure robustness with
chattering alleviation by assuming Lipschitz (weakly dif-
ferentiable) disturbances, [9]. Additionally, underwater
disturbances may exhibit whimsical properties, which are
due to the complex interaction of turbulence fluid to the
ROV rigid body, and to the biphasic maritime environ-
ment, [10], whose transition from laminar to turbulent
regime has been studied using multifractal analysis, [11].
In the latter, the regularity condition has been studied by
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means of integral Wavelet transforms, resorting on Lips-
chitz/Hölder exponents, [12]. In addition, Hölder expo-
nents reveal an intriguing relation between the maximum
Hölder exponent (with respect to the singularity spectrum)
and the Reynolds number, [11], showing that these func-
tions are difficult to handle by using the conventional no-
tion of integer differentiability, because their Hölder ex-
ponents are less than one. Furthermore, it is known that
there exist singular functions with no integer derivatives
but with well-posed fractional order ones, [13]. Also,
it has been reported in [14] that some velocity compo-
nents of a turbulent fluid can be described by continu-
ous but nowhere differentiable fractal functions such as
the Weierstrass-Mandelbrot function.

The synthesis of fractional continuous controllers for
integer-order plants subject to non-Liptchitz disturbances
has been overlooked despite the enormous body of liter-
ature on applications of fractional-order control. Clearly,
the disturbance rejection of these Hölder (non-Liptchitz)
functions stands for a problem that requires unconven-
tional control schemes, such as fractional-order control.
This suggests that the fundamentals of Fractional Calcu-
lus can be considered to study this problem by using the
diverse topological and robustness properties in addition
to the integer-order case, [15]. The pioneer work of [16]
considers fractional-order reaching dynamics for a system
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without disturbances; however, general results on stability,
robustness and finite-time convergence have been omit-
ted. Also, there has been proposed even a fractional PI
controller for ROVs, showing a better performance with
respect to the integer-order counterpart, however, without
any analysis of the stability properties, [17]. Since the
ROV is subject to complex hydrodynamic disturbances,
fractional control structures are considered to address ro-
bustness with a formal stability analysis. A step forward
has been established in [18,19], wherein the advantageous
structural properties of fractional differintegral operators,
such as memory and heritage, have been synthesized to
propose a robust fractional-order control for integer-order
dynamical robots. Nevertheless, the rejection of Hölder
disturbances for ROVs requires additional developments
to design a robust fractional-order controller.

In this paper, and motivated by our previous results in
[18,19], it is proposed a fractional sliding mode controller
for the fully actuated ROV. Assuming that all the state is
accessible and known, the following salient contributions
of our approach can be enlisted:

• A sliding mode is enforced in finite-time
• The controller is continuous
• Robustness against non-differentiable disturbances
• Exact rejection of Hölder disturbances
• Exponential tracking during the sliding motion

This suite of characteristics equips the proposal with a
convenient control framework for ROVs since the exact
knowledge of the complex dynamic model is not required,
yet the controller rejects anomalous disturbances without
the expenditure of a high control frequency.

This paper is organized as follows: Section 2. addresses
the preliminaries on Fractional Calculus, kinematic and
dynamic model of the ROV, and the control problem state-
ment. Section 3. presents the control design and the sta-
bility analysis. Section 4. exposes a simulation study to
show the viability of the theoretical contribution, and fi-
nally, Section 5. discusses the main conclusions.

2. PRELIMINARIES

The background on fractional differintegral operators
and Hölder functions are presented in this section, as well
as kinematic and dynamic ROV models are introduced.

2.1. On fractional operators
Consider the following differintegral operators, [20]:
· Riemann-Liouville fractional integral

t0 Iη
t f (t) =

1
Γ(η)

∫ t

t0

f (τ)
(t − τ)1−η dτ. (1)

· Caputo fractional derivative

C
t0 Dη

t f (t) = t0 I⌈η⌉−η
t

d⌈η⌉

dt⌈η⌉ f (t) (2)

where ⌈η⌉ = min{x ∈ Z : x ≥ η} is the ceil function,
Γ(x) =

∫ ∞
0 zx−1e−zdz is the Gamma function and wη

k are
fractional-binomial coefficients.

2.2. On fractional differentiability
The Hölder exponent is related to the regularity of a

function, [12], which in turns is strongly related to the no-
tion of fractional differentiability, [13, 21]. Hence, con-
sider the following useful definition.

Definition 1: A function f : Ω⊂R→R is Hölder con-
tinuous on Ω for the exponent η ∈ [0,1] if ∃H ∈ R such
that ∀ t1, t2 ∈ Ω,

| f (t1)− f (t2)| ≤ H|t2 − t1|η . (3)

The maximum number η that complies with (3) is called
the critical exponent of the function f (t).

Some algebraic properties of Hölder continuous func-
tions are summarized in the following proposition.

Proposition 1: Let f (t) and g(t) be two Hölder con-
tinuous functions on a bounded interval Ω ⊂ R, whose
critical orders are µ,η ∈ (0,1), respectively, with µ < η .
Then, f (t) + g(t), f (t)g(t) are Hölder continuous func-
tions of critical order µ on Ω. In addition, f (g(t)),g( f (t))
are Hölder functions having the critical order µη on Ω.

To analyze the fractional differentiability of a Hölder
continuous function, it is needed to extend the Caputo
fractional derivative from the space of differentiable func-
tions to the space of those functions without a well-posed
integer-order derivative, but being Hölder continuous for
some positive exponent less than one. To this end, inte-
grating by parts (2), one obtains the following

C
t0 Dη

t f (t) =
f (t)− f (t0)

Γ(1−η)(t − t0)η + (4)

η
Γ(1−η)

∫ t

t0

f (t)− f (τ)
(t − τ)η+1 dτ,

which is a well-posed operator for Hölder continuous
functions f (t) of critical exponents grater than η . In ad-
dition, operators (2) and (4) coincide not just for differen-
tiable functions but also for Hölder continuous functions
with critical exponents grater than η , [13, 21]. In addi-
tion, the Hölder continuity is a necessary condition for a
function to be fractional differentiable, as it is stated in the
following proposition.

Proposition 2: Let f (t) : Ω→R be a real valued func-
tion, with Ω a convex compact set of real numbers. If
supt1,t2∈Ω

∣∣C
t1 Dη

t f (t)
∣∣
t=t2

= k f ∈ R, with η ∈ (0,1), then

| f (t2)− f (t1)| ≤ k f

Γ(η+1) |t2 − t1|η .
Moreover, it is worth to point out that the fractional in-

tegral of a bounded function is a Hölder continuous func-
tion with a critical order at least as large as the order of
integration, (Corollary 2 pp. 56 of [21]). This observation
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Fig. 1. Inertial and body frames for ROV modeling.

enables us to analytically deal with Hölder disturbances by
means of a uniformly continuous controller, assuring chat-
tering alleviation while preserving robustness to a wide
class of physical hydrodynamic disturbances occurring in
the maritime environment.

2.3. Differential Kinematics of the ROV
Consider the inertial reference frame Oe and the body

frame Om of a given ROV, see Fig. 1. Aiming at relating
the extended velocity vector ν ∈ R6 to the time derivative
of the ROV pose x∈R3+l , for l ≥ 3 the number of attitude
parameters, let x= [dT ΘT ]T and ν = [vT ωT ]T denoting
the inertial position d ∈ R3 and the attitude parameters
Θ∈Rl , where v ∈R3 and ω ∈R3 stand for the linear and
the angular velocities, respectively, expressed in the vehi-
cle reference frame Om. Then, ν = Jν(Θ)ẋ represents the
forward differential kinematic. Assuming the roll-pitch-
yaw attitude representation, Θ = [ϕ θ ψ ]T . Consider the
transformation matrix

Jν(Θ) =

[
RT (Θ) 03×3

03×3 RT (Θ)Jθ (Θ)

]
∈ R6×6,

for R(Θ) ∈ R3×3 the rotation matrix between the iner-
tial frame and the vehicle reference frame, and Jθ (Θ) ∈
R3×3+l given by

Jθ (Θ) =

 CθCψ −Sψ 0
Cθ Sψ Cψ 0
−Sθ 0 1

 ,
for Sα = sin(α) and Cα = cos(α). Notice that the latter
transforms the angular velocity ωe expressed in the inertial
frame Oe to the time derivative of the attitude parameters,
such that, ωe = Jθ (Θ)Θ̇.

2.4. Dynamic model of the ROV
The dynamic model of the ROV can be obtained by us-

ing the Kirchhoff formulation, [1],

d
dt

∂K
∂v

+ω× ∂K
∂v

= f , (5)

d
dt

∂K
∂ω

+v× ∂K
∂v

+ω× ∂K
∂ω

= n, (6)

where K = Ka +KI represents the total kinetic energy, f
and n are the non inertial force and torque control inputs,
respectively. The important added mass effect is modeled
through Ka =

1
2ν

T
r Maνr that stands for the kinetic energy

of the fluid around the ROV, where νr ≜ ν−RTζe models
the relative fluid velocity, for ζe the non-rotational velocity
of the fluid expressed in the inertial frame Oe,

R=

[
R(Θ) 03×3

03×3 R(Θ)

]
∈ R6×6,

and Ma stands for the positive definite added mass matrix.
The term KI =

1
2ν

T MIν models the kinetic energy of the
ROV rigid body, where MI stands for the constant, sym-
metric and positive definite inertia matrix given by

MI =

[
mI3×3 −m[rc×]

m[rc×] Ig

]
(7)

for m and rc the total mass and position of the center of
mass of the ROV, respectively, and Ig ≜ Ic−m[rc×]2 is the
displaced inertia moments matrix, for Ic the inertia tensor
with respect to the center of mass of the body in the local
frame Om. To obtain the more familiar Lagrangian for-
mulation, firstly consider the extended momentum, [22],

P ≜ ∂K
∂ν

= Mbν−MasRTζe (8)

then, the Kirchhoff formulation (5)-(6) can be written in
the following reduced form

Ṗ −ΩT (ν)P = Fu +Fg(x)+Fd −Db(νr)νr (9)

where

Fu = Bu (10)

Fg(x) =

(
(m−ρV )g(θ)

rc ×mg(θ)−rb ×ρVg(θ)

)
(11)

Ω(ν)≜
[

[ω×] [v×]
0 [ω×]

]
(12)

for Mb ≜ MI + Mas, Mas ≜ Ma+MT
a

2 , ρ the density of the
fluid, V the volume of the ROV, rb the buoyancy center of
the underwater robot, g(θ) =RTge, with ge ∈ R6, the in-
ertial gravity vector, u∈Rn the vector of control forces of
the l thrusters that power the ROV, Fd ∈ R6 the vector of
exogenous disturbances that are assumed continuous but
not necessarily differentiable, i.e. those are Hölder distur-
bances, B ∈ R6×n the thruster configuration input matrix,
and Db(νr)∈R6×6 the hydrodynamic damping matrix. Fi-
nally, there arises the ROV Lagrangian representation with
q as the generalized coordinates, [22],

Hq(q)q̈+Cq(q, q̇)q̇+Dq(q, q̇)q̇+gq(q) = τq+fd , (13)
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where

Hq(q) = JT
ν (q)MT Jν(q) (14)

Cq(q, q̇) = JT
ν (q)MT J̇ν(q)+ JT

ν (q)CbJν(q), (15)

Dq(q, q̇) = JT
ν (q)Db(q, q̇)Jν(q), (16)

gq(q) = JT
ν (q)gb, (17)

τq = JT
ν (q)Fu, (18)

fd = JT
ν (q)Fd , (19)

with MT ≜ MI +Ma > 0, Cb(ν)ν = −ΩT (ν)Mbν repre-
sents the Coriolis matrix, and the net balance of gravita-
tional buoyant forces is given by gb(x) =−Fg(x). Thus,
the control problem can be stated as follows:
"Assuming the ROV dynamic model is uncertain and sub-
ject to additive Hölder disturbances, design a continuous
controller τq, such that exponential tracking is assured
provided that kinematic maps and full state are available.

2.5. Structural properties of the Lagrangian model

There exists ci > 0, i = 0, . . . ,4, such that, [22, 23],
1) c0 < λm(Hq(q))≤∥ Hq(q) ∥≤ λM(Hq(q))< c1

2) ∥Cq(q, q̇) ∥≤ c2 ∥ q̇ ∥
3)∥ Dq(q, q̇) ∥≤ c3

4) ∥ gq(q) ∥≤ c4

for λm(M)(A) the minimum (maximum) eigenvalue of the
matrix A. Then, u ∈ R6 implies that the ROV is fully ac-
tuated and realizable since B and Jv are invertible. Notice
that since fd is an additive matched Hölder hydrodynamic
disturbance, it makes unfeasible to rely on known sliding
mode controllers for rejection of Liptchitz disturbances.

3. FRACTIONAL CONTROL DESIGN

The control problem is to design a continuous τq such
that q → qd , for qd ∈ C3. To this end, firstly consider the
componentwise control approach [8], and let the i−th en-
try of the coupled nonlinear dynamic model of (13) be the
nominal model, with the off-diagonal terms considered as
unmodeled exogenous terms. Then, the error manifold is
designed, and the controller is given; finally, the stability
analysis is shown.

3.1. Control design

Let fd attain bounded fractional derivatives for every
order less than the critical order ηc ∈ (0,1). Since the di-
agonal of Hq(q) is positive definite and bounded, the diag-
onal entrywise dynamics of (13) can be written as follows

q̈i = h−1
ii τqi + φ̄i, (20)

φ̄i ≜ h−1
ii

(
−∑

i̸= j
hi jq̈ j +∑

j
(ci j +di j)q̇ j +gi + fdi

)
,

where arguments are omitted to avoid cumbersome nota-
tion. Let the linear error manifold be

Si ≜ ∆q̇i +βi∆qi, (21)

with ∆qi = qi − qdi representing the tracking error, and
βi > 0 a feedback gain. Let us define the nominal ref-
erence velocity as

q̇ri ≜ q̇d −βi∆qi +Si(t0)e−κ(t−t0),

for κ > 0 a desired convergence rate, [22], and let the fol-
lowing sliding error manifold be

Sqi ≜ q̇i − q̇ri (22)

whose derivative of (22) along (20) becomes

Ṡqi = h−1
ii τqi +φi, (23)

where φi = φ̄i− q̈di+βi∆q̇i+κS(t0)e−κ(t−t0). Since φi has
bounded derivatives of every order η <ηc, (23) is η-times
fractionally differentiable, hence, there exists a bounded
positive scalar c such that supai,t∈R

∣∣C
ai

Dη
t φi
∣∣
t = c. In this

condition, consider the fractional sliding mode controller

τqi(t)≜ τqi(ai)− ki ai I
η
t sign(Sqi), (24)

where ai is a lower terminal based on a principle of dy-
namic memory resetting, addressed in Theorem 1, and ki

is a feedback gain. Substituting controller (24) into the
open-loop error equation (23), the following closed-loop
error equation arises

Ṡqi(t) = Ṡqi(ai)−h−1
ii ki ai I

η
t sign(Sqi(t))+ ςi(t), (25)

with ςi(t) = [hii(t)−1 −hii(ai)
−1]τqi(ai)+ ai I

η
t

C
ai

Dη
t φi.

3.2. On exponential tracking
There arises a major concern related to the memory of

the fractional operators, which is simultaneously and sur-
prisingly, a main advantage over integer-order structures,
[24]. To proof robustness, stability and finite-time conver-
gence, a resetting memory principle is proposed, which
consists in resetting the memory of the differintegral op-
erator at each time t = tni (ni ∈ N0) when Sqi(tni) = 0.

For a simpler notation, let σ = Sqi and k̄ = h−1
ii ki for an

arbitrary i. Also, define the lower terminal as ai = tn, thus
(25) becomes

σ̇(t) = σ(tn)− k̄ tn Iη
t sign(σ(t))+ ς(t). (26)

Henceforth, consider the following main result.

Theorem 1: Consider the closed-loop fractional-order
system (26) with η ∈ (0,1), σ(t0)= 0, σ̇(t0) any real num-
ber, and c = supa,b∈R

∣∣C
a Dη

t ςi
∣∣
t=b. Let {tn} and {t ′n} be the

strictly increasing sequences of non-negative real numbers
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such that σ(tn) = 0 and σ̇(t ′n) = 0, respectively. Then, for
k̄(t,σ(t)) ∈ [km,αkm], with

km >
3+η

2−α(1+η)
c and 1 ≤ α <

2
1+η

, (27)

∃ts ∈R such that σ̇(t) = σ(t) = 0 ∀t ≥ ts, guarantying the
exponential convergence of tracking errors.

Proof: Without loss of generality consider σ̇(t0) > 0,
then σ(t+0 )> 0. Also, consider

ξ1(t) = σ̇(t0)(t − t0)−
αkm + c
Γ(2+η)

(t − t0)1+η ,

ξ2(t) = σ̇(t0)(t − t0)−
km − c

Γ(2+η)
(t − t0)1+η .

Then, by using the monotonicity of the fractional integral
over [t0, t] ⊆ [t0, t1], it results ξ̇1(t) ≤ σ̇(t) ≤ ξ̇2(t). Inte-
grating again, one obtains ξ1(t) ≤ σ(t) ≤ ξ2(t). To esti-
mate t1, solve for ξ1(t) = 0 and ξ2(t) = 0, and consider
that ξ1(t) crosses zero at tξ1 < t1 (i.e. before the instant at
which σ(t1) = 0), and that ξ2(t) crosses zero at tξ2 > t1,
thus obtaining

σ̇(t0)Γ(2+η)

αkm + c
≤ (t1 − t0)η ≤ σ̇(t0)Γ(2+η)

km − c
. (28)

Now, one has that σ̇(t1) is bounded below by ξ̇1(tξ2),
where tξ2 is the time at ξ2(tξ2) = 0. This leads to
−µσ̇(t0) ≤ σ̇(t1), with µ = αkm+c

km−c (1+η)− 1 < 1 since

by (27), one gets c < 2−α(1+η)
3+η km. Also, proceeding by

mathematical induction, one has that

|σ̇(tn)| ≤ µ|σ̇(tn−1)| ∀n ∈ N, (29)

with σ̇(tn)σ̇(tn−1) ≤ 0. Hence, |σ̇(tn)| ≤ µn|σ̇(t0)| and
consequently

σ̇(tn)→ 0 as n → ∞. (30)

Notice that the first cross σ̇(t ′0) = 0 can be estimated in a
similar fashion. Then, one has that

σ̇(t0)Γ(1+η)

αkm + c
≤ (t ′0 − t0)η ≤ σ̇(t0)Γ(1+η)

km − c
. (31)

Therefore, from σ(t)≤ ξ2(t) for t ∈ [t0, t1], one obtains

σ(t ′0)≤ σ̇(t0)1+1/η η
1+η

[
Γ(1+η)

km − c

]1/η

. (32)

The latter establishes an upper bound for σ(t). Addition-
ally, in virtue of |σ̇(tn)| ≤ µ|σ̇(tn−1)|, it follows that

|σ(t ′n)| ≤ µn(1+1/η)|σ(t ′0)|, (33)

with t = t ′n at σ̇(t) = 0, and hence

σ(t ′n)→ 0 as n → ∞. (34)

The time of convergence is ts = t0 +∑∞
n=0(tn+1 − tn). Also,

for each time interval [tn, tn+1], one can find that (tn+1 −
tn)η ≤ µn σ̇(t0)Γ(2+η)

km−c holds. Then,

ts ≤ t0 +
[

σ̇(t0)Γ(2+η)

km − c

]1/η ∞

∑
n=0

(µ1/η)n, (35)

and as a consequence,

ts ≤ t0 +
1

(1−µ1/η)

[
σ̇(t0)Γ(2+η)

km − c

]1/η

∈ R (36)

since µ1/η < 1. Moreover, from tn = t0 +∑n
k=0(tk+1 − tk)

and (t ′n − tn)η ≤ µn(t ′0 − t0)η , one has that

lim
n→∞

t ′n = lim
n→∞

tn = ts. (37)

Therefore

(σ̇(t),σ(t))→ (0,0) as t → ts. (38)

Invariance of (σ̇(t),σ(t)) = 0 for t ≥ ts, which results of
the continuity of σ̇(t), establishes that a sliding regime is
sustained afterwards, and this fact leads to conclude that,
from (21) and (22), Sq(t) = 0⇔ S(t) = S(t0)eκ(t−t0), which
finally leads to ∆q(t) → 0 ⇒ q(t) → qd(t),∆q̇(t) → 0 ⇒
q̇(t)→ q̇d(t) exponentially after ts ∈ R. □

Remark 1: During sliding motion, the invariant σ̇ =
0, shows that from (23), one obtains

τq = Hq(q)q̈r +Cq(q, q̇)q̇r +Dq(q, q̇)q̇r +gq(q)−fd .

That is, the controller exactly observes the disturbance
without resorting on the equivalent method of the classical
integer-order sliding mode scheme, [8].

4. SIMULATIONS

Consider a fully actuated ROV. The simulator runs an
Euler integrator at 1KHz in Matlab 2014. Differintegrals
are computed using the Grünwald-Letnikov operator on a
low-end Laptop, where the discontinuous sign(x) function
is approximated by tanh(100x).

4.1. The plant
Dynamic parameters of the ROV are given in Table

1, with damping parameters in Table 2, for a SNAME
notation, [25]. The term Aḃḃ = ∂A

∂ ḃ
d
dt b. X , Y and Z

are the forces acting along x, y and z, respectively; sim-
ilarly, K, M, N are torques acting along ϕ ,θ ,ψ , re-
spectively. For low velocities, typical in underwater
exploration tasks, added mass and damping matrix can
be approximated by Ma = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇,
Nṙ} and Db(νr) = −diag{Xu, Yv, Zw, Kp, Mq, Nr} −
diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|}.
Added mass coefficients are (Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ) =
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Fig. 2. Hölder disturbance fd = 50 ∑∞
γ=1 4−0.5γ sin(4γt).

Table 1. Dynamic parameters.

Parameter Value Units
m 25 kg
V 0.043 m3

rc [0 0 0]T m
rb [0 0 0.025]T m
Ixx 2.514 kgm2

Iyy 4.069 kgm2

Izz 3.755 kgm2

Ixy 0.064 kgm2

Ixz 7.94 ×10−7 kgm2

Iyz 1.061×10−5 kgm2

dx 0.35 m
dy 0.15 m
kQ 0.01 -
ρ 999 kg/m3

g 9.81 m/s2

Table 2. Damping matrix coefficients.

Coefficient Value Units

Xu -18.75 kg/s
Yv -27.5 kg/s
Zw -31.25 kg/s
Kp -2.5 kgm/(rad·s)
Mq -5 kgm/(rad·s)
Nr -6.25 kgm/(rad·s)

Xu|u| -10 kg/s
Yv|v| -18.75 kg/s
Zw|w| -18.75 kg/s
Kp|p| -3 kgm/(rad·s)
Mq|q| -3.75 kgm/(rad·s)
Nr|r| -5 kgm/(rad·s)

(−45.539 Kg,−95.402 Kg,−91.538 Kg,−1.4186 Kgm2,
−0.066 Kgm2,−1.418 Kgm2). The hydrodynamic distur-
bance is fd = 50 ∑p

γ=1 4−νγ sin(4γt)N, p → ∞, for each
actuator, Fig. 2, with the critical order ν = 0.5, see [13].
For simulation purposes p = 200.
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Fig. 3. Sliding surfaces evolve around the origin.

4.2. The task
The task is to track xd = 2sin( π

10 t) m, yd = 2cos( π
10 t)

m, zd = t
100 m, with desired attitude ϕd = 0 rad, θd = 0

rad, ψd =− π
10 t rad.

4.3. Control parameters and tunning procedure
The tunning procedure complies to the stability analy-

sis, however, final feedback gains are tuned heuristically
by setting the required convergence rate of Sq based on
gains β and κ with λM(β ) < κ . Then, set η and k, start-
ing with a low value of η while tunning k to get an ac-
ceptable finite-time convergence regime. Finally, it is sug-
gested to tune η by increasing it to alleviate the chattering
with a sufficiently low value to assure robustness against
disturbances. Following this tunning procedure, the con-
trol parameters for the simulation are β = I6×6, κ = 1,
k = diag(100 100 1200 50 50 100), η = 0.45.

4.4. Results
Sliding surfaces converge in finite-time, as shown in

Fig. 3, and remain around zero afterwards. Consequently,
tracking errors converge exponentially to yield the 3D
Cartesian tracking without overshoot observed in Fig. 4.
Notice in Fig. 5 that the orientation angles are smoother
than expected, despite of the non-differentiable distur-
bance and the fact that the controller does not required
any information of the hydrodynamic model.

Fig. 6 depict thruster and moment control inputs. The
apparent chattering in reality stands simply as the typi-
cal performance without chattering, [3], see in particular
the time scale shown in each subfigure inset. Notice that
the large disturbance amplitude exacerbates actuator ac-
tivity, which varies according to the amplitude of the dis-
turbance, in virtue of the exact disturbance estimation of
the controller.

5. CONCLUSIONS

Fractional operators allow to synthesize a continuous
controller that outperforms its integer-order counterpart
by using the proposed resetting memory principle. In
this way, the tracking control of the complete dynamic
ROV model subject to Hölder hydrodynamic disturbances
is proposed by exploiting fractional sliding modes. It is
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Fig. 4. Position tracking in Cartesian (x,y,z) coordinates.
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Fig. 5. Orientation tracking quickly reacts to variations.

shown that the establishment of the sliding motion is en-
forced in finite-time without chattering. Remarkably, the
closed-loop system shows that indeed, exact disturbance
compensation is obtained thanks to the topological prop-
erties of the fractional control signal, which are appeal-
ing for typical unknown underwater environments where
complex disturbance phenomena are present.
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